rbdlsim/3rdparty/tracy/csvexport/src/csvexport.cpp

312 lines
8.0 KiB
C++

#ifdef _WIN32
# include <windows.h>
#endif
#include <algorithm>
#include <cctype>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <math.h>
#include <stdio.h>
#include <stdint.h>
#include "../../server/TracyFileRead.hpp"
#include "../../server/TracyWorker.hpp"
#include "../../getopt/getopt.h"
void print_usage_exit(int e)
{
fprintf(stderr, "Extract statistics from a trace to a CSV format\n");
fprintf(stderr, "Usage:\n");
fprintf(stderr, " extract [OPTION...] <trace file>\n");
fprintf(stderr, "\n");
fprintf(stderr, " -h, --help Print usage\n");
fprintf(stderr, " -f, --filter arg Filter zone names (default: "")\n");
fprintf(stderr, " -s, --sep arg CSV separator (default: ,)\n");
fprintf(stderr, " -c, --case Case sensitive filtering\n");
fprintf(stderr, " -e, --self Get self times\n");
fprintf(stderr, " -u, --unwrap Report each zone event\n");
exit(e);
}
struct Args {
const char* filter;
const char* separator;
const char* trace_file;
bool case_sensitive;
bool self_time;
bool unwrap;
};
Args parse_args(int argc, char** argv)
{
if (argc == 1)
{
print_usage_exit(1);
}
Args args = { "", ",", "", false, false, false };
struct option long_opts[] = {
{ "help", no_argument, NULL, 'h' },
{ "filter", optional_argument, NULL, 'f' },
{ "sep", optional_argument, NULL, 's' },
{ "case", no_argument, NULL, 'c' },
{ "self", no_argument, NULL, 'e' },
{ "unwrap", no_argument, NULL, 'u' },
{ NULL, 0, NULL, 0 }
};
int c;
while ((c = getopt_long(argc, argv, "hf:s:ceu", long_opts, NULL)) != -1)
{
switch (c)
{
case 'h':
print_usage_exit(0);
break;
case 'f':
args.filter = optarg;
break;
case 's':
args.separator = optarg;
break;
case 'c':
args.case_sensitive = true;
break;
case 'e':
args.self_time = true;
break;
case 'u':
args.unwrap = true;
break;
default:
print_usage_exit(1);
break;
}
}
if (argc != optind + 1)
{
print_usage_exit(1);
}
args.trace_file = argv[optind];
return args;
}
bool is_substring(
const char* term,
const char* s,
bool case_sensitive = false
){
auto new_term = std::string(term);
auto new_s = std::string(s);
if (!case_sensitive) {
std::transform(
new_term.begin(),
new_term.end(),
new_term.begin(),
[](unsigned char c){ return std::tolower(c); }
);
std::transform(
new_s.begin(),
new_s.end(),
new_s.begin(),
[](unsigned char c){ return std::tolower(c); }
);
}
return new_s.find(new_term) != std::string::npos;
}
const char* get_name(int32_t id, const tracy::Worker& worker)
{
auto& srcloc = worker.GetSourceLocation(id);
return worker.GetString(srcloc.name.active ? srcloc.name : srcloc.function);
}
template <typename T>
std::string join(const T& v, const char* sep) {
std::ostringstream s;
for (const auto& i : v) {
if (&i != &v[0]) {
s << sep;
}
s << i;
}
return s.str();
}
// From TracyView.cpp
int64_t GetZoneChildTimeFast(
const tracy::Worker& worker,
const tracy::ZoneEvent& zone
){
int64_t time = 0;
if( zone.HasChildren() )
{
auto& children = worker.GetZoneChildren( zone.Child() );
if( children.is_magic() )
{
auto& vec = *(tracy::Vector<tracy::ZoneEvent>*)&children;
for( auto& v : vec )
{
assert( v.IsEndValid() );
time += v.End() - v.Start();
}
}
else
{
for( auto& v : children )
{
assert( v->IsEndValid() );
time += v->End() - v->Start();
}
}
}
return time;
}
int main(int argc, char** argv)
{
#ifdef _WIN32
if (!AttachConsole(ATTACH_PARENT_PROCESS))
{
AllocConsole();
SetConsoleMode(GetStdHandle(STD_OUTPUT_HANDLE), 0x07);
}
#endif
Args args = parse_args(argc, argv);
auto f = std::unique_ptr<tracy::FileRead>(
tracy::FileRead::Open(args.trace_file)
);
if (!f)
{
fprintf(stderr, "Could not open file %s\n", args.trace_file);
return 1;
}
auto worker = tracy::Worker(*f);
while (!worker.AreSourceLocationZonesReady())
{
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
auto& slz = worker.GetSourceLocationZones();
tracy::Vector<decltype(slz.begin())> slz_selected;
slz_selected.reserve(slz.size());
uint32_t total_cnt = 0;
for(auto it = slz.begin(); it != slz.end(); ++it)
{
if(it->second.total != 0)
{
++total_cnt;
if(args.filter[0] == '\0')
{
slz_selected.push_back_no_space_check(it);
}
else
{
auto name = get_name(it->first, worker);
if(is_substring(args.filter, name, args.case_sensitive))
{
slz_selected.push_back_no_space_check(it);
}
}
}
}
std::vector<const char*> columns;
if (args.unwrap)
{
columns = {
"name", "src_file", "src_line", "ns_since_start", "exec_time_ns"
};
}
else
{
columns = {
"name", "src_file", "src_line", "total_ns", "total_perc",
"counts", "mean_ns", "min_ns", "max_ns", "std_ns"
};
}
std::string header = join(columns, args.separator);
printf("%s\n", header.data());
const auto last_time = worker.GetLastTime();
for(auto& it : slz_selected)
{
std::vector<std::string> values(columns.size());
values[0] = get_name(it->first, worker);
const auto& srcloc = worker.GetSourceLocation(it->first);
values[1] = worker.GetString(srcloc.file);
values[2] = std::to_string(srcloc.line);
const auto& zone_data = it->second;
if (args.unwrap)
{
int i = 0;
for (const auto& zone_thread_data : zone_data.zones) {
const auto zone_event = zone_thread_data.Zone();
const auto start = zone_event->Start();
const auto end = zone_event->End();
values[3] = std::to_string(start);
auto timespan = end - start;
if (args.self_time) {
timespan -= GetZoneChildTimeFast(worker, *zone_event);
}
values[4] = std::to_string(timespan);
std::string row = join(values, args.separator);
printf("%s\n", row.data());
}
}
else
{
const auto time = args.self_time ? zone_data.selfTotal : zone_data.total;
values[3] = std::to_string(time);
values[4] = std::to_string(100. * time / last_time);
values[5] = std::to_string(zone_data.zones.size());
const auto avg = (args.self_time ? zone_data.selfTotal : zone_data.total)
/ zone_data.zones.size();
values[6] = std::to_string(avg);
const auto tmin = args.self_time ? zone_data.selfMin : zone_data.min;
const auto tmax = args.self_time ? zone_data.selfMax : zone_data.max;
values[7] = std::to_string(tmin);
values[8] = std::to_string(tmax);
const auto sz = zone_data.zones.size();
const auto ss = zone_data.sumSq
- 2. * zone_data.total * avg
+ avg * avg * sz;
const auto std = sqrt(ss / (sz - 1));
values[9] = std::to_string(std);
std::string row = join(values, args.separator);
printf("%s\n", row.data());
}
}
return 0;
}