protot/3rdparty/bgfx/src/image.cpp

4080 lines
136 KiB
C++

/*
* Copyright 2011-2016 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
*/
#include "bgfx_p.h"
#include "image.h"
namespace bgfx
{
static const ImageBlockInfo s_imageBlockInfo[] =
{
// +-------------------------------------------- bits per pixel
// | +----------------------------------------- block width
// | | +-------------------------------------- block height
// | | | +---------------------------------- block size
// | | | | +------------------------------- min blocks x
// | | | | | +---------------------------- min blocks y
// | | | | | | +------------------------ depth bits
// | | | | | | | +--------------------- stencil bits
// | | | | | | | | +---+---+---+----- r, g, b, a bits
// | | | | | | | | r g b a +-- encoding type
// | | | | | | | | | | | | |
{ 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // BC1
{ 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // BC2
{ 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // BC3
{ 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // BC4
{ 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // BC5
{ 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // BC6H
{ 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // BC7
{ 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // ETC1
{ 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // ETC2
{ 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // ETC2A
{ 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // ETC2A1
{ 2, 8, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // PTC12
{ 4, 4, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // PTC14
{ 2, 8, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // PTC12A
{ 4, 4, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // PTC14A
{ 2, 8, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // PTC22
{ 4, 4, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // PTC24
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Count) }, // Unknown
{ 1, 8, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // R1
{ 8, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 8, uint8_t(EncodingType::Unorm) }, // A8
{ 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // R8
{ 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(EncodingType::Int ) }, // R8I
{ 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(EncodingType::Uint ) }, // R8U
{ 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(EncodingType::Snorm) }, // R8S
{ 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // R16
{ 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(EncodingType::Int ) }, // R16I
{ 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(EncodingType::Uint ) }, // R16U
{ 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(EncodingType::Float) }, // R16F
{ 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(EncodingType::Snorm) }, // R16S
{ 32, 1, 1, 4, 1, 1, 0, 0, 32, 0, 0, 0, uint8_t(EncodingType::Int ) }, // R32I
{ 32, 1, 1, 4, 1, 1, 0, 0, 32, 0, 0, 0, uint8_t(EncodingType::Uint ) }, // R32U
{ 32, 1, 1, 4, 1, 1, 0, 0, 32, 0, 0, 0, uint8_t(EncodingType::Float) }, // R32F
{ 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(EncodingType::Unorm) }, // RG8
{ 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(EncodingType::Int ) }, // RG8I
{ 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(EncodingType::Uint ) }, // RG8U
{ 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(EncodingType::Snorm) }, // RG8S
{ 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(EncodingType::Unorm) }, // RG16
{ 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(EncodingType::Int ) }, // RG16I
{ 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(EncodingType::Uint ) }, // RG16U
{ 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(EncodingType::Float) }, // RG16F
{ 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(EncodingType::Snorm) }, // RG16S
{ 64, 1, 1, 8, 1, 1, 0, 0, 32, 32, 0, 0, uint8_t(EncodingType::Int ) }, // RG32I
{ 64, 1, 1, 8, 1, 1, 0, 0, 32, 32, 0, 0, uint8_t(EncodingType::Uint ) }, // RG32U
{ 64, 1, 1, 8, 1, 1, 0, 0, 32, 32, 0, 0, uint8_t(EncodingType::Float) }, // RG32F
{ 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(EncodingType::Unorm) }, // RGB8
{ 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(EncodingType::Int ) }, // RGB8I
{ 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(EncodingType::Uint ) }, // RGB8U
{ 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(EncodingType::Snorm) }, // RGB8S
{ 32, 1, 1, 4, 1, 1, 0, 0, 9, 9, 9, 5, uint8_t(EncodingType::Float) }, // RGB9E5F
{ 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(EncodingType::Unorm) }, // BGRA8
{ 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(EncodingType::Unorm) }, // RGBA8
{ 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(EncodingType::Int ) }, // RGBA8I
{ 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(EncodingType::Uint ) }, // RGBA8U
{ 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(EncodingType::Snorm) }, // RGBA8S
{ 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(EncodingType::Unorm) }, // RGBA16
{ 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(EncodingType::Int ) }, // RGBA16I
{ 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(EncodingType::Uint ) }, // RGBA16U
{ 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(EncodingType::Float) }, // RGBA16F
{ 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(EncodingType::Snorm) }, // RGBA16S
{ 128, 1, 1, 16, 1, 1, 0, 0, 32, 32, 32, 32, uint8_t(EncodingType::Int ) }, // RGBA32I
{ 128, 1, 1, 16, 1, 1, 0, 0, 32, 32, 32, 32, uint8_t(EncodingType::Uint ) }, // RGBA32U
{ 128, 1, 1, 16, 1, 1, 0, 0, 32, 32, 32, 32, uint8_t(EncodingType::Float) }, // RGBA32F
{ 16, 1, 1, 2, 1, 1, 0, 0, 5, 6, 5, 0, uint8_t(EncodingType::Unorm) }, // R5G6B5
{ 16, 1, 1, 2, 1, 1, 0, 0, 4, 4, 4, 4, uint8_t(EncodingType::Unorm) }, // RGBA4
{ 16, 1, 1, 2, 1, 1, 0, 0, 5, 5, 5, 1, uint8_t(EncodingType::Unorm) }, // RGB5A1
{ 32, 1, 1, 4, 1, 1, 0, 0, 10, 10, 10, 2, uint8_t(EncodingType::Unorm) }, // RGB10A2
{ 32, 1, 1, 4, 1, 1, 0, 0, 11, 11, 10, 0, uint8_t(EncodingType::Unorm) }, // R11G11B10F
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Count) }, // UnknownDepth
{ 16, 1, 1, 2, 1, 1, 16, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // D16
{ 24, 1, 1, 3, 1, 1, 24, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // D24
{ 32, 1, 1, 4, 1, 1, 24, 8, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // D24S8
{ 32, 1, 1, 4, 1, 1, 32, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // D32
{ 16, 1, 1, 2, 1, 1, 16, 0, 0, 0, 0, 0, uint8_t(EncodingType::Float) }, // D16F
{ 24, 1, 1, 3, 1, 1, 24, 0, 0, 0, 0, 0, uint8_t(EncodingType::Float) }, // D24F
{ 32, 1, 1, 4, 1, 1, 32, 0, 0, 0, 0, 0, uint8_t(EncodingType::Float) }, // D32F
{ 8, 1, 1, 1, 1, 1, 0, 8, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // D0S8
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_imageBlockInfo) );
static const char* s_textureFormatName[] =
{
"BC1", // BC1
"BC2", // BC2
"BC3", // BC3
"BC4", // BC4
"BC5", // BC5
"BC6H", // BC6H
"BC7", // BC7
"ETC1", // ETC1
"ETC2", // ETC2
"ETC2A", // ETC2A
"ETC2A1", // ETC2A1
"PTC12", // PTC12
"PTC14", // PTC14
"PTC12A", // PTC12A
"PTC14A", // PTC14A
"PTC22", // PTC22
"PTC24", // PTC24
"<unknown>", // Unknown
"R1", // R1
"A8", // A8
"R8", // R8
"R8I", // R8I
"R8U", // R8U
"R8S", // R8S
"R16", // R16
"R16I", // R16I
"R16U", // R16U
"R16F", // R16F
"R16S", // R16S
"R32I", // R32I
"R32U", // R32U
"R32F", // R32F
"RG8", // RG8
"RG8I", // RG8I
"RG8U", // RG8U
"RG8S", // RG8S
"RG16", // RG16
"RG16I", // RG16I
"RG16U", // RG16U
"RG16F", // RG16F
"RG16S", // RG16S
"RG32I", // RG32I
"RG32U", // RG32U
"RG32F", // RG32F
"RGB8", // RGB8
"RGB8I", // RGB8I
"RGB8U", // RGB8U
"RGB8S", // RGB8S
"RGB9E5", // RGB9E5F
"BGRA8", // BGRA8
"RGBA8", // RGBA8
"RGBA8I", // RGBA8I
"RGBA8U", // RGBA8U
"RGBA8S", // RGBA8S
"RGBA16", // RGBA16
"RGBA16I", // RGBA16I
"RGBA16U", // RGBA16U
"RGBA16F", // RGBA16F
"RGBA16S", // RGBA16S
"RGBA32I", // RGBA32I
"RGBA32U", // RGBA32U
"RGBA32F", // RGBA32F
"R5G6B5", // R5G6B5
"RGBA4", // RGBA4
"RGB5A1", // RGB5A1
"RGB10A2", // RGB10A2
"R11G11B10F", // R11G11B10F
"<unknown>", // UnknownDepth
"D16", // D16
"D24", // D24
"D24S8", // D24S8
"D32", // D32
"D16F", // D16F
"D24F", // D24F
"D32F", // D32F
"D0S8", // D0S8
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormatName) );
bool isCompressed(TextureFormat::Enum _format)
{
return _format < TextureFormat::Unknown;
}
bool isColor(TextureFormat::Enum _format)
{
return _format > TextureFormat::Unknown
&& _format < TextureFormat::UnknownDepth
;
}
bool isDepth(TextureFormat::Enum _format)
{
return _format > TextureFormat::UnknownDepth
&& _format < TextureFormat::Count
;
}
bool isValid(TextureFormat::Enum _format)
{
return _format != TextureFormat::Unknown
&& _format != TextureFormat::UnknownDepth
&& _format != TextureFormat::Count
;
}
uint8_t getBitsPerPixel(TextureFormat::Enum _format)
{
return s_imageBlockInfo[_format].bitsPerPixel;
}
const ImageBlockInfo& getBlockInfo(TextureFormat::Enum _format)
{
return s_imageBlockInfo[_format];
}
uint8_t getBlockSize(TextureFormat::Enum _format)
{
return s_imageBlockInfo[_format].blockSize;
}
const char* getName(TextureFormat::Enum _format)
{
return s_textureFormatName[_format];
}
TextureFormat::Enum getFormat(const char* _name)
{
for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii)
{
const TextureFormat::Enum fmt = TextureFormat::Enum(ii);
if (isValid(fmt) )
{
if (0 == bx::stricmp(s_textureFormatName[ii], _name) )
{
return fmt;
}
}
}
return TextureFormat::Unknown;
}
uint8_t imageGetNumMips(TextureFormat::Enum _format, uint16_t _width, uint16_t _height, uint16_t _depth)
{
const ImageBlockInfo& blockInfo = getBlockInfo(_format);
const uint16_t blockWidth = blockInfo.blockWidth;
const uint16_t blockHeight = blockInfo.blockHeight;
const uint16_t minBlockX = blockInfo.minBlockX;
const uint16_t minBlockY = blockInfo.minBlockY;
_width = bx::uint16_max(blockWidth * minBlockX, ( (_width + blockWidth - 1) / blockWidth)*blockWidth);
_height = bx::uint16_max(blockHeight * minBlockY, ( (_height + blockHeight - 1) / blockHeight)*blockHeight);
_depth = bx::uint16_max(1, _depth);
uint32_t max = bx::uint32_max(_width, bx::uint32_max(_height, _depth) );
uint32_t numMips = bx::uint32_max(1, uint8_t(bx::flog2(float(max) ) ) );
return uint8_t(numMips);
}
uint32_t imageGetSize(TextureFormat::Enum _format, uint16_t _width, uint16_t _height, uint16_t _depth, uint16_t _numLayers, bool _cubeMap, uint8_t _numMips)
{
const ImageBlockInfo& blockInfo = getBlockInfo(_format);
const uint8_t bpp = blockInfo.bitsPerPixel;
const uint16_t blockWidth = blockInfo.blockWidth;
const uint16_t blockHeight = blockInfo.blockHeight;
const uint16_t minBlockX = blockInfo.minBlockX;
const uint16_t minBlockY = blockInfo.minBlockY;
_width = bx::uint16_max(blockWidth * minBlockX, ( (_width + blockWidth - 1) / blockWidth)*blockWidth);
_height = bx::uint16_max(blockHeight * minBlockY, ( (_height + blockHeight - 1) / blockHeight)*blockHeight);
_depth = bx::uint16_max(1, _depth);
uint32_t width = _width;
uint32_t height = _height;
uint32_t depth = _depth;
uint32_t sides = _cubeMap ? 6 : 1;
uint32_t size = 0;
for (uint32_t lod = 0; lod < _numMips; ++lod)
{
width = bx::uint32_max(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth);
height = bx::uint32_max(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight);
depth = bx::uint32_max(1, depth);
size += width*height*depth*bpp/8 * sides;
width >>= 1;
height >>= 1;
depth >>= 1;
}
return size * _numLayers;
}
void imageSolid(uint32_t _width, uint32_t _height, uint32_t _solid, void* _dst)
{
uint32_t* dst = (uint32_t*)_dst;
for (uint32_t ii = 0, num = _width*_height; ii < num; ++ii)
{
*dst++ = _solid;
}
}
void imageCheckerboard(uint32_t _width, uint32_t _height, uint32_t _step, uint32_t _0, uint32_t _1, void* _dst)
{
uint32_t* dst = (uint32_t*)_dst;
for (uint32_t yy = 0; yy < _height; ++yy)
{
for (uint32_t xx = 0; xx < _width; ++xx)
{
uint32_t abgr = ( (xx/_step)&1) ^ ( (yy/_step)&1) ? _1 : _0;
*dst++ = abgr;
}
}
}
void imageRgba8Downsample2x2Ref(uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, void* _dst)
{
const uint32_t dstwidth = _width/2;
const uint32_t dstheight = _height/2;
if (0 == dstwidth
|| 0 == dstheight)
{
return;
}
uint8_t* dst = (uint8_t*)_dst;
const uint8_t* src = (const uint8_t*)_src;
for (uint32_t yy = 0, ystep = _pitch*2; yy < dstheight; ++yy, src += ystep)
{
const uint8_t* rgba = src;
for (uint32_t xx = 0; xx < dstwidth; ++xx, rgba += 8, dst += 4)
{
float rr = bx::fpow(rgba[ 0], 2.2f);
float gg = bx::fpow(rgba[ 1], 2.2f);
float bb = bx::fpow(rgba[ 2], 2.2f);
float aa = rgba[ 3];
rr += bx::fpow(rgba[ 4], 2.2f);
gg += bx::fpow(rgba[ 5], 2.2f);
bb += bx::fpow(rgba[ 6], 2.2f);
aa += rgba[ 7];
rr += bx::fpow(rgba[_pitch+0], 2.2f);
gg += bx::fpow(rgba[_pitch+1], 2.2f);
bb += bx::fpow(rgba[_pitch+2], 2.2f);
aa += rgba[_pitch+3];
rr += bx::fpow(rgba[_pitch+4], 2.2f);
gg += bx::fpow(rgba[_pitch+5], 2.2f);
bb += bx::fpow(rgba[_pitch+6], 2.2f);
aa += rgba[_pitch+7];
rr *= 0.25f;
gg *= 0.25f;
bb *= 0.25f;
aa *= 0.25f;
rr = bx::fpow(rr, 1.0f/2.2f);
gg = bx::fpow(gg, 1.0f/2.2f);
bb = bx::fpow(bb, 1.0f/2.2f);
dst[0] = (uint8_t)rr;
dst[1] = (uint8_t)gg;
dst[2] = (uint8_t)bb;
dst[3] = (uint8_t)aa;
}
}
}
void imageRgba8Downsample2x2(uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, void* _dst)
{
const uint32_t dstwidth = _width/2;
const uint32_t dstheight = _height/2;
if (0 == dstwidth
|| 0 == dstheight)
{
return;
}
uint8_t* dst = (uint8_t*)_dst;
const uint8_t* src = (const uint8_t*)_src;
using namespace bx;
const simd128_t unpack = simd_ld(1.0f, 1.0f/256.0f, 1.0f/65536.0f, 1.0f/16777216.0f);
const simd128_t pack = simd_ld(1.0f, 256.0f*0.5f, 65536.0f, 16777216.0f*0.5f);
const simd128_t umask = simd_ild(0xff, 0xff00, 0xff0000, 0xff000000);
const simd128_t pmask = simd_ild(0xff, 0x7f80, 0xff0000, 0x7f800000);
const simd128_t wflip = simd_ild(0, 0, 0, 0x80000000);
const simd128_t wadd = simd_ld(0.0f, 0.0f, 0.0f, 32768.0f*65536.0f);
const simd128_t gamma = simd_ld(1.0f/2.2f, 1.0f/2.2f, 1.0f/2.2f, 1.0f);
const simd128_t linear = simd_ld(2.2f, 2.2f, 2.2f, 1.0f);
const simd128_t quater = simd_splat(0.25f);
for (uint32_t yy = 0, ystep = _pitch*2; yy < dstheight; ++yy, src += ystep)
{
const uint8_t* rgba = src;
for (uint32_t xx = 0; xx < dstwidth; ++xx, rgba += 8, dst += 4)
{
const simd128_t abgr0 = simd_splat(rgba);
const simd128_t abgr1 = simd_splat(rgba+4);
const simd128_t abgr2 = simd_splat(rgba+_pitch);
const simd128_t abgr3 = simd_splat(rgba+_pitch+4);
const simd128_t abgr0m = simd_and(abgr0, umask);
const simd128_t abgr1m = simd_and(abgr1, umask);
const simd128_t abgr2m = simd_and(abgr2, umask);
const simd128_t abgr3m = simd_and(abgr3, umask);
const simd128_t abgr0x = simd_xor(abgr0m, wflip);
const simd128_t abgr1x = simd_xor(abgr1m, wflip);
const simd128_t abgr2x = simd_xor(abgr2m, wflip);
const simd128_t abgr3x = simd_xor(abgr3m, wflip);
const simd128_t abgr0f = simd_itof(abgr0x);
const simd128_t abgr1f = simd_itof(abgr1x);
const simd128_t abgr2f = simd_itof(abgr2x);
const simd128_t abgr3f = simd_itof(abgr3x);
const simd128_t abgr0c = simd_add(abgr0f, wadd);
const simd128_t abgr1c = simd_add(abgr1f, wadd);
const simd128_t abgr2c = simd_add(abgr2f, wadd);
const simd128_t abgr3c = simd_add(abgr3f, wadd);
const simd128_t abgr0n = simd_mul(abgr0c, unpack);
const simd128_t abgr1n = simd_mul(abgr1c, unpack);
const simd128_t abgr2n = simd_mul(abgr2c, unpack);
const simd128_t abgr3n = simd_mul(abgr3c, unpack);
const simd128_t abgr0l = simd_pow(abgr0n, linear);
const simd128_t abgr1l = simd_pow(abgr1n, linear);
const simd128_t abgr2l = simd_pow(abgr2n, linear);
const simd128_t abgr3l = simd_pow(abgr3n, linear);
const simd128_t sum0 = simd_add(abgr0l, abgr1l);
const simd128_t sum1 = simd_add(abgr2l, abgr3l);
const simd128_t sum2 = simd_add(sum0, sum1);
const simd128_t avg0 = simd_mul(sum2, quater);
const simd128_t avg1 = simd_pow(avg0, gamma);
const simd128_t avg2 = simd_mul(avg1, pack);
const simd128_t ftoi0 = simd_ftoi(avg2);
const simd128_t ftoi1 = simd_and(ftoi0, pmask);
const simd128_t zwxy = simd_swiz_zwxy(ftoi1);
const simd128_t tmp0 = simd_or(ftoi1, zwxy);
const simd128_t yyyy = simd_swiz_yyyy(tmp0);
const simd128_t tmp1 = simd_iadd(yyyy, yyyy);
const simd128_t result = simd_or(tmp0, tmp1);
simd_stx(dst, result);
}
}
}
void imageRgba32fToLinear(void* _dst, uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src)
{
uint8_t* dst = ( uint8_t*)_dst;
const uint8_t* src = (const uint8_t*)_src;
for (uint32_t yy = 0; yy < _height; ++yy, src += _pitch)
{
for (uint32_t xx = 0; xx < _width; ++xx, dst += 16)
{
float* fd = ( float*)dst;
const float* fs = (const float*)src;
fd[0] = bx::fpow(fs[0], 1.0f/2.2f);
fd[1] = bx::fpow(fs[1], 1.0f/2.2f);
fd[2] = bx::fpow(fs[2], 1.0f/2.2f);
fd[3] = fs[3];
}
}
}
void imageRgba32fToGamma(void* _dst, uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src)
{
uint8_t* dst = ( uint8_t*)_dst;
const uint8_t* src = (const uint8_t*)_src;
for (uint32_t yy = 0; yy < _height; ++yy, src += _pitch)
{
for (uint32_t xx = 0; xx < _width; ++xx, dst += 16)
{
float* fd = ( float*)dst;
const float* fs = (const float*)src;
fd[0] = bx::fpow(fs[0], 2.2f);
fd[1] = bx::fpow(fs[1], 2.2f);
fd[2] = bx::fpow(fs[2], 2.2f);
fd[3] = fs[3];
}
}
}
void imageRgba32fLinearDownsample2x2Ref(uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, void* _dst)
{
const uint32_t dstwidth = _width/2;
const uint32_t dstheight = _height/2;
if (0 == dstwidth
|| 0 == dstheight)
{
return;
}
const uint8_t* src = (const uint8_t*)_src;
uint8_t* dst = (uint8_t*)_dst;
for (uint32_t yy = 0, ystep = _pitch*2; yy < dstheight; ++yy, src += ystep)
{
const float* rgba0 = (const float*)&src[0];
const float* rgba1 = (const float*)&src[_pitch];
for (uint32_t xx = 0; xx < dstwidth; ++xx, rgba0 += 8, rgba1 += 8, dst += 16)
{
float xyz[4];
xyz[0] = rgba0[0];
xyz[1] = rgba0[1];
xyz[2] = rgba0[2];
xyz[3] = rgba0[3];
xyz[0] += rgba0[4];
xyz[1] += rgba0[5];
xyz[2] += rgba0[6];
xyz[3] += rgba0[7];
xyz[0] += rgba1[0];
xyz[1] += rgba1[1];
xyz[2] += rgba1[2];
xyz[3] += rgba1[3];
xyz[0] += rgba1[4];
xyz[1] += rgba1[5];
xyz[2] += rgba1[6];
xyz[3] += rgba1[7];
xyz[0] *= 0.25f;
xyz[1] *= 0.25f;
xyz[2] *= 0.25f;
xyz[3] *= 0.25f;
}
}
}
void imageRgba32fLinearDownsample2x2(uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, void* _dst)
{
imageRgba32fLinearDownsample2x2Ref(_width, _height, _pitch, _src, _dst);
}
void imageRgba32fDownsample2x2NormalMapRef(uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, void* _dst)
{
const uint32_t dstwidth = _width/2;
const uint32_t dstheight = _height/2;
if (0 == dstwidth
|| 0 == dstheight)
{
return;
}
const uint8_t* src = (const uint8_t*)_src;
uint8_t* dst = (uint8_t*)_dst;
for (uint32_t yy = 0, ystep = _pitch*2; yy < dstheight; ++yy, src += ystep)
{
const float* rgba0 = (const float*)&src[0];
const float* rgba1 = (const float*)&src[_pitch];
for (uint32_t xx = 0; xx < dstwidth; ++xx, rgba0 += 8, rgba1 += 8, dst += 16)
{
float xyz[3];
xyz[0] = rgba0[0];
xyz[1] = rgba0[1];
xyz[2] = rgba0[2];
xyz[0] += rgba0[4];
xyz[1] += rgba0[5];
xyz[2] += rgba0[6];
xyz[0] += rgba1[0];
xyz[1] += rgba1[1];
xyz[2] += rgba1[2];
xyz[0] += rgba1[4];
xyz[1] += rgba1[5];
xyz[2] += rgba1[6];
bx::vec3Norm( (float*)dst, xyz);
}
}
}
void imageRgba32fDownsample2x2NormalMap(uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, void* _dst)
{
imageRgba32fDownsample2x2NormalMapRef(_width, _height, _pitch, _src, _dst);
}
void imageSwizzleBgra8Ref(uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, void* _dst)
{
const uint8_t* src = (uint8_t*) _src;
const uint8_t* next = src + _pitch;
uint8_t* dst = (uint8_t*)_dst;
for (uint32_t yy = 0; yy < _height; ++yy, src = next, next += _pitch)
{
for (uint32_t xx = 0; xx < _width; ++xx, src += 4, dst += 4)
{
uint8_t rr = src[0];
uint8_t gg = src[1];
uint8_t bb = src[2];
uint8_t aa = src[3];
dst[0] = bb;
dst[1] = gg;
dst[2] = rr;
dst[3] = aa;
}
}
}
void imageSwizzleBgra8(uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, void* _dst)
{
// Test can we do four 4-byte pixels at the time.
if (0 != (_width&0x3)
|| _width < 4
|| !bx::isPtrAligned(_src, 16)
|| !bx::isPtrAligned(_dst, 16) )
{
BX_WARN(false, "Image swizzle is taking slow path.");
BX_WARN(bx::isPtrAligned(_src, 16), "Source %p is not 16-byte aligned.", _src);
BX_WARN(bx::isPtrAligned(_dst, 16), "Destination %p is not 16-byte aligned.", _dst);
BX_WARN(_width < 4, "Image width must be multiple of 4 (width %d).", _width);
imageSwizzleBgra8Ref(_width, _height, _pitch, _src, _dst);
return;
}
using namespace bx;
const simd128_t mf0f0 = simd_isplat(0xff00ff00);
const simd128_t m0f0f = simd_isplat(0x00ff00ff);
const uint8_t* src = (uint8_t*) _src;
const uint8_t* next = src + _pitch;
uint8_t* dst = (uint8_t*)_dst;
const uint32_t width = _width/4;
for (uint32_t yy = 0; yy < _height; ++yy, src = next, next += _pitch)
{
for (uint32_t xx = 0; xx < width; ++xx, src += 16, dst += 16)
{
const simd128_t tabgr = simd_ld(src);
const simd128_t t00ab = simd_srl(tabgr, 16);
const simd128_t tgr00 = simd_sll(tabgr, 16);
const simd128_t tgrab = simd_or(t00ab, tgr00);
const simd128_t ta0g0 = simd_and(tabgr, mf0f0);
const simd128_t t0r0b = simd_and(tgrab, m0f0f);
const simd128_t targb = simd_or(ta0g0, t0r0b);
simd_st(dst, targb);
}
}
}
void imageCopy(uint32_t _height, uint32_t _srcPitch, const void* _src, uint32_t _dstPitch, void* _dst)
{
const uint32_t pitch = bx::uint32_min(_srcPitch, _dstPitch);
const uint8_t* src = (uint8_t*)_src;
uint8_t* dst = (uint8_t*)_dst;
for (uint32_t yy = 0; yy < _height; ++yy, src += _srcPitch, dst += _dstPitch)
{
memcpy(dst, src, pitch);
}
}
void imageCopy(uint32_t _width, uint32_t _height, uint32_t _bpp, uint32_t _pitch, const void* _src, void* _dst)
{
const uint32_t dstPitch = _width*_bpp/8;
imageCopy(_height, _pitch, _src, dstPitch, _dst);
}
uint32_t toUnorm(float _value, float _scale)
{
return uint32_t(bx::fround(
bx::fsaturate(_value) * _scale)
);
}
float fromUnorm(uint32_t _value, float _scale)
{
return float(_value) / _scale;
}
int32_t toSnorm(float _value, float _scale)
{
return int32_t(bx::fround(
bx::fclamp(_value, -1.0f, 1.0f) * _scale)
);
}
float fromSnorm(int32_t _value, float _scale)
{
return bx::fmax(-1.0f, float(_value) / _scale);
}
// R8
void packR8(void* _dst, const float* _src)
{
uint8_t* dst = (uint8_t*)_dst;
dst[0] = uint8_t(toUnorm(_src[0], 255.0f) );
}
void unpackR8(float* _dst, const void* _src)
{
const uint8_t* src = (const uint8_t*)_src;
_dst[0] = fromUnorm(src[0], 255.0f);
_dst[1] = 0.0f;
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// R8S
void packR8S(void* _dst, const float* _src)
{
int8_t* dst = (int8_t*)_dst;
dst[0] = int8_t(toSnorm(_src[0], 127.0f) );
}
void unpackR8S(float* _dst, const void* _src)
{
const int8_t* src = (const int8_t*)_src;
_dst[0] = fromSnorm(src[0], 127.0f);
_dst[1] = 0.0f;
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// R8I
void packR8I(void* _dst, const float* _src)
{
int8_t* dst = (int8_t*)_dst;
dst[0] = int8_t(_src[0]);
}
void unpackR8I(float* _dst, const void* _src)
{
const int8_t* src = (const int8_t*)_src;
_dst[0] = float(src[0]);
_dst[1] = 0.0f;
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// R8U
void packR8U(void* _dst, const float* _src)
{
uint8_t* dst = (uint8_t*)_dst;
dst[0] = uint8_t(_src[0]);
}
void unpackR8U(float* _dst, const void* _src)
{
const uint8_t* src = (const uint8_t*)_src;
_dst[0] = float(src[0]);
_dst[1] = 0.0f;
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// RG8
void packRg8(void* _dst, const float* _src)
{
uint8_t* dst = (uint8_t*)_dst;
dst[0] = uint8_t(toUnorm(_src[0], 255.0f) );
dst[1] = uint8_t(toUnorm(_src[1], 255.0f) );
}
void unpackRg8(float* _dst, const void* _src)
{
const uint8_t* src = (const uint8_t*)_src;
_dst[0] = fromUnorm(src[0], 255.0f);
_dst[1] = fromUnorm(src[1], 255.0f);
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// RG8S
void packRg8S(void* _dst, const float* _src)
{
int8_t* dst = (int8_t*)_dst;
dst[0] = int8_t(toSnorm(_src[0], 127.0f) );
dst[1] = int8_t(toSnorm(_src[1], 127.0f) );
}
void unpackRg8S(float* _dst, const void* _src)
{
const int8_t* src = (const int8_t*)_src;
_dst[0] = fromSnorm(src[0], 127.0f);
_dst[1] = fromSnorm(src[1], 127.0f);
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// RG8I
void packRg8I(void* _dst, const float* _src)
{
int8_t* dst = (int8_t*)_dst;
dst[0] = int8_t(_src[0]);
dst[1] = int8_t(_src[1]);
}
void unpackRg8I(float* _dst, const void* _src)
{
const int8_t* src = (const int8_t*)_src;
_dst[0] = float(src[0]);
_dst[1] = float(src[1]);
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// RG8U
void packRg8U(void* _dst, const float* _src)
{
uint8_t* dst = (uint8_t*)_dst;
dst[0] = uint8_t(_src[0]);
dst[1] = uint8_t(_src[1]);
}
void unpackRg8U(float* _dst, const void* _src)
{
const uint8_t* src = (const uint8_t*)_src;
_dst[0] = float(src[0]);
_dst[1] = float(src[1]);
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// RGB8
void packRgb8(void* _dst, const float* _src)
{
uint8_t* dst = (uint8_t*)_dst;
dst[0] = uint8_t(toUnorm(_src[0], 255.0f) );
dst[1] = uint8_t(toUnorm(_src[1], 255.0f) );
dst[2] = uint8_t(toUnorm(_src[2], 255.0f) );
}
void unpackRgb8(float* _dst, const void* _src)
{
const uint8_t* src = (const uint8_t*)_src;
_dst[0] = fromUnorm(src[0], 255.0f);
_dst[1] = fromUnorm(src[1], 255.0f);
_dst[2] = fromUnorm(src[2], 255.0f);
_dst[3] = 1.0f;
}
// RGB8S
void packRgb8S(void* _dst, const float* _src)
{
int8_t* dst = (int8_t*)_dst;
dst[0] = int8_t(toSnorm(_src[0], 127.0f) );
dst[1] = int8_t(toSnorm(_src[1], 127.0f) );
dst[2] = int8_t(toSnorm(_src[2], 127.0f) );
}
void unpackRgb8S(float* _dst, const void* _src)
{
const int8_t* src = (const int8_t*)_src;
_dst[0] = fromSnorm(src[0], 127.0f);
_dst[1] = fromSnorm(src[1], 127.0f);
_dst[2] = fromSnorm(src[2], 127.0f);
_dst[3] = 1.0f;
}
// RGB8I
void packRgb8I(void* _dst, const float* _src)
{
int8_t* dst = (int8_t*)_dst;
dst[0] = int8_t(_src[0]);
dst[1] = int8_t(_src[1]);
dst[2] = int8_t(_src[2]);
}
void unpackRgb8I(float* _dst, const void* _src)
{
const int8_t* src = (const int8_t*)_src;
_dst[0] = float(src[0]);
_dst[1] = float(src[1]);
_dst[2] = float(src[2]);
_dst[3] = 1.0f;
}
// RGB8U
void packRgb8U(void* _dst, const float* _src)
{
uint8_t* dst = (uint8_t*)_dst;
dst[0] = uint8_t(_src[0]);
dst[1] = uint8_t(_src[1]);
dst[2] = uint8_t(_src[2]);
}
void unpackRgb8U(float* _dst, const void* _src)
{
const uint8_t* src = (const uint8_t*)_src;
_dst[0] = float(src[0]);
_dst[1] = float(src[1]);
_dst[2] = float(src[2]);
_dst[3] = 1.0f;
}
// BGRA8
void packBgra8(void* _dst, const float* _src)
{
uint8_t* dst = (uint8_t*)_dst;
dst[2] = uint8_t(toUnorm(_src[0], 255.0f) );
dst[1] = uint8_t(toUnorm(_src[1], 255.0f) );
dst[0] = uint8_t(toUnorm(_src[2], 255.0f) );
dst[3] = uint8_t(toUnorm(_src[3], 255.0f) );
}
void unpackBgra8(float* _dst, const void* _src)
{
const uint8_t* src = (const uint8_t*)_src;
_dst[0] = fromUnorm(src[2], 255.0f);
_dst[1] = fromUnorm(src[1], 255.0f);
_dst[2] = fromUnorm(src[0], 255.0f);
_dst[3] = fromUnorm(src[3], 255.0f);
}
// RGBA8
void packRgba8(void* _dst, const float* _src)
{
uint8_t* dst = (uint8_t*)_dst;
dst[0] = uint8_t(toUnorm(_src[0], 255.0f) );
dst[1] = uint8_t(toUnorm(_src[1], 255.0f) );
dst[2] = uint8_t(toUnorm(_src[2], 255.0f) );
dst[3] = uint8_t(toUnorm(_src[3], 255.0f) );
}
void unpackRgba8(float* _dst, const void* _src)
{
const uint8_t* src = (const uint8_t*)_src;
_dst[0] = fromUnorm(src[0], 255.0f);
_dst[1] = fromUnorm(src[1], 255.0f);
_dst[2] = fromUnorm(src[2], 255.0f);
_dst[3] = fromUnorm(src[3], 255.0f);
}
// RGBA8S
void packRgba8S(void* _dst, const float* _src)
{
int8_t* dst = (int8_t*)_dst;
dst[0] = int8_t(toSnorm(_src[0], 127.0f) );
dst[1] = int8_t(toSnorm(_src[1], 127.0f) );
dst[2] = int8_t(toSnorm(_src[2], 127.0f) );
dst[3] = int8_t(toSnorm(_src[3], 127.0f) );
}
void unpackRgba8S(float* _dst, const void* _src)
{
const int8_t* src = (const int8_t*)_src;
_dst[0] = fromSnorm(src[0], 127.0f);
_dst[1] = fromSnorm(src[1], 127.0f);
_dst[2] = fromSnorm(src[2], 127.0f);
_dst[3] = fromSnorm(src[3], 127.0f);
}
// RGBA8I
void packRgba8I(void* _dst, const float* _src)
{
int8_t* dst = (int8_t*)_dst;
dst[0] = int8_t(_src[0]);
dst[1] = int8_t(_src[1]);
dst[2] = int8_t(_src[2]);
dst[3] = int8_t(_src[3]);
}
void unpackRgba8I(float* _dst, const void* _src)
{
const int8_t* src = (const int8_t*)_src;
_dst[0] = float(src[0]);
_dst[1] = float(src[1]);
_dst[2] = float(src[2]);
_dst[3] = float(src[3]);
}
// RGBA8U
void packRgba8U(void* _dst, const float* _src)
{
uint8_t* dst = (uint8_t*)_dst;
dst[0] = uint8_t(_src[0]);
dst[1] = uint8_t(_src[1]);
dst[2] = uint8_t(_src[2]);
dst[3] = uint8_t(_src[3]);
}
void unpackRgba8U(float* _dst, const void* _src)
{
const uint8_t* src = (const uint8_t*)_src;
_dst[0] = float(src[0]);
_dst[1] = float(src[1]);
_dst[2] = float(src[2]);
_dst[3] = float(src[3]);
}
// R16
void packR16(void* _dst, const float* _src)
{
uint16_t* dst = (uint16_t*)_dst;
dst[0] = uint16_t(toUnorm(_src[0], 65535.0f) );
}
void unpackR16(float* _dst, const void* _src)
{
const uint16_t* src = (const uint16_t*)_src;
_dst[0] = fromUnorm(src[0], 65535.0f);
_dst[1] = 0.0f;
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// R16S
void packR16S(void* _dst, const float* _src)
{
int16_t* dst = (int16_t*)_dst;
dst[0] = int16_t(toSnorm(_src[0], 32767.0f) );
}
void unpackR16S(float* _dst, const void* _src)
{
const int16_t* src = (const int16_t*)_src;
_dst[0] = fromSnorm(src[0], 32767.0f);
_dst[1] = 0.0f;
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// R16I
void packR16I(void* _dst, const float* _src)
{
int16_t* dst = (int16_t*)_dst;
dst[0] = int16_t(_src[0]);
}
void unpackR16I(float* _dst, const void* _src)
{
const int16_t* src = (const int16_t*)_src;
_dst[0] = float(src[0]);
_dst[1] = 0.0f;
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// R16U
void packR16U(void* _dst, const float* _src)
{
uint16_t* dst = (uint16_t*)_dst;
dst[0] = uint16_t(_src[0]);
}
void unpackR16U(float* _dst, const void* _src)
{
const uint16_t* src = (const uint16_t*)_src;
_dst[0] = float(src[0]);
}
// R16F
void packR16F(void* _dst, const float* _src)
{
uint16_t* dst = (uint16_t*)_dst;
dst[0] = bx::halfFromFloat(_src[0]);
}
void unpackR16F(float* _dst, const void* _src)
{
const uint16_t* src = (const uint16_t*)_src;
_dst[0] = bx::halfToFloat(src[0]);
_dst[1] = 0.0f;
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// RG16
void packRg16(void* _dst, const float* _src)
{
uint16_t* dst = (uint16_t*)_dst;
dst[0] = uint16_t(toUnorm(_src[0], 65535.0f) );
dst[1] = uint16_t(toUnorm(_src[1], 65535.0f) );
}
void unpackRg16(float* _dst, const void* _src)
{
const uint16_t* src = (const uint16_t*)_src;
_dst[0] = fromUnorm(src[0], 65535.0f);
_dst[1] = fromUnorm(src[1], 65535.0f);
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// RG16S
void packRg16S(void* _dst, const float* _src)
{
int16_t* dst = (int16_t*)_dst;
dst[0] = int16_t(toSnorm(_src[0], 32767.0f) );
dst[1] = int16_t(toSnorm(_src[1], 32767.0f) );
}
void unpackRg16S(float* _dst, const void* _src)
{
const int16_t* src = (const int16_t*)_src;
_dst[0] = fromSnorm(src[0], 32767.0f);
_dst[1] = fromSnorm(src[1], 32767.0f);
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// RG16I
void packRg16I(void* _dst, const float* _src)
{
int16_t* dst = (int16_t*)_dst;
dst[0] = int16_t(_src[0]);
dst[1] = int16_t(_src[1]);
}
void unpackRg16I(float* _dst, const void* _src)
{
const int16_t* src = (const int16_t*)_src;
_dst[0] = float(src[0]);
_dst[1] = float(src[1]);
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// RG16U
void packRg16U(void* _dst, const float* _src)
{
uint16_t* dst = (uint16_t*)_dst;
dst[0] = uint16_t(_src[0]);
dst[1] = uint16_t(_src[1]);
}
void unpackRg16U(float* _dst, const void* _src)
{
const uint16_t* src = (const uint16_t*)_src;
_dst[0] = float(src[0]);
_dst[1] = float(src[1]);
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// RG16F
void packRg16F(void* _dst, const float* _src)
{
uint16_t* dst = (uint16_t*)_dst;
dst[0] = bx::halfFromFloat(_src[0]);
dst[1] = bx::halfFromFloat(_src[1]);
}
void unpackRg16F(float* _dst, const void* _src)
{
const uint16_t* src = (const uint16_t*)_src;
_dst[0] = bx::halfToFloat(src[0]);
_dst[1] = bx::halfToFloat(src[1]);
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// RGBA16
void packRgba16(void* _dst, const float* _src)
{
uint16_t* dst = (uint16_t*)_dst;
dst[0] = uint16_t(toUnorm(_src[0], 65535.0f) );
dst[1] = uint16_t(toUnorm(_src[1], 65535.0f) );
dst[2] = uint16_t(toUnorm(_src[2], 65535.0f) );
dst[3] = uint16_t(toUnorm(_src[3], 65535.0f) );
}
void unpackRgba16(float* _dst, const void* _src)
{
const uint16_t* src = (const uint16_t*)_src;
_dst[0] = fromUnorm(src[0], 65535.0f);
_dst[1] = fromUnorm(src[1], 65535.0f);
_dst[2] = fromUnorm(src[2], 65535.0f);
_dst[3] = fromUnorm(src[3], 65535.0f);
}
// RGBA16S
void packRgba16S(void* _dst, const float* _src)
{
int16_t* dst = (int16_t*)_dst;
dst[0] = int16_t(toSnorm(_src[0], 32767.0f) );
dst[1] = int16_t(toSnorm(_src[1], 32767.0f) );
dst[2] = int16_t(toSnorm(_src[2], 32767.0f) );
dst[3] = int16_t(toSnorm(_src[3], 32767.0f) );
}
void unpackRgba16S(float* _dst, const void* _src)
{
const int16_t* src = (const int16_t*)_src;
_dst[0] = fromSnorm(src[0], 32767.0f);
_dst[1] = fromSnorm(src[1], 32767.0f);
_dst[2] = fromSnorm(src[2], 32767.0f);
_dst[3] = fromSnorm(src[3], 32767.0f);
}
// RGBA16I
void packRgba16I(void* _dst, const float* _src)
{
int16_t* dst = (int16_t*)_dst;
dst[0] = int16_t(_src[0]);
dst[1] = int16_t(_src[1]);
dst[2] = int16_t(_src[2]);
dst[3] = int16_t(_src[3]);
}
void unpackRgba16I(float* _dst, const void* _src)
{
const int16_t* src = (const int16_t*)_src;
_dst[0] = float(src[0]);
_dst[1] = float(src[1]);
_dst[2] = float(src[2]);
_dst[3] = float(src[3]);
}
// RGBA16U
void packRgba16U(void* _dst, const float* _src)
{
uint16_t* dst = (uint16_t*)_dst;
dst[0] = uint16_t(_src[0]);
dst[1] = uint16_t(_src[1]);
dst[2] = uint16_t(_src[2]);
dst[3] = uint16_t(_src[3]);
}
void unpackRgba16U(float* _dst, const void* _src)
{
const uint16_t* src = (const uint16_t*)_src;
_dst[0] = float(src[0]);
_dst[1] = float(src[1]);
_dst[2] = float(src[2]);
_dst[3] = float(src[3]);
}
// RGBA16F
void packRgba16F(void* _dst, const float* _src)
{
uint16_t* dst = (uint16_t*)_dst;
dst[0] = bx::halfFromFloat(_src[0]);
dst[1] = bx::halfFromFloat(_src[1]);
dst[2] = bx::halfFromFloat(_src[2]);
dst[3] = bx::halfFromFloat(_src[3]);
}
void unpackRgba16F(float* _dst, const void* _src)
{
const uint16_t* src = (const uint16_t*)_src;
_dst[0] = bx::halfToFloat(src[0]);
_dst[1] = bx::halfToFloat(src[1]);
_dst[2] = bx::halfToFloat(src[2]);
_dst[3] = bx::halfToFloat(src[3]);
}
// R24
void packR24(void* _dst, const float* _src)
{
uint8_t* dst = (uint8_t*)_dst;
const uint32_t rr = uint32_t(toUnorm(_src[0], 16777216.0f) );
dst[0] = uint8_t(rr );
dst[1] = uint8_t(rr>> 8);
dst[2] = uint8_t(rr>>16);
}
void unpackR24(float* _dst, const void* _src)
{
const uint8_t* src = (const uint8_t*)_src;
const uint32_t rr = 0
| (src[0] )
| (src[1]<< 8)
| (src[2]<<16)
;
_dst[0] = fromUnorm(rr, 16777216.0f);
_dst[1] = 0.0f;
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// R24G8
void packR24G8(void* _dst, const float* _src)
{
uint8_t* dst = (uint8_t*)_dst;
const uint32_t rr = uint32_t(toUnorm(_src[0], 16777216.0f) );
dst[0] = uint8_t(rr );
dst[1] = uint8_t(rr>> 8);
dst[2] = uint8_t(rr>>16);
dst[3] = uint8_t(toUnorm(_src[1], 255.0f) );
}
void unpackR24G8(float* _dst, const void* _src)
{
const uint8_t* src = (const uint8_t*)_src;
const uint32_t rr = 0
| (src[0] )
| (src[1]<< 8)
| (src[2]<<16)
;
_dst[0] = fromUnorm(rr, 16777216.0f);
_dst[1] = fromUnorm(src[3], 255.0f);
_dst[2] = 0.0f;
_dst[3] = 1.0f;
}
// R32I
void packR32I(void* _dst, const float* _src)
{
memcpy(_dst, _src, 4);
}
void unpackR32I(float* _dst, const void* _src)
{
memcpy(_dst, _src, 4);
}
// R32U
void packR32U(void* _dst, const float* _src)
{
memcpy(_dst, _src, 4);
}
void unpackR32U(float* _dst, const void* _src)
{
memcpy(_dst, _src, 4);
}
// R32F
void packR32F(void* _dst, const float* _src)
{
memcpy(_dst, _src, 4);
}
void unpackR32F(float* _dst, const void* _src)
{
memcpy(_dst, _src, 4);
}
// RG32I
void packRg32I(void* _dst, const float* _src)
{
memcpy(_dst, _src, 8);
}
void unpackRg32I(float* _dst, const void* _src)
{
memcpy(_dst, _src, 8);
}
// RG32U
void packRg32U(void* _dst, const float* _src)
{
memcpy(_dst, _src, 8);
}
void unpackRg32U(float* _dst, const void* _src)
{
memcpy(_dst, _src, 8);
}
// RG32F
void packRg32F(void* _dst, const float* _src)
{
memcpy(_dst, _src, 8);
}
void unpackRg32F(float* _dst, const void* _src)
{
memcpy(_dst, _src, 8);
}
template<int32_t MantissaBits, int32_t ExpBits>
void encodeRgbE(float* _dst, const float* _src)
{
// Reference:
// https://www.opengl.org/registry/specs/EXT/texture_shared_exponent.txt
const int32_t expMax = (1<<ExpBits) - 1;
const int32_t expBias = (1<<(ExpBits - 1) ) - 1;
const float sharedExpMax = float(expMax) / float(expMax + 1) * float(1 << (expMax - expBias) );
const float rr = bx::fclamp(_src[0], 0.0f, sharedExpMax);
const float gg = bx::fclamp(_src[1], 0.0f, sharedExpMax);
const float bb = bx::fclamp(_src[2], 0.0f, sharedExpMax);
const float max = bx::fmax3(rr, gg, bb);
union { float ff; uint32_t ui; } cast = { max };
int32_t expShared = int32_t(bx::uint32_imax(uint32_t(-expBias-1), ( ( (cast.ui>>23) & 0xff) - 127) ) ) + 1 + expBias;
float denom = bx::fpow(2.0f, float(expShared - expBias - MantissaBits) );
if ( (1<<MantissaBits) == int32_t(bx::fround(max/denom) ) )
{
denom *= 2.0f;
++expShared;
}
const float invDenom = 1.0f/denom;
_dst[0] = bx::fround(rr * invDenom);
_dst[1] = bx::fround(gg * invDenom);
_dst[2] = bx::fround(bb * invDenom);
_dst[3] = float(expShared);
}
template<int32_t MantissaBits, int32_t ExpBits>
void decodeRgbE(float* _dst, const float* _src)
{
const int32_t expBias = (1<<(ExpBits - 1) ) - 1;
const float exponent = _src[3]-float(expBias-MantissaBits);
const float scale = bx::fpow(2.0f, exponent);
_dst[0] = _src[0] * scale;
_dst[1] = _src[1] * scale;
_dst[2] = _src[2] * scale;
}
// RGB9E5F
void packRgb9E5F(void* _dst, const float* _src)
{
float tmp[4];
encodeRgbE<9, 5>(tmp, _src);
*( (uint32_t*)_dst) = 0
| (uint32_t(tmp[0]) )
| (uint32_t(tmp[1]) << 9)
| (uint32_t(tmp[2]) <<18)
| (uint32_t(tmp[3]) <<27)
;
}
void unpackRgb9E5F(float* _dst, const void* _src)
{
uint32_t packed = *( (const uint32_t*)_src);
float tmp[4];
tmp[0] = float( ( (packed ) & 0x1ff) ) / 511.0f;
tmp[1] = float( ( (packed>> 9) & 0x1ff) ) / 511.0f;
tmp[2] = float( ( (packed>>18) & 0x1ff) ) / 511.0f;
tmp[3] = float( ( (packed>>27) & 0x1f) );
decodeRgbE<9, 5>(_dst, tmp);
}
// RGBA32I
void packRgba32I(void* _dst, const float* _src)
{
memcpy(_dst, _src, 16);
}
void unpackRgba32I(float* _dst, const void* _src)
{
memcpy(_dst, _src, 16);
}
// RGBA32U
void packRgba32U(void* _dst, const float* _src)
{
memcpy(_dst, _src, 16);
}
void unpackRgba32U(float* _dst, const void* _src)
{
memcpy(_dst, _src, 16);
}
// RGBA32F
void packRgba32F(void* _dst, const float* _src)
{
memcpy(_dst, _src, 16);
}
void unpackRgba32F(float* _dst, const void* _src)
{
memcpy(_dst, _src, 16);
}
// R5G6B5
void packR5G6B5(void* _dst, const float* _src)
{
*( (uint16_t*)_dst) = 0
| uint16_t(toUnorm(_src[0], 31.0f)<<11)
| uint16_t(toUnorm(_src[1], 63.0f)<< 5)
| uint16_t(toUnorm(_src[2], 31.0f) )
;
}
void unpackR5G6B5(float* _dst, const void* _src)
{
uint16_t packed = *( (const uint16_t*)_src);
_dst[0] = float( ( (packed>>11) & 0x1f) ) / 31.0f;
_dst[1] = float( ( (packed>> 5) & 0x3f) ) / 63.0f;
_dst[2] = float( ( (packed ) & 0x1f) ) / 31.0f;
_dst[3] = 1.0f;
}
// RGBA4
void packRgba4(void* _dst, const float* _src)
{
*( (uint16_t*)_dst) = 0
| uint16_t(toUnorm(_src[0], 15.0f) )
| uint16_t(toUnorm(_src[1], 15.0f)<< 4)
| uint16_t(toUnorm(_src[2], 15.0f)<< 8)
| uint16_t(toUnorm(_src[3], 15.0f)<<12)
;
}
void unpackRgba4(float* _dst, const void* _src)
{
uint16_t packed = *( (const uint16_t*)_src);
_dst[0] = float( ( (packed ) & 0xf) ) / 15.0f;
_dst[1] = float( ( (packed>> 4) & 0xf) ) / 15.0f;
_dst[2] = float( ( (packed>> 8) & 0xf) ) / 15.0f;
_dst[3] = float( ( (packed>>12) & 0xf) ) / 15.0f;
}
// RGBA4
void packBgra4(void* _dst, const float* _src)
{
*( (uint16_t*)_dst) = 0
| uint16_t(toUnorm(_src[0], 15.0f)<< 8)
| uint16_t(toUnorm(_src[1], 15.0f)<< 4)
| uint16_t(toUnorm(_src[2], 15.0f) )
| uint16_t(toUnorm(_src[3], 15.0f)<<12)
;
}
void unpackBgra4(float* _dst, const void* _src)
{
uint16_t packed = *( (const uint16_t*)_src);
_dst[0] = float( ( (packed>> 8) & 0xf) ) / 15.0f;
_dst[1] = float( ( (packed>> 4) & 0xf) ) / 15.0f;
_dst[2] = float( ( (packed ) & 0xf) ) / 15.0f;
_dst[3] = float( ( (packed>>12) & 0xf) ) / 15.0f;
}
// RGB5A1
void packRgb5a1(void* _dst, const float* _src)
{
*( (uint16_t*)_dst) = 0
| uint16_t(toUnorm(_src[0], 31.0f) )
| uint16_t(toUnorm(_src[1], 31.0f)<< 5)
| uint16_t(toUnorm(_src[2], 31.0f)<<10)
| uint16_t(toUnorm(_src[3], 1.0f)<<15)
;
}
void unpackRgb5a1(float* _dst, const void* _src)
{
uint16_t packed = *( (const uint16_t*)_src);
_dst[0] = float( ( (packed ) & 0x1f) ) / 31.0f;
_dst[1] = float( ( (packed>> 5) & 0x1f) ) / 31.0f;
_dst[2] = float( ( (packed>>10) & 0x1f) ) / 31.0f;
_dst[3] = float( ( (packed>>14) & 0x1) );
}
// BGR5A1
void packBgr5a1(void* _dst, const float* _src)
{
*( (uint16_t*)_dst) = 0
| uint16_t(toUnorm(_src[0], 31.0f)<<10)
| uint16_t(toUnorm(_src[1], 31.0f)<< 5)
| uint16_t(toUnorm(_src[2], 31.0f) )
| uint16_t(toUnorm(_src[3], 1.0f)<<15)
;
}
void unpackBgr5a1(float* _dst, const void* _src)
{
uint16_t packed = *( (const uint16_t*)_src);
_dst[0] = float( ( (packed>>10) & 0x1f) ) / 31.0f;
_dst[1] = float( ( (packed>> 5) & 0x1f) ) / 31.0f;
_dst[2] = float( ( (packed ) & 0x1f) ) / 31.0f;
_dst[3] = float( ( (packed>>14) & 0x1) );
}
// RGB10A2
void packRgb10A2(void* _dst, const float* _src)
{
*( (uint32_t*)_dst) = 0
| (toUnorm(_src[0], 1023.0f) )
| (toUnorm(_src[1], 1023.0f)<<10)
| (toUnorm(_src[2], 1023.0f)<<20)
| (toUnorm(_src[3], 3.0f)<<30)
;
}
void unpackRgb10A2(float* _dst, const void* _src)
{
uint32_t packed = *( (const uint32_t*)_src);
_dst[0] = float( ( (packed ) & 0x3ff) ) / 1023.0f;
_dst[1] = float( ( (packed>>10) & 0x3ff) ) / 1023.0f;
_dst[2] = float( ( (packed>>20) & 0x3ff) ) / 1023.0f;
_dst[3] = float( ( (packed>>30) & 0x3) ) / 3.0f;
}
// R11G11B10F
void packR11G11B10F(void* _dst, const float* _src)
{
*( (uint32_t*)_dst) = 0
| ( (bx::halfFromFloat(_src[0])>> 4) & 0x7ff)
| ( (bx::halfFromFloat(_src[0])<< 7) & 0x3ff800)
| ( (bx::halfFromFloat(_src[0])<<17) & 0xffc00000)
;
}
void unpackR11G11B10F(float* _dst, const void* _src)
{
uint32_t packed = *( (const uint32_t*)_src);
_dst[0] = bx::halfToFloat( (packed<< 4) & 0x7ff0);
_dst[1] = bx::halfToFloat( (packed>> 7) & 0x7ff0);
_dst[2] = bx::halfToFloat( (packed>>17) & 0x7fe0);
_dst[3] = 1.0f;
}
struct PackUnpack
{
PackFn pack;
UnpackFn unpack;
};
static const PackUnpack s_packUnpack[] =
{
{ NULL, NULL }, // BC1
{ NULL, NULL }, // BC2
{ NULL, NULL }, // BC3
{ NULL, NULL }, // BC4
{ NULL, NULL }, // BC5
{ NULL, NULL }, // BC6H
{ NULL, NULL }, // BC7
{ NULL, NULL }, // ETC1
{ NULL, NULL }, // ETC2
{ NULL, NULL }, // ETC2A
{ NULL, NULL }, // ETC2A1
{ NULL, NULL }, // PTC12
{ NULL, NULL }, // PTC14
{ NULL, NULL }, // PTC12A
{ NULL, NULL }, // PTC14A
{ NULL, NULL }, // PTC22
{ NULL, NULL }, // PTC24
{ NULL, NULL }, // Unknown
{ NULL, NULL }, // R1
{ packR8, unpackR8 }, // A8
{ packR8, unpackR8 }, // R8
{ packR8I, unpackR8I }, // R8I
{ packR8U, unpackR8U }, // R8U
{ packR8S, unpackR8S }, // R8S
{ packR16, unpackR16 }, // R16
{ packR16I, unpackR16I }, // R16I
{ packR16U, unpackR16U }, // R16U
{ packR16F, unpackR16F }, // R16F
{ packR16S, unpackR16S }, // R16S
{ packR32I, unpackR32I }, // R32I
{ packR32U, unpackR32U }, // R32U
{ packR32F, unpackR32F }, // R32F
{ packRg8, unpackRg8 }, // RG8
{ packRg8I, unpackRg8I }, // RG8I
{ packRg8U, unpackRg8U }, // RG8U
{ packRg8S, unpackRg8S }, // RG8S
{ packRg16, unpackRg16 }, // RG16
{ packRg16I, unpackRg16I }, // RG16I
{ packRg16U, unpackRg16U }, // RG16U
{ packRg16F, unpackRg16F }, // RG16F
{ packRg16S, unpackRg16S }, // RG16S
{ packRg32I, unpackRg32I }, // RG32I
{ packRg32U, unpackRg32U }, // RG32U
{ packRg32F, unpackRg32F }, // RG32F
{ packRgb8, unpackRgb8 }, // RGB8
{ packRgb8S, unpackRgb8S }, // RGB8S
{ packRgb8I, unpackRgb8I }, // RGB8I
{ packRgb8U, unpackRgb8U }, // RGB8U
{ packRgb9E5F, unpackRgb9E5F }, // RGB9E5F
{ packBgra8, unpackBgra8 }, // BGRA8
{ packRgba8, unpackRgba8 }, // RGBA8
{ packRgba8I, unpackRgba8I }, // RGBA8I
{ packRgba8U, unpackRgba8U }, // RGBA8U
{ packRgba8S, unpackRgba8S }, // RGBA8S
{ packRgba16, unpackRgba16 }, // RGBA16
{ packRgba16I, unpackRgba16I }, // RGBA16I
{ packRgba16U, unpackRgba16U }, // RGBA16U
{ packRgba16F, unpackRgba16F }, // RGBA16F
{ packRgba16S, unpackRgba16S }, // RGBA16S
{ packRgba32I, unpackRgba32I }, // RGBA32I
{ packRgba32U, unpackRgba32U }, // RGBA32U
{ packRgba32F, unpackRgba32F }, // RGBA32F
{ packR5G6B5, unpackR5G6B5 }, // R5G6B5
{ packRgba4, unpackRgba4 }, // RGBA4
{ packRgb5a1, unpackRgb5a1 }, // RGB5A1
{ packRgb10A2, unpackRgb10A2 }, // RGB10A2
{ packR11G11B10F, unpackR11G11B10F }, // R11G11B10F
{ NULL, NULL }, // UnknownDepth
{ packR16, unpackR16 }, // D16
{ packR24, unpackR24 }, // D24
{ packR24G8, unpackR24G8 }, // D24S8
{ NULL, NULL }, // D32
{ packR16F, unpackR16F }, // D16F
{ NULL, NULL }, // D24F
{ packR32F, unpackR32F }, // D32F
{ packR8, unpackR8 }, // D0S8
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_packUnpack) );
bool imageConvert(TextureFormat::Enum _dstFormat, TextureFormat::Enum _srcFormat)
{
UnpackFn unpack = s_packUnpack[_srcFormat].unpack;
PackFn pack = s_packUnpack[_dstFormat].pack;
return NULL != pack
&& NULL != unpack
;
}
void imageConvert(void* _dst, uint32_t _bpp, PackFn _pack, const void* _src, UnpackFn _unpack, uint32_t _size)
{
const uint8_t* src = (uint8_t*)_src;
uint8_t* dst = (uint8_t*)_dst;
const uint32_t size = _size * 8 / _bpp;
for (uint32_t ii = 0; ii < size; ++ii)
{
float rgba[4];
_unpack(rgba, &src[ii*_bpp/8]);
_pack(&dst[ii*_bpp/8], rgba);
}
}
void imageConvert(void* _dst, uint32_t _dstBpp, PackFn _pack, const void* _src, uint32_t _srcBpp, UnpackFn _unpack, uint32_t _width, uint32_t _height, uint32_t _srcPitch)
{
const uint8_t* src = (uint8_t*)_src;
uint8_t* dst = (uint8_t*)_dst;
const uint32_t dstPitch = _width * _dstBpp / 8;
for (uint32_t yy = 0; yy < _height; ++yy, src += _srcPitch, dst += dstPitch)
{
for (uint32_t xx = 0; xx < _width; ++xx)
{
float rgba[4];
_unpack(rgba, &src[xx*_srcBpp/8]);
_pack(&dst[xx*_dstBpp/8], rgba);
}
}
}
bool imageConvert(void* _dst, TextureFormat::Enum _dstFormat, const void* _src, TextureFormat::Enum _srcFormat, uint32_t _width, uint32_t _height, uint32_t _srcPitch)
{
UnpackFn unpack = s_packUnpack[_srcFormat].unpack;
PackFn pack = s_packUnpack[_dstFormat].pack;
if (NULL == pack
|| NULL == unpack)
{
return false;
}
const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel;
const uint32_t dstBpp = s_imageBlockInfo[_dstFormat].bitsPerPixel;
imageConvert(_dst, dstBpp, pack, _src, srcBpp, unpack, _width, _height, _srcPitch);
return true;
}
bool imageConvert(void* _dst, TextureFormat::Enum _dstFormat, const void* _src, TextureFormat::Enum _srcFormat, uint32_t _width, uint32_t _height)
{
const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel;
return imageConvert(_dst, _dstFormat, _src, _srcFormat, _width, _height, _width*srcBpp/8);
}
uint8_t bitRangeConvert(uint32_t _in, uint32_t _from, uint32_t _to)
{
using namespace bx;
uint32_t tmp0 = uint32_sll(1, _to);
uint32_t tmp1 = uint32_sll(1, _from);
uint32_t tmp2 = uint32_dec(tmp0);
uint32_t tmp3 = uint32_dec(tmp1);
uint32_t tmp4 = uint32_mul(_in, tmp2);
uint32_t tmp5 = uint32_add(tmp3, tmp4);
uint32_t tmp6 = uint32_srl(tmp5, _from);
uint32_t tmp7 = uint32_add(tmp5, tmp6);
uint32_t result = uint32_srl(tmp7, _from);
return uint8_t(result);
}
void decodeBlockDxt(uint8_t _dst[16*4], const uint8_t _src[8])
{
uint8_t colors[4*3];
uint32_t c0 = _src[0] | (_src[1] << 8);
colors[0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8);
colors[1] = bitRangeConvert( (c0>> 5)&0x3f, 6, 8);
colors[2] = bitRangeConvert( (c0>>11)&0x1f, 5, 8);
uint32_t c1 = _src[2] | (_src[3] << 8);
colors[3] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8);
colors[4] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8);
colors[5] = bitRangeConvert( (c1>>11)&0x1f, 5, 8);
colors[6] = (2*colors[0] + colors[3]) / 3;
colors[7] = (2*colors[1] + colors[4]) / 3;
colors[8] = (2*colors[2] + colors[5]) / 3;
colors[ 9] = (colors[0] + 2*colors[3]) / 3;
colors[10] = (colors[1] + 2*colors[4]) / 3;
colors[11] = (colors[2] + 2*colors[5]) / 3;
for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2)
{
int idx = ( (_src[next>>3] >> (next & 7) ) & 3) * 3;
_dst[ii+0] = colors[idx+0];
_dst[ii+1] = colors[idx+1];
_dst[ii+2] = colors[idx+2];
}
}
void decodeBlockDxt1(uint8_t _dst[16*4], const uint8_t _src[8])
{
uint8_t colors[4*4];
uint32_t c0 = _src[0] | (_src[1] << 8);
colors[0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8);
colors[1] = bitRangeConvert( (c0>> 5)&0x3f, 6, 8);
colors[2] = bitRangeConvert( (c0>>11)&0x1f, 5, 8);
colors[3] = 255;
uint32_t c1 = _src[2] | (_src[3] << 8);
colors[4] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8);
colors[5] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8);
colors[6] = bitRangeConvert( (c1>>11)&0x1f, 5, 8);
colors[7] = 255;
if (c0 > c1)
{
colors[ 8] = (2*colors[0] + colors[4]) / 3;
colors[ 9] = (2*colors[1] + colors[5]) / 3;
colors[10] = (2*colors[2] + colors[6]) / 3;
colors[11] = 255;
colors[12] = (colors[0] + 2*colors[4]) / 3;
colors[13] = (colors[1] + 2*colors[5]) / 3;
colors[14] = (colors[2] + 2*colors[6]) / 3;
colors[15] = 255;
}
else
{
colors[ 8] = (colors[0] + colors[4]) / 2;
colors[ 9] = (colors[1] + colors[5]) / 2;
colors[10] = (colors[2] + colors[6]) / 2;
colors[11] = 255;
colors[12] = 0;
colors[13] = 0;
colors[14] = 0;
colors[15] = 0;
}
for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2)
{
int idx = ( (_src[next>>3] >> (next & 7) ) & 3) * 4;
_dst[ii+0] = colors[idx+0];
_dst[ii+1] = colors[idx+1];
_dst[ii+2] = colors[idx+2];
_dst[ii+3] = colors[idx+3];
}
}
void decodeBlockDxt23A(uint8_t _dst[16*4], const uint8_t _src[8])
{
for (uint32_t ii = 0, next = 0; ii < 16*4; ii += 4, next += 4)
{
uint32_t c0 = (_src[next>>3] >> (next&7) ) & 0xf;
_dst[ii] = bitRangeConvert(c0, 4, 8);
}
}
void decodeBlockDxt45A(uint8_t _dst[16*4], const uint8_t _src[8])
{
uint8_t alpha[8];
alpha[0] = _src[0];
alpha[1] = _src[1];
if (alpha[0] > alpha[1])
{
alpha[2] = (6*alpha[0] + 1*alpha[1]) / 7;
alpha[3] = (5*alpha[0] + 2*alpha[1]) / 7;
alpha[4] = (4*alpha[0] + 3*alpha[1]) / 7;
alpha[5] = (3*alpha[0] + 4*alpha[1]) / 7;
alpha[6] = (2*alpha[0] + 5*alpha[1]) / 7;
alpha[7] = (1*alpha[0] + 6*alpha[1]) / 7;
}
else
{
alpha[2] = (4*alpha[0] + 1*alpha[1]) / 5;
alpha[3] = (3*alpha[0] + 2*alpha[1]) / 5;
alpha[4] = (2*alpha[0] + 3*alpha[1]) / 5;
alpha[5] = (1*alpha[0] + 4*alpha[1]) / 5;
alpha[6] = 0;
alpha[7] = 255;
}
uint32_t idx0 = _src[2];
uint32_t idx1 = _src[5];
idx0 |= uint32_t(_src[3])<<8;
idx1 |= uint32_t(_src[6])<<8;
idx0 |= uint32_t(_src[4])<<16;
idx1 |= uint32_t(_src[7])<<16;
for (uint32_t ii = 0; ii < 8*4; ii += 4)
{
_dst[ii] = alpha[idx0&7];
_dst[ii+32] = alpha[idx1&7];
idx0 >>= 3;
idx1 >>= 3;
}
}
static const int32_t s_etc1Mod[8][4] =
{
{ 2, 8, -2, -8},
{ 5, 17, -5, -17},
{ 9, 29, -9, -29},
{ 13, 42, -13, -42},
{ 18, 60, -18, -60},
{ 24, 80, -24, -80},
{ 33, 106, -33, -106},
{ 47, 183, -47, -183},
};
static const uint8_t s_etc2Mod[8] = { 3, 6, 11, 16, 23, 32, 41, 64 };
uint8_t uint8_sat(int32_t _a)
{
using namespace bx;
const uint32_t min = uint32_imin(_a, 255);
const uint32_t result = uint32_imax(min, 0);
return (uint8_t)result;
}
uint8_t uint8_satadd(int32_t _a, int32_t _b)
{
const int32_t add = _a + _b;
return uint8_sat(add);
}
void decodeBlockEtc2ModeT(uint8_t _dst[16*4], const uint8_t _src[8])
{
uint8_t rgb[16];
// 0 1 2 3 4 5 6 7
// 7654321076543210765432107654321076543210765432107654321076543210
// ...rr.rrggggbbbbrrrrggggbbbbDDD.mmmmmmmmmmmmmmmmllllllllllllllll
// ^ ^ ^ ^ ^
// +-- c0 +-- c1 | +-- msb +-- lsb
// +-- dist
rgb[ 0] = ( (_src[0] >> 1) & 0xc)
| (_src[0] & 0x3)
;
rgb[ 1] = _src[1] >> 4;
rgb[ 2] = _src[1] & 0xf;
rgb[ 8] = _src[2] >> 4;
rgb[ 9] = _src[2] & 0xf;
rgb[10] = _src[3] >> 4;
rgb[ 0] = bitRangeConvert(rgb[ 0], 4, 8);
rgb[ 1] = bitRangeConvert(rgb[ 1], 4, 8);
rgb[ 2] = bitRangeConvert(rgb[ 2], 4, 8);
rgb[ 8] = bitRangeConvert(rgb[ 8], 4, 8);
rgb[ 9] = bitRangeConvert(rgb[ 9], 4, 8);
rgb[10] = bitRangeConvert(rgb[10], 4, 8);
uint8_t dist = (_src[3] >> 1) & 0x7;
int32_t mod = s_etc2Mod[dist];
rgb[ 4] = uint8_satadd(rgb[ 8], mod);
rgb[ 5] = uint8_satadd(rgb[ 9], mod);
rgb[ 6] = uint8_satadd(rgb[10], mod);
rgb[12] = uint8_satadd(rgb[ 8], -mod);
rgb[13] = uint8_satadd(rgb[ 9], -mod);
rgb[14] = uint8_satadd(rgb[10], -mod);
uint32_t indexMsb = (_src[4]<<8) | _src[5];
uint32_t indexLsb = (_src[6]<<8) | _src[7];
for (uint32_t ii = 0; ii < 16; ++ii)
{
const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4);
const uint32_t lsbi = indexLsb & 1;
const uint32_t msbi = (indexMsb & 1)<<1;
const uint32_t pal = (lsbi | msbi)<<2;
_dst[idx + 0] = rgb[pal+2];
_dst[idx + 1] = rgb[pal+1];
_dst[idx + 2] = rgb[pal+0];
_dst[idx + 3] = 255;
indexLsb >>= 1;
indexMsb >>= 1;
}
}
void decodeBlockEtc2ModeH(uint8_t _dst[16*4], const uint8_t _src[8])
{
uint8_t rgb[16];
// 0 1 2 3 4 5 6 7
// 7654321076543210765432107654321076543210765432107654321076543210
// .rrrrggg...gb.bbbrrrrggggbbbbDD.mmmmmmmmmmmmmmmmllllllllllllllll
// ^ ^ ^ ^ ^
// +-- c0 +-- c1 | +-- msb +-- lsb
// +-- dist
rgb[ 0] = (_src[0] >> 3) & 0xf;
rgb[ 1] = ( (_src[0] << 1) & 0xe)
| ( (_src[1] >> 4) & 0x1)
;
rgb[ 2] = (_src[1] & 0x8)
| ( (_src[1] << 1) & 0x6)
| (_src[2] >> 7)
;
rgb[ 8] = (_src[2] >> 3) & 0xf;
rgb[ 9] = ( (_src[2] << 1) & 0xe)
| (_src[3] >> 7)
;
rgb[10] = (_src[2] >> 3) & 0xf;
rgb[ 0] = bitRangeConvert(rgb[ 0], 4, 8);
rgb[ 1] = bitRangeConvert(rgb[ 1], 4, 8);
rgb[ 2] = bitRangeConvert(rgb[ 2], 4, 8);
rgb[ 8] = bitRangeConvert(rgb[ 8], 4, 8);
rgb[ 9] = bitRangeConvert(rgb[ 9], 4, 8);
rgb[10] = bitRangeConvert(rgb[10], 4, 8);
uint32_t col0 = uint32_t(rgb[0]<<16) | uint32_t(rgb[1]<<8) | uint32_t(rgb[ 2]);
uint32_t col1 = uint32_t(rgb[8]<<16) | uint32_t(rgb[9]<<8) | uint32_t(rgb[10]);
uint8_t dist = (_src[3] & 0x6) | (col0 >= col1);
int32_t mod = s_etc2Mod[dist];
rgb[ 4] = uint8_satadd(rgb[ 0], -mod);
rgb[ 5] = uint8_satadd(rgb[ 1], -mod);
rgb[ 6] = uint8_satadd(rgb[ 2], -mod);
rgb[ 0] = uint8_satadd(rgb[ 0], mod);
rgb[ 1] = uint8_satadd(rgb[ 1], mod);
rgb[ 2] = uint8_satadd(rgb[ 2], mod);
rgb[12] = uint8_satadd(rgb[ 8], -mod);
rgb[13] = uint8_satadd(rgb[ 9], -mod);
rgb[14] = uint8_satadd(rgb[10], -mod);
rgb[ 8] = uint8_satadd(rgb[ 8], mod);
rgb[ 9] = uint8_satadd(rgb[ 9], mod);
rgb[10] = uint8_satadd(rgb[10], mod);
uint32_t indexMsb = (_src[4]<<8) | _src[5];
uint32_t indexLsb = (_src[6]<<8) | _src[7];
for (uint32_t ii = 0; ii < 16; ++ii)
{
const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4);
const uint32_t lsbi = indexLsb & 1;
const uint32_t msbi = (indexMsb & 1)<<1;
const uint32_t pal = (lsbi | msbi)<<2;
_dst[idx + 0] = rgb[pal+2];
_dst[idx + 1] = rgb[pal+1];
_dst[idx + 2] = rgb[pal+0];
_dst[idx + 3] = 255;
indexLsb >>= 1;
indexMsb >>= 1;
}
}
void decodeBlockEtc2ModePlanar(uint8_t _dst[16*4], const uint8_t _src[8])
{
// 0 1 2 3 4 5 6 7
// 7654321076543210765432107654321076543210765432107654321076543210
// .rrrrrrg.ggggggb...bb.bbbrrrrr.rgggggggbbbbbbrrrrrrgggggggbbbbbb
// ^ ^ ^
// +-- c0 +-- cH +-- cV
uint8_t c0[3];
uint8_t cH[3];
uint8_t cV[3];
c0[0] = (_src[0] >> 1) & 0x3f;
c0[1] = ( (_src[0] & 1) << 6)
| ( (_src[1] >> 1) & 0x3f)
;
c0[2] = ( (_src[1] & 1) << 5)
| ( (_src[2] & 0x18) )
| ( (_src[2] << 1) & 6)
| ( (_src[3] >> 7) )
;
cH[0] = ( (_src[3] >> 1) & 0x3e)
| (_src[3] & 1)
;
cH[1] = _src[4] >> 1;
cH[2] = ( (_src[4] & 1) << 5)
| (_src[5] >> 3)
;
cV[0] = ( (_src[5] & 0x7) << 3)
| (_src[6] >> 5)
;
cV[1] = ( (_src[6] & 0x1f) << 2)
| (_src[7] >> 5)
;
cV[2] = _src[7] & 0x3f;
c0[0] = bitRangeConvert(c0[0], 6, 8);
c0[1] = bitRangeConvert(c0[1], 7, 8);
c0[2] = bitRangeConvert(c0[2], 6, 8);
cH[0] = bitRangeConvert(cH[0], 6, 8);
cH[1] = bitRangeConvert(cH[1], 7, 8);
cH[2] = bitRangeConvert(cH[2], 6, 8);
cV[0] = bitRangeConvert(cV[0], 6, 8);
cV[1] = bitRangeConvert(cV[1], 7, 8);
cV[2] = bitRangeConvert(cV[2], 6, 8);
int16_t dy[3];
dy[0] = cV[0] - c0[0];
dy[1] = cV[1] - c0[1];
dy[2] = cV[2] - c0[2];
int16_t sx[3];
sx[0] = int16_t(c0[0])<<2;
sx[1] = int16_t(c0[1])<<2;
sx[2] = int16_t(c0[2])<<2;
int16_t ex[3];
ex[0] = int16_t(cH[0])<<2;
ex[1] = int16_t(cH[1])<<2;
ex[2] = int16_t(cH[2])<<2;
for (int32_t vv = 0; vv < 4; ++vv)
{
int16_t dx[3];
dx[0] = (ex[0] - sx[0])>>2;
dx[1] = (ex[1] - sx[1])>>2;
dx[2] = (ex[2] - sx[2])>>2;
for (int32_t hh = 0; hh < 4; ++hh)
{
const uint32_t idx = (vv<<4) + (hh<<2);
_dst[idx + 0] = uint8_sat( (sx[2] + dx[2]*hh)>>2);
_dst[idx + 1] = uint8_sat( (sx[1] + dx[1]*hh)>>2);
_dst[idx + 2] = uint8_sat( (sx[0] + dx[0]*hh)>>2);
_dst[idx + 3] = 255;
}
sx[0] += dy[0];
sx[1] += dy[1];
sx[2] += dy[2];
ex[0] += dy[0];
ex[1] += dy[1];
ex[2] += dy[2];
}
}
void decodeBlockEtc12(uint8_t _dst[16*4], const uint8_t _src[8])
{
bool flipBit = 0 != (_src[3] & 0x1);
bool diffBit = 0 != (_src[3] & 0x2);
uint8_t rgb[8];
if (diffBit)
{
rgb[0] = _src[0] >> 3;
rgb[1] = _src[1] >> 3;
rgb[2] = _src[2] >> 3;
int8_t diff[3];
diff[0] = int8_t( (_src[0] & 0x7)<<5)>>5;
diff[1] = int8_t( (_src[1] & 0x7)<<5)>>5;
diff[2] = int8_t( (_src[2] & 0x7)<<5)>>5;
int8_t rr = rgb[0] + diff[0];
int8_t gg = rgb[1] + diff[1];
int8_t bb = rgb[2] + diff[2];
// Etc2 3-modes
if (rr < 0 || rr > 31)
{
decodeBlockEtc2ModeT(_dst, _src);
return;
}
if (gg < 0 || gg > 31)
{
decodeBlockEtc2ModeH(_dst, _src);
return;
}
if (bb < 0 || bb > 31)
{
decodeBlockEtc2ModePlanar(_dst, _src);
return;
}
// Etc1
rgb[0] = bitRangeConvert(rgb[0], 5, 8);
rgb[1] = bitRangeConvert(rgb[1], 5, 8);
rgb[2] = bitRangeConvert(rgb[2], 5, 8);
rgb[4] = bitRangeConvert(rr, 5, 8);
rgb[5] = bitRangeConvert(gg, 5, 8);
rgb[6] = bitRangeConvert(bb, 5, 8);
}
else
{
rgb[0] = _src[0] >> 4;
rgb[1] = _src[1] >> 4;
rgb[2] = _src[2] >> 4;
rgb[4] = _src[0] & 0xf;
rgb[5] = _src[1] & 0xf;
rgb[6] = _src[2] & 0xf;
rgb[0] = bitRangeConvert(rgb[0], 4, 8);
rgb[1] = bitRangeConvert(rgb[1], 4, 8);
rgb[2] = bitRangeConvert(rgb[2], 4, 8);
rgb[4] = bitRangeConvert(rgb[4], 4, 8);
rgb[5] = bitRangeConvert(rgb[5], 4, 8);
rgb[6] = bitRangeConvert(rgb[6], 4, 8);
}
uint32_t table[2];
table[0] = (_src[3] >> 5) & 0x7;
table[1] = (_src[3] >> 2) & 0x7;
uint32_t indexMsb = (_src[4]<<8) | _src[5];
uint32_t indexLsb = (_src[6]<<8) | _src[7];
if (flipBit)
{
for (uint32_t ii = 0; ii < 16; ++ii)
{
const uint32_t block = (ii>>1)&1;
const uint32_t color = block<<2;
const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4);
const uint32_t lsbi = indexLsb & 1;
const uint32_t msbi = (indexMsb & 1)<<1;
const int32_t mod = s_etc1Mod[table[block] ][lsbi | msbi];
_dst[idx + 0] = uint8_satadd(rgb[color+2], mod);
_dst[idx + 1] = uint8_satadd(rgb[color+1], mod);
_dst[idx + 2] = uint8_satadd(rgb[color+0], mod);
_dst[idx + 3] = 255;
indexLsb >>= 1;
indexMsb >>= 1;
}
}
else
{
for (uint32_t ii = 0; ii < 16; ++ii)
{
const uint32_t block = ii>>3;
const uint32_t color = block<<2;
const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4);
const uint32_t lsbi = indexLsb & 1;
const uint32_t msbi = (indexMsb & 1)<<1;
const int32_t mod = s_etc1Mod[table[block] ][lsbi | msbi];
_dst[idx + 0] = uint8_satadd(rgb[color+2], mod);
_dst[idx + 1] = uint8_satadd(rgb[color+1], mod);
_dst[idx + 2] = uint8_satadd(rgb[color+0], mod);
_dst[idx + 3] = 255;
indexLsb >>= 1;
indexMsb >>= 1;
}
}
}
static const uint8_t s_pvrtcFactors[16][4] =
{
{ 4, 4, 4, 4 },
{ 2, 6, 2, 6 },
{ 8, 0, 8, 0 },
{ 6, 2, 6, 2 },
{ 2, 2, 6, 6 },
{ 1, 3, 3, 9 },
{ 4, 0, 12, 0 },
{ 3, 1, 9, 3 },
{ 8, 8, 0, 0 },
{ 4, 12, 0, 0 },
{ 16, 0, 0, 0 },
{ 12, 4, 0, 0 },
{ 6, 6, 2, 2 },
{ 3, 9, 1, 3 },
{ 12, 0, 4, 0 },
{ 9, 3, 3, 1 },
};
static const uint8_t s_pvrtcWeights[8][4] =
{
{ 8, 0, 8, 0 },
{ 5, 3, 5, 3 },
{ 3, 5, 3, 5 },
{ 0, 8, 0, 8 },
{ 8, 0, 8, 0 },
{ 4, 4, 4, 4 },
{ 4, 4, 4, 4 },
{ 0, 8, 0, 8 },
};
uint32_t morton2d(uint32_t _x, uint32_t _y)
{
using namespace bx;
const uint32_t tmpx = uint32_part1by1(_x);
const uint32_t xbits = uint32_sll(tmpx, 1);
const uint32_t ybits = uint32_part1by1(_y);
const uint32_t result = uint32_or(xbits, ybits);
return result;
}
uint32_t getColor(const uint8_t _src[8])
{
return 0
| _src[7]<<24
| _src[6]<<16
| _src[5]<<8
| _src[4]
;
}
void decodeBlockPtc14RgbAddA(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint8_t _factor)
{
if (0 != (_block & (1<<15) ) )
{
*_r += bitRangeConvert( (_block >> 10) & 0x1f, 5, 8) * _factor;
*_g += bitRangeConvert( (_block >> 5) & 0x1f, 5, 8) * _factor;
*_b += bitRangeConvert( (_block >> 1) & 0x0f, 4, 8) * _factor;
}
else
{
*_r += bitRangeConvert( (_block >> 8) & 0xf, 4, 8) * _factor;
*_g += bitRangeConvert( (_block >> 4) & 0xf, 4, 8) * _factor;
*_b += bitRangeConvert( (_block >> 1) & 0x7, 3, 8) * _factor;
}
}
void decodeBlockPtc14RgbAddB(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint8_t _factor)
{
if (0 != (_block & (1<<31) ) )
{
*_r += bitRangeConvert( (_block >> 26) & 0x1f, 5, 8) * _factor;
*_g += bitRangeConvert( (_block >> 21) & 0x1f, 5, 8) * _factor;
*_b += bitRangeConvert( (_block >> 16) & 0x1f, 5, 8) * _factor;
}
else
{
*_r += bitRangeConvert( (_block >> 24) & 0xf, 4, 8) * _factor;
*_g += bitRangeConvert( (_block >> 20) & 0xf, 4, 8) * _factor;
*_b += bitRangeConvert( (_block >> 16) & 0xf, 4, 8) * _factor;
}
}
void decodeBlockPtc14(uint8_t _dst[16*4], const uint8_t* _src, uint32_t _x, uint32_t _y, uint32_t _width, uint32_t _height)
{
// 0 1 2 3 4 5 6 7
// 7654321076543210765432107654321076543210765432107654321076543210
// mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmyrrrrrgggggbbbbbxrrrrrgggggbbbbp
// ^ ^^ ^^ ^
// +-- modulation data |+- B color |+- A color |
// +-- B opaque +-- A opaque |
// alpha punchthrough --+
const uint8_t* bc = &_src[morton2d(_x, _y) * 8];
uint32_t mod = 0
| bc[3]<<24
| bc[2]<<16
| bc[1]<<8
| bc[0]
;
const bool punchthrough = !!(bc[7] & 1);
const uint8_t* weightTable = s_pvrtcWeights[4 * punchthrough];
const uint8_t* factorTable = s_pvrtcFactors[0];
for (int yy = 0; yy < 4; ++yy)
{
const uint32_t yOffset = (yy < 2) ? -1 : 0;
const uint32_t y0 = (_y + yOffset) % _height;
const uint32_t y1 = (y0 + 1) % _height;
for (int xx = 0; xx < 4; ++xx)
{
const uint32_t xOffset = (xx < 2) ? -1 : 0;
const uint32_t x0 = (_x + xOffset) % _width;
const uint32_t x1 = (x0 + 1) % _width;
const uint32_t bc0 = getColor(&_src[morton2d(x0, y0) * 8]);
const uint32_t bc1 = getColor(&_src[morton2d(x1, y0) * 8]);
const uint32_t bc2 = getColor(&_src[morton2d(x0, y1) * 8]);
const uint32_t bc3 = getColor(&_src[morton2d(x1, y1) * 8]);
const uint8_t f0 = factorTable[0];
const uint8_t f1 = factorTable[1];
const uint8_t f2 = factorTable[2];
const uint8_t f3 = factorTable[3];
uint32_t ar = 0, ag = 0, ab = 0;
decodeBlockPtc14RgbAddA(bc0, &ar, &ag, &ab, f0);
decodeBlockPtc14RgbAddA(bc1, &ar, &ag, &ab, f1);
decodeBlockPtc14RgbAddA(bc2, &ar, &ag, &ab, f2);
decodeBlockPtc14RgbAddA(bc3, &ar, &ag, &ab, f3);
uint32_t br = 0, bg = 0, bb = 0;
decodeBlockPtc14RgbAddB(bc0, &br, &bg, &bb, f0);
decodeBlockPtc14RgbAddB(bc1, &br, &bg, &bb, f1);
decodeBlockPtc14RgbAddB(bc2, &br, &bg, &bb, f2);
decodeBlockPtc14RgbAddB(bc3, &br, &bg, &bb, f3);
const uint8_t* weight = &weightTable[(mod & 3)*4];
const uint8_t wa = weight[0];
const uint8_t wb = weight[1];
_dst[(yy*4 + xx)*4+0] = uint8_t( (ab * wa + bb * wb) >> 7);
_dst[(yy*4 + xx)*4+1] = uint8_t( (ag * wa + bg * wb) >> 7);
_dst[(yy*4 + xx)*4+2] = uint8_t( (ar * wa + br * wb) >> 7);
_dst[(yy*4 + xx)*4+3] = 255;
mod >>= 2;
factorTable += 4;
}
}
}
void decodeBlockPtc14ARgbaAddA(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint32_t* _a, uint8_t _factor)
{
if (0 != (_block & (1<<15) ) )
{
*_r += bitRangeConvert( (_block >> 10) & 0x1f, 5, 8) * _factor;
*_g += bitRangeConvert( (_block >> 5) & 0x1f, 5, 8) * _factor;
*_b += bitRangeConvert( (_block >> 1) & 0x0f, 4, 8) * _factor;
*_a += 255 * _factor;
}
else
{
*_r += bitRangeConvert( (_block >> 8) & 0xf, 4, 8) * _factor;
*_g += bitRangeConvert( (_block >> 4) & 0xf, 4, 8) * _factor;
*_b += bitRangeConvert( (_block >> 1) & 0x7, 3, 8) * _factor;
*_a += bitRangeConvert( (_block >> 12) & 0x7, 3, 8) * _factor;
}
}
void decodeBlockPtc14ARgbaAddB(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint32_t* _a, uint8_t _factor)
{
if (0 != (_block & (1<<31) ) )
{
*_r += bitRangeConvert( (_block >> 26) & 0x1f, 5, 8) * _factor;
*_g += bitRangeConvert( (_block >> 21) & 0x1f, 5, 8) * _factor;
*_b += bitRangeConvert( (_block >> 16) & 0x1f, 5, 8) * _factor;
*_a += 255 * _factor;
}
else
{
*_r += bitRangeConvert( (_block >> 24) & 0xf, 4, 8) * _factor;
*_g += bitRangeConvert( (_block >> 20) & 0xf, 4, 8) * _factor;
*_b += bitRangeConvert( (_block >> 16) & 0xf, 4, 8) * _factor;
*_a += bitRangeConvert( (_block >> 28) & 0x7, 3, 8) * _factor;
}
}
void decodeBlockPtc14A(uint8_t _dst[16*4], const uint8_t* _src, uint32_t _x, uint32_t _y, uint32_t _width, uint32_t _height)
{
// 0 1 2 3 4 5 6 7
// 7654321076543210765432107654321076543210765432107654321076543210
// mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmyrrrrrgggggbbbbbxrrrrrgggggbbbbp
// ^ ^^ ^^ ^
// +-- modulation data |+- B color |+- A color |
// +-- B opaque +-- A opaque |
// alpha punchthrough --+
const uint8_t* bc = &_src[morton2d(_x, _y) * 8];
uint32_t mod = 0
| bc[3]<<24
| bc[2]<<16
| bc[1]<<8
| bc[0]
;
const bool punchthrough = !!(bc[7] & 1);
const uint8_t* weightTable = s_pvrtcWeights[4 * punchthrough];
const uint8_t* factorTable = s_pvrtcFactors[0];
for (int yy = 0; yy < 4; ++yy)
{
const uint32_t yOffset = (yy < 2) ? -1 : 0;
const uint32_t y0 = (_y + yOffset) % _height;
const uint32_t y1 = (y0 + 1) % _height;
for (int xx = 0; xx < 4; ++xx)
{
const uint32_t xOffset = (xx < 2) ? -1 : 0;
const uint32_t x0 = (_x + xOffset) % _width;
const uint32_t x1 = (x0 + 1) % _width;
const uint32_t bc0 = getColor(&_src[morton2d(x0, y0) * 8]);
const uint32_t bc1 = getColor(&_src[morton2d(x1, y0) * 8]);
const uint32_t bc2 = getColor(&_src[morton2d(x0, y1) * 8]);
const uint32_t bc3 = getColor(&_src[morton2d(x1, y1) * 8]);
const uint8_t f0 = factorTable[0];
const uint8_t f1 = factorTable[1];
const uint8_t f2 = factorTable[2];
const uint8_t f3 = factorTable[3];
uint32_t ar = 0, ag = 0, ab = 0, aa = 0;
decodeBlockPtc14ARgbaAddA(bc0, &ar, &ag, &ab, &aa, f0);
decodeBlockPtc14ARgbaAddA(bc1, &ar, &ag, &ab, &aa, f1);
decodeBlockPtc14ARgbaAddA(bc2, &ar, &ag, &ab, &aa, f2);
decodeBlockPtc14ARgbaAddA(bc3, &ar, &ag, &ab, &aa, f3);
uint32_t br = 0, bg = 0, bb = 0, ba = 0;
decodeBlockPtc14ARgbaAddB(bc0, &br, &bg, &bb, &ba, f0);
decodeBlockPtc14ARgbaAddB(bc1, &br, &bg, &bb, &ba, f1);
decodeBlockPtc14ARgbaAddB(bc2, &br, &bg, &bb, &ba, f2);
decodeBlockPtc14ARgbaAddB(bc3, &br, &bg, &bb, &ba, f3);
const uint8_t* weight = &weightTable[(mod & 3)*4];
const uint8_t wa = weight[0];
const uint8_t wb = weight[1];
const uint8_t wc = weight[2];
const uint8_t wd = weight[3];
_dst[(yy*4 + xx)*4+0] = uint8_t( (ab * wa + bb * wb) >> 7);
_dst[(yy*4 + xx)*4+1] = uint8_t( (ag * wa + bg * wb) >> 7);
_dst[(yy*4 + xx)*4+2] = uint8_t( (ar * wa + br * wb) >> 7);
_dst[(yy*4 + xx)*4+3] = uint8_t( (aa * wc + ba * wd) >> 7);
mod >>= 2;
factorTable += 4;
}
}
}
const Memory* imageAlloc(ImageContainer& _imageContainer, TextureFormat::Enum _format, uint16_t _width, uint16_t _height, uint16_t _depth, uint16_t _numLayers, bool _cubeMap, bool _generateMips)
{
const ImageBlockInfo& blockInfo = getBlockInfo(_format);
const uint16_t blockWidth = blockInfo.blockWidth;
const uint16_t blockHeight = blockInfo.blockHeight;
const uint16_t minBlockX = blockInfo.minBlockX;
const uint16_t minBlockY = blockInfo.minBlockY;
_width = bx::uint16_max(blockWidth * minBlockX, ( (_width + blockWidth - 1) / blockWidth)*blockWidth);
_height = bx::uint16_max(blockHeight * minBlockY, ( (_height + blockHeight - 1) / blockHeight)*blockHeight);
_depth = bx::uint16_max(1, _depth);
_numLayers = bx::uint16_max(1, _numLayers);
const uint8_t numMips = _generateMips ? imageGetNumMips(_format, _width, _height) : 1;
uint32_t size = imageGetSize(_format, _width, _height, _depth, _numLayers, _cubeMap, numMips);
const Memory* image = alloc(size);
_imageContainer.m_data = image->data;
_imageContainer.m_format = _format;
_imageContainer.m_size = image->size;
_imageContainer.m_offset = 0;
_imageContainer.m_width = _width;
_imageContainer.m_height = _height;
_imageContainer.m_depth = _depth;
_imageContainer.m_numLayers = _numLayers;
_imageContainer.m_numMips = numMips;
_imageContainer.m_hasAlpha = false;
_imageContainer.m_cubeMap = _cubeMap;
_imageContainer.m_ktx = false;
_imageContainer.m_ktxLE = false;
_imageContainer.m_srgb = false;
return image;
}
void imageFree(const Memory* _memory)
{
release(_memory);
}
// DDS
#define DDS_MAGIC BX_MAKEFOURCC('D', 'D', 'S', ' ')
#define DDS_HEADER_SIZE 124
#define DDS_DXT1 BX_MAKEFOURCC('D', 'X', 'T', '1')
#define DDS_DXT2 BX_MAKEFOURCC('D', 'X', 'T', '2')
#define DDS_DXT3 BX_MAKEFOURCC('D', 'X', 'T', '3')
#define DDS_DXT4 BX_MAKEFOURCC('D', 'X', 'T', '4')
#define DDS_DXT5 BX_MAKEFOURCC('D', 'X', 'T', '5')
#define DDS_ATI1 BX_MAKEFOURCC('A', 'T', 'I', '1')
#define DDS_BC4U BX_MAKEFOURCC('B', 'C', '4', 'U')
#define DDS_ATI2 BX_MAKEFOURCC('A', 'T', 'I', '2')
#define DDS_BC5U BX_MAKEFOURCC('B', 'C', '5', 'U')
#define DDS_DX10 BX_MAKEFOURCC('D', 'X', '1', '0')
#define DDS_A8R8G8B8 21
#define DDS_R5G6B5 23
#define DDS_A1R5G5B5 25
#define DDS_A4R4G4B4 26
#define DDS_A2B10G10R10 31
#define DDS_G16R16 34
#define DDS_A2R10G10B10 35
#define DDS_A16B16G16R16 36
#define DDS_A8L8 51
#define DDS_R16F 111
#define DDS_G16R16F 112
#define DDS_A16B16G16R16F 113
#define DDS_R32F 114
#define DDS_G32R32F 115
#define DDS_A32B32G32R32F 116
#define DDS_FORMAT_R32G32B32A32_FLOAT 2
#define DDS_FORMAT_R32G32B32A32_UINT 3
#define DDS_FORMAT_R16G16B16A16_FLOAT 10
#define DDS_FORMAT_R16G16B16A16_UNORM 11
#define DDS_FORMAT_R16G16B16A16_UINT 12
#define DDS_FORMAT_R32G32_FLOAT 16
#define DDS_FORMAT_R32G32_UINT 17
#define DDS_FORMAT_R10G10B10A2_UNORM 24
#define DDS_FORMAT_R11G11B10_FLOAT 26
#define DDS_FORMAT_R8G8B8A8_UNORM 28
#define DDS_FORMAT_R8G8B8A8_UNORM_SRGB 29
#define DDS_FORMAT_R16G16_FLOAT 34
#define DDS_FORMAT_R16G16_UNORM 35
#define DDS_FORMAT_R32_FLOAT 41
#define DDS_FORMAT_R32_UINT 42
#define DDS_FORMAT_R8G8_UNORM 49
#define DDS_FORMAT_R16_FLOAT 54
#define DDS_FORMAT_R16_UNORM 56
#define DDS_FORMAT_R8_UNORM 61
#define DDS_FORMAT_R1_UNORM 66
#define DDS_FORMAT_BC1_UNORM 71
#define DDS_FORMAT_BC1_UNORM_SRGB 72
#define DDS_FORMAT_BC2_UNORM 74
#define DDS_FORMAT_BC2_UNORM_SRGB 75
#define DDS_FORMAT_BC3_UNORM 77
#define DDS_FORMAT_BC3_UNORM_SRGB 78
#define DDS_FORMAT_BC4_UNORM 80
#define DDS_FORMAT_BC5_UNORM 83
#define DDS_FORMAT_B5G6R5_UNORM 85
#define DDS_FORMAT_B5G5R5A1_UNORM 86
#define DDS_FORMAT_B8G8R8A8_UNORM 87
#define DDS_FORMAT_B8G8R8A8_UNORM_SRGB 91
#define DDS_FORMAT_BC6H_SF16 96
#define DDS_FORMAT_BC7_UNORM 98
#define DDS_FORMAT_BC7_UNORM_SRGB 99
#define DDS_FORMAT_B4G4R4A4_UNORM 115
#define DDSD_CAPS 0x00000001
#define DDSD_HEIGHT 0x00000002
#define DDSD_WIDTH 0x00000004
#define DDSD_PITCH 0x00000008
#define DDSD_PIXELFORMAT 0x00001000
#define DDSD_MIPMAPCOUNT 0x00020000
#define DDSD_LINEARSIZE 0x00080000
#define DDSD_DEPTH 0x00800000
#define DDPF_ALPHAPIXELS 0x00000001
#define DDPF_ALPHA 0x00000002
#define DDPF_FOURCC 0x00000004
#define DDPF_INDEXED 0x00000020
#define DDPF_RGB 0x00000040
#define DDPF_YUV 0x00000200
#define DDPF_LUMINANCE 0x00020000
#define DDSCAPS_COMPLEX 0x00000008
#define DDSCAPS_TEXTURE 0x00001000
#define DDSCAPS_MIPMAP 0x00400000
#define DDSCAPS2_CUBEMAP 0x00000200
#define DDSCAPS2_CUBEMAP_POSITIVEX 0x00000400
#define DDSCAPS2_CUBEMAP_NEGATIVEX 0x00000800
#define DDSCAPS2_CUBEMAP_POSITIVEY 0x00001000
#define DDSCAPS2_CUBEMAP_NEGATIVEY 0x00002000
#define DDSCAPS2_CUBEMAP_POSITIVEZ 0x00004000
#define DDSCAPS2_CUBEMAP_NEGATIVEZ 0x00008000
#define DDS_CUBEMAP_ALLFACES (DDSCAPS2_CUBEMAP_POSITIVEX|DDSCAPS2_CUBEMAP_NEGATIVEX \
|DDSCAPS2_CUBEMAP_POSITIVEY|DDSCAPS2_CUBEMAP_NEGATIVEY \
|DDSCAPS2_CUBEMAP_POSITIVEZ|DDSCAPS2_CUBEMAP_NEGATIVEZ)
#define DDSCAPS2_VOLUME 0x00200000
struct TranslateDdsFormat
{
uint32_t m_format;
TextureFormat::Enum m_textureFormat;
bool m_srgb;
};
static const TranslateDdsFormat s_translateDdsFourccFormat[] =
{
{ DDS_DXT1, TextureFormat::BC1, false },
{ DDS_DXT2, TextureFormat::BC2, false },
{ DDS_DXT3, TextureFormat::BC2, false },
{ DDS_DXT4, TextureFormat::BC3, false },
{ DDS_DXT5, TextureFormat::BC3, false },
{ DDS_ATI1, TextureFormat::BC4, false },
{ DDS_BC4U, TextureFormat::BC4, false },
{ DDS_ATI2, TextureFormat::BC5, false },
{ DDS_BC5U, TextureFormat::BC5, false },
{ DDS_A16B16G16R16, TextureFormat::RGBA16, false },
{ DDS_A16B16G16R16F, TextureFormat::RGBA16F, false },
{ DDPF_RGB|DDPF_ALPHAPIXELS, TextureFormat::BGRA8, false },
{ DDPF_INDEXED, TextureFormat::R8, false },
{ DDPF_LUMINANCE, TextureFormat::R8, false },
{ DDPF_ALPHA, TextureFormat::R8, false },
{ DDS_R16F, TextureFormat::R16F, false },
{ DDS_R32F, TextureFormat::R32F, false },
{ DDS_A8L8, TextureFormat::RG8, false },
{ DDS_G16R16, TextureFormat::RG16, false },
{ DDS_G16R16F, TextureFormat::RG16F, false },
{ DDS_G32R32F, TextureFormat::RG32F, false },
{ DDS_A8R8G8B8, TextureFormat::BGRA8, false },
{ DDS_A16B16G16R16, TextureFormat::RGBA16, false },
{ DDS_A16B16G16R16F, TextureFormat::RGBA16F, false },
{ DDS_A32B32G32R32F, TextureFormat::RGBA32F, false },
{ DDS_R5G6B5, TextureFormat::R5G6B5, false },
{ DDS_A4R4G4B4, TextureFormat::RGBA4, false },
{ DDS_A1R5G5B5, TextureFormat::RGB5A1, false },
{ DDS_A2B10G10R10, TextureFormat::RGB10A2, false },
};
static const TranslateDdsFormat s_translateDxgiFormat[] =
{
{ DDS_FORMAT_BC1_UNORM, TextureFormat::BC1, false },
{ DDS_FORMAT_BC1_UNORM_SRGB, TextureFormat::BC1, true },
{ DDS_FORMAT_BC2_UNORM, TextureFormat::BC2, false },
{ DDS_FORMAT_BC2_UNORM_SRGB, TextureFormat::BC2, true },
{ DDS_FORMAT_BC3_UNORM, TextureFormat::BC3, false },
{ DDS_FORMAT_BC3_UNORM_SRGB, TextureFormat::BC3, true },
{ DDS_FORMAT_BC4_UNORM, TextureFormat::BC4, false },
{ DDS_FORMAT_BC5_UNORM, TextureFormat::BC5, false },
{ DDS_FORMAT_BC6H_SF16, TextureFormat::BC6H, false },
{ DDS_FORMAT_BC7_UNORM, TextureFormat::BC7, false },
{ DDS_FORMAT_BC7_UNORM_SRGB, TextureFormat::BC7, true },
{ DDS_FORMAT_R1_UNORM, TextureFormat::R1, false },
{ DDS_FORMAT_R8_UNORM, TextureFormat::R8, false },
{ DDS_FORMAT_R16_UNORM, TextureFormat::R16, false },
{ DDS_FORMAT_R16_FLOAT, TextureFormat::R16F, false },
{ DDS_FORMAT_R32_UINT, TextureFormat::R32U, false },
{ DDS_FORMAT_R32_FLOAT, TextureFormat::R32F, false },
{ DDS_FORMAT_R8G8_UNORM, TextureFormat::RG8, false },
{ DDS_FORMAT_R16G16_UNORM, TextureFormat::RG16, false },
{ DDS_FORMAT_R16G16_FLOAT, TextureFormat::RG16F, false },
{ DDS_FORMAT_R32G32_UINT, TextureFormat::RG32U, false },
{ DDS_FORMAT_R32G32_FLOAT, TextureFormat::RG32F, false },
{ DDS_FORMAT_B8G8R8A8_UNORM, TextureFormat::BGRA8, false },
{ DDS_FORMAT_B8G8R8A8_UNORM_SRGB, TextureFormat::BGRA8, true },
{ DDS_FORMAT_R8G8B8A8_UNORM, TextureFormat::RGBA8, false },
{ DDS_FORMAT_R8G8B8A8_UNORM_SRGB, TextureFormat::RGBA8, true },
{ DDS_FORMAT_R16G16B16A16_UNORM, TextureFormat::RGBA16, false },
{ DDS_FORMAT_R16G16B16A16_FLOAT, TextureFormat::RGBA16F, false },
{ DDS_FORMAT_R32G32B32A32_UINT, TextureFormat::RGBA32U, false },
{ DDS_FORMAT_R32G32B32A32_FLOAT, TextureFormat::RGBA32F, false },
{ DDS_FORMAT_B5G6R5_UNORM, TextureFormat::R5G6B5, false },
{ DDS_FORMAT_B4G4R4A4_UNORM, TextureFormat::RGBA4, false },
{ DDS_FORMAT_B5G5R5A1_UNORM, TextureFormat::RGB5A1, false },
{ DDS_FORMAT_R10G10B10A2_UNORM, TextureFormat::RGB10A2, false },
{ DDS_FORMAT_R11G11B10_FLOAT, TextureFormat::R11G11B10F, false },
};
struct TranslateDdsPixelFormat
{
uint32_t m_bitCount;
uint32_t m_bitmask[4];
TextureFormat::Enum m_textureFormat;
};
static const TranslateDdsPixelFormat s_translateDdsPixelFormat[] =
{
{ 8, { 0x000000ff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R8 },
{ 16, { 0x0000ffff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R16U },
{ 16, { 0x00000f00, 0x000000f0, 0x0000000f, 0x0000f000 }, TextureFormat::RGBA4 },
{ 16, { 0x0000f800, 0x000007e0, 0x0000001f, 0x00000000 }, TextureFormat::R5G6B5 },
{ 16, { 0x00007c00, 0x000003e0, 0x0000001f, 0x00008000 }, TextureFormat::RGB5A1 },
{ 24, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 }, TextureFormat::RGB8 },
{ 32, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0xff000000 }, TextureFormat::BGRA8 },
{ 32, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 }, TextureFormat::BGRA8 },
{ 32, { 0x000003ff, 0x000ffc00, 0x3ff00000, 0xc0000000 }, TextureFormat::RGB10A2 },
{ 32, { 0x0000ffff, 0xffff0000, 0x00000000, 0x00000000 }, TextureFormat::RG16 },
{ 32, { 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R32U },
};
bool imageParseDds(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader)
{
uint32_t headerSize;
bx::read(_reader, headerSize);
if (headerSize < DDS_HEADER_SIZE)
{
return false;
}
uint32_t flags;
bx::read(_reader, flags);
if ( (flags & (DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT) ) != (DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT) )
{
return false;
}
uint32_t height;
bx::read(_reader, height);
uint32_t width;
bx::read(_reader, width);
uint32_t pitch;
bx::read(_reader, pitch);
uint32_t depth;
bx::read(_reader, depth);
uint32_t mips;
bx::read(_reader, mips);
bx::skip(_reader, 44); // reserved
uint32_t pixelFormatSize;
bx::read(_reader, pixelFormatSize);
uint32_t pixelFlags;
bx::read(_reader, pixelFlags);
uint32_t fourcc;
bx::read(_reader, fourcc);
uint32_t bitCount;
bx::read(_reader, bitCount);
uint32_t bitmask[4];
bx::read(_reader, bitmask, sizeof(bitmask) );
uint32_t caps[4];
bx::read(_reader, caps);
bx::skip(_reader, 4); // reserved
uint32_t dxgiFormat = 0;
uint32_t arraySize = 1;
if (DDPF_FOURCC == pixelFlags
&& DDS_DX10 == fourcc)
{
bx::read(_reader, dxgiFormat);
uint32_t dims;
bx::read(_reader, dims);
uint32_t miscFlags;
bx::read(_reader, miscFlags);
bx::read(_reader, arraySize);
uint32_t miscFlags2;
bx::read(_reader, miscFlags2);
}
if ( (caps[0] & DDSCAPS_TEXTURE) == 0)
{
return false;
}
bool cubeMap = 0 != (caps[1] & DDSCAPS2_CUBEMAP);
if (cubeMap)
{
if ( (caps[1] & DDS_CUBEMAP_ALLFACES) != DDS_CUBEMAP_ALLFACES)
{
// partial cube map is not supported.
return false;
}
}
TextureFormat::Enum format = TextureFormat::Unknown;
bool hasAlpha = pixelFlags & DDPF_ALPHAPIXELS;
bool srgb = false;
if (dxgiFormat == 0)
{
if (DDPF_FOURCC == (pixelFlags & DDPF_FOURCC) )
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsFourccFormat); ++ii)
{
if (s_translateDdsFourccFormat[ii].m_format == fourcc)
{
format = s_translateDdsFourccFormat[ii].m_textureFormat;
break;
}
}
}
else
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsPixelFormat); ++ii)
{
const TranslateDdsPixelFormat& pf = s_translateDdsPixelFormat[ii];
if (pf.m_bitCount == bitCount
&& pf.m_bitmask[0] == bitmask[0]
&& pf.m_bitmask[1] == bitmask[1]
&& pf.m_bitmask[2] == bitmask[2]
&& pf.m_bitmask[3] == bitmask[3])
{
format = pf.m_textureFormat;
break;
}
}
}
}
else
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDxgiFormat); ++ii)
{
if (s_translateDxgiFormat[ii].m_format == dxgiFormat)
{
format = s_translateDxgiFormat[ii].m_textureFormat;
srgb = s_translateDxgiFormat[ii].m_srgb;
break;
}
}
}
_imageContainer.m_data = NULL;
_imageContainer.m_size = 0;
_imageContainer.m_offset = (uint32_t)bx::seek(_reader);
_imageContainer.m_width = width;
_imageContainer.m_height = height;
_imageContainer.m_depth = depth;
_imageContainer.m_format = format;
_imageContainer.m_numLayers = uint16_t(arraySize);
_imageContainer.m_numMips = uint8_t( (caps[0] & DDSCAPS_MIPMAP) ? mips : 1);
_imageContainer.m_hasAlpha = hasAlpha;
_imageContainer.m_cubeMap = cubeMap;
_imageContainer.m_ktx = false;
_imageContainer.m_ktxLE = false;
_imageContainer.m_srgb = srgb;
return TextureFormat::Unknown != format;
}
// KTX
#define KTX_MAGIC BX_MAKEFOURCC(0xAB, 'K', 'T', 'X')
#define KTX_HEADER_SIZE 64
#define KTX_ETC1_RGB8_OES 0x8D64
#define KTX_COMPRESSED_R11_EAC 0x9270
#define KTX_COMPRESSED_SIGNED_R11_EAC 0x9271
#define KTX_COMPRESSED_RG11_EAC 0x9272
#define KTX_COMPRESSED_SIGNED_RG11_EAC 0x9273
#define KTX_COMPRESSED_RGB8_ETC2 0x9274
#define KTX_COMPRESSED_SRGB8_ETC2 0x9275
#define KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9276
#define KTX_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9277
#define KTX_COMPRESSED_RGBA8_ETC2_EAC 0x9278
#define KTX_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC 0x9279
#define KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00
#define KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 0x8C01
#define KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02
#define KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 0x8C03
#define KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG 0x9137
#define KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG 0x9138
#define KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
#define KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
#define KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3
#define KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT 0x8C4D
#define KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT 0x8C4E
#define KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT 0x8C4F
#define KTX_COMPRESSED_LUMINANCE_LATC1_EXT 0x8C70
#define KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT 0x8C72
#define KTX_COMPRESSED_RGBA_BPTC_UNORM_ARB 0x8E8C
#define KTX_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB 0x8E8D
#define KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB 0x8E8E
#define KTX_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_ARB 0x8E8F
#define KTX_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT 0x8A54
#define KTX_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT 0x8A55
#define KTX_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT 0x8A56
#define KTX_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT 0x8A57
#define KTX_R8 0x8229
#define KTX_R16 0x822A
#define KTX_RG8 0x822B
#define KTX_RG16 0x822C
#define KTX_R16F 0x822D
#define KTX_R32F 0x822E
#define KTX_RG16F 0x822F
#define KTX_RG32F 0x8230
#define KTX_RGBA8 0x8058
#define KTX_RGBA16 0x805B
#define KTX_RGBA16F 0x881A
#define KTX_R32UI 0x8236
#define KTX_RG32UI 0x823C
#define KTX_RGBA32UI 0x8D70
#define KTX_RGBA32F 0x8814
#define KTX_RGB565 0x8D62
#define KTX_RGBA4 0x8056
#define KTX_RGB5_A1 0x8057
#define KTX_RGB10_A2 0x8059
#define KTX_R8I 0x8231
#define KTX_R8UI 0x8232
#define KTX_R16I 0x8233
#define KTX_R16UI 0x8234
#define KTX_R32I 0x8235
#define KTX_R32UI 0x8236
#define KTX_RG8I 0x8237
#define KTX_RG8UI 0x8238
#define KTX_RG16I 0x8239
#define KTX_RG16UI 0x823A
#define KTX_RG32I 0x823B
#define KTX_RG32UI 0x823C
#define KTX_R8_SNORM 0x8F94
#define KTX_RG8_SNORM 0x8F95
#define KTX_RGB8_SNORM 0x8F96
#define KTX_RGBA8_SNORM 0x8F97
#define KTX_R16_SNORM 0x8F98
#define KTX_RG16_SNORM 0x8F99
#define KTX_RGB16_SNORM 0x8F9A
#define KTX_RGBA16_SNORM 0x8F9B
#define KTX_SRGB8 0x8C41
#define KTX_SRGB8_ALPHA8 0x8C43
#define KTX_RGBA32UI 0x8D70
#define KTX_RGB32UI 0x8D71
#define KTX_RGBA16UI 0x8D76
#define KTX_RGB16UI 0x8D77
#define KTX_RGBA8UI 0x8D7C
#define KTX_RGB8UI 0x8D7D
#define KTX_RGBA32I 0x8D82
#define KTX_RGB32I 0x8D83
#define KTX_RGBA16I 0x8D88
#define KTX_RGB16I 0x8D89
#define KTX_RGBA8I 0x8D8E
#define KTX_RGB8 0x8051
#define KTX_RGB8I 0x8D8F
#define KTX_RGB9_E5 0x8C3D
#define KTX_R11F_G11F_B10F 0x8C3A
#define KTX_ZERO 0
#define KTX_RED 0x1903
#define KTX_ALPHA 0x1906
#define KTX_RGB 0x1907
#define KTX_RGBA 0x1908
#define KTX_BGRA 0x80E1
#define KTX_RG 0x8227
#define KTX_BYTE 0x1400
#define KTX_UNSIGNED_BYTE 0x1401
#define KTX_SHORT 0x1402
#define KTX_UNSIGNED_SHORT 0x1403
#define KTX_INT 0x1404
#define KTX_UNSIGNED_INT 0x1405
#define KTX_FLOAT 0x1406
#define KTX_HALF_FLOAT 0x140B
#define KTX_UNSIGNED_INT_5_9_9_9_REV 0x8C3E
#define KTX_UNSIGNED_SHORT_5_6_5 0x8363
#define KTX_UNSIGNED_SHORT_4_4_4_4 0x8033
#define KTX_UNSIGNED_SHORT_5_5_5_1 0x8034
#define KTX_UNSIGNED_INT_2_10_10_10_REV 0x8368
#define KTX_UNSIGNED_INT_10F_11F_11F_REV 0x8C3B
struct KtxFormatInfo
{
uint32_t m_internalFmt;
uint32_t m_internalFmtSrgb;
uint32_t m_fmt;
uint32_t m_type;
};
static const KtxFormatInfo s_translateKtxFormat[] =
{
{ KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT, KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT, KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT, KTX_ZERO, }, // BC1
{ KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT, KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT, KTX_ZERO, }, // BC2
{ KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT, KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT, KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT, KTX_ZERO, }, // BC3
{ KTX_COMPRESSED_LUMINANCE_LATC1_EXT, KTX_ZERO, KTX_COMPRESSED_LUMINANCE_LATC1_EXT, KTX_ZERO, }, // BC4
{ KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, KTX_ZERO, KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, KTX_ZERO, }, // BC5
{ KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB, KTX_ZERO, KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB, KTX_ZERO, }, // BC6H
{ KTX_COMPRESSED_RGBA_BPTC_UNORM_ARB, KTX_ZERO, KTX_COMPRESSED_RGBA_BPTC_UNORM_ARB, KTX_ZERO, }, // BC7
{ KTX_ETC1_RGB8_OES, KTX_ZERO, KTX_ETC1_RGB8_OES, KTX_ZERO, }, // ETC1
{ KTX_COMPRESSED_RGB8_ETC2, KTX_ZERO, KTX_COMPRESSED_RGB8_ETC2, KTX_ZERO, }, // ETC2
{ KTX_COMPRESSED_RGBA8_ETC2_EAC, KTX_COMPRESSED_SRGB8_ETC2, KTX_COMPRESSED_RGBA8_ETC2_EAC, KTX_ZERO, }, // ETC2A
{ KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, KTX_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2, KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, KTX_ZERO, }, // ETC2A1
{ KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, KTX_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT, KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, KTX_ZERO, }, // PTC12
{ KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, KTX_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT, KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, KTX_ZERO, }, // PTC14
{ KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, KTX_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT, KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, KTX_ZERO, }, // PTC12A
{ KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, KTX_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT, KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, KTX_ZERO, }, // PTC14A
{ KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, KTX_ZERO, KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, KTX_ZERO, }, // PTC22
{ KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, KTX_ZERO, KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, KTX_ZERO, }, // PTC24
{ KTX_ZERO, KTX_ZERO, KTX_ZERO, KTX_ZERO, }, // Unknown
{ KTX_ZERO, KTX_ZERO, KTX_ZERO, KTX_ZERO, }, // R1
{ KTX_ALPHA, KTX_ZERO, KTX_ALPHA, KTX_UNSIGNED_BYTE, }, // A8
{ KTX_R8, KTX_ZERO, KTX_RED, KTX_UNSIGNED_BYTE, }, // R8
{ KTX_R8I, KTX_ZERO, KTX_RED, KTX_BYTE, }, // R8S
{ KTX_R8UI, KTX_ZERO, KTX_RED, KTX_UNSIGNED_BYTE, }, // R8S
{ KTX_R8_SNORM, KTX_ZERO, KTX_RED, KTX_BYTE, }, // R8S
{ KTX_R16, KTX_ZERO, KTX_RED, KTX_UNSIGNED_SHORT, }, // R16
{ KTX_R16I, KTX_ZERO, KTX_RED, KTX_SHORT, }, // R16I
{ KTX_R16UI, KTX_ZERO, KTX_RED, KTX_UNSIGNED_SHORT, }, // R16U
{ KTX_R16F, KTX_ZERO, KTX_RED, KTX_HALF_FLOAT, }, // R16F
{ KTX_R16_SNORM, KTX_ZERO, KTX_RED, KTX_SHORT, }, // R16S
{ KTX_R32I, KTX_ZERO, KTX_RED, KTX_INT, }, // R32I
{ KTX_R32UI, KTX_ZERO, KTX_RED, KTX_UNSIGNED_INT, }, // R32U
{ KTX_R32F, KTX_ZERO, KTX_RED, KTX_FLOAT, }, // R32F
{ KTX_RG8, KTX_ZERO, KTX_RG, KTX_UNSIGNED_BYTE, }, // RG8
{ KTX_RG8I, KTX_ZERO, KTX_RG, KTX_BYTE, }, // RG8I
{ KTX_RG8UI, KTX_ZERO, KTX_RG, KTX_UNSIGNED_BYTE, }, // RG8U
{ KTX_RG8_SNORM, KTX_ZERO, KTX_RG, KTX_BYTE, }, // RG8S
{ KTX_RG16, KTX_ZERO, KTX_RG, KTX_UNSIGNED_SHORT, }, // RG16
{ KTX_RG16I, KTX_ZERO, KTX_RG, KTX_SHORT, }, // RG16
{ KTX_RG16UI, KTX_ZERO, KTX_RG, KTX_UNSIGNED_SHORT, }, // RG16
{ KTX_RG16F, KTX_ZERO, KTX_RG, KTX_FLOAT, }, // RG16F
{ KTX_RG16_SNORM, KTX_ZERO, KTX_RG, KTX_SHORT, }, // RG16S
{ KTX_RG32I, KTX_ZERO, KTX_RG, KTX_INT, }, // RG32I
{ KTX_RG32UI, KTX_ZERO, KTX_RG, KTX_UNSIGNED_INT, }, // RG32U
{ KTX_RG32F, KTX_ZERO, KTX_RG, KTX_FLOAT, }, // RG32F
{ KTX_RGB8, KTX_SRGB8, KTX_RGB, KTX_UNSIGNED_BYTE, }, // RGB8
{ KTX_RGB8I, KTX_ZERO, KTX_RGB, KTX_BYTE, }, // RGB8I
{ KTX_RGB8UI, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_BYTE, }, // RGB8U
{ KTX_RGB8_SNORM, KTX_ZERO, KTX_RGB, KTX_BYTE, }, // RGB8S
{ KTX_RGB9_E5, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_INT_5_9_9_9_REV, }, // RGB9E5F
{ KTX_BGRA, KTX_SRGB8_ALPHA8, KTX_BGRA, KTX_UNSIGNED_BYTE, }, // BGRA8
{ KTX_RGBA8, KTX_SRGB8_ALPHA8, KTX_RGBA, KTX_UNSIGNED_BYTE, }, // RGBA8
{ KTX_RGBA8I, KTX_ZERO, KTX_RGBA, KTX_BYTE, }, // RGBA8I
{ KTX_RGBA8UI, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_BYTE, }, // RGBA8U
{ KTX_RGBA8_SNORM, KTX_ZERO, KTX_RGBA, KTX_BYTE, }, // RGBA8S
{ KTX_RGBA16, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT, }, // RGBA16
{ KTX_RGBA16I, KTX_ZERO, KTX_RGBA, KTX_SHORT, }, // RGBA16I
{ KTX_RGBA16UI, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT, }, // RGBA16U
{ KTX_RGBA16F, KTX_ZERO, KTX_RGBA, KTX_HALF_FLOAT, }, // RGBA16F
{ KTX_RGBA16_SNORM, KTX_ZERO, KTX_RGBA, KTX_SHORT, }, // RGBA16S
{ KTX_RGBA32I, KTX_ZERO, KTX_RGBA, KTX_INT, }, // RGBA32I
{ KTX_RGBA32UI, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_INT, }, // RGBA32U
{ KTX_RGBA32F, KTX_ZERO, KTX_RGBA, KTX_FLOAT, }, // RGBA32F
{ KTX_RGB565, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_SHORT_5_6_5, }, // R5G6B5
{ KTX_RGBA4, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT_4_4_4_4, }, // RGBA4
{ KTX_RGB5_A1, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT_5_5_5_1, }, // RGB5A1
{ KTX_RGB10_A2, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_INT_2_10_10_10_REV, }, // RGB10A2
{ KTX_R11F_G11F_B10F, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_INT_10F_11F_11F_REV, }, // R11G11B10F
};
BX_STATIC_ASSERT(TextureFormat::UnknownDepth == BX_COUNTOF(s_translateKtxFormat) );
struct KtxFormatInfo2
{
uint32_t m_internalFmt;
TextureFormat::Enum m_format;
};
static const KtxFormatInfo2 s_translateKtxFormat2[] =
{
{ KTX_RED, TextureFormat::R8 },
{ KTX_RGB, TextureFormat::RGB8 },
};
bool imageParseKtx(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader)
{
uint8_t identifier[8];
bx::read(_reader, identifier);
if (identifier[1] != '1'
&& identifier[2] != '1')
{
return false;
}
uint32_t endianness;
bx::read(_reader, endianness);
bool fromLittleEndian = 0x04030201 == endianness;
uint32_t glType;
bx::readHE(_reader, glType, fromLittleEndian);
uint32_t glTypeSize;
bx::readHE(_reader, glTypeSize, fromLittleEndian);
uint32_t glFormat;
bx::readHE(_reader, glFormat, fromLittleEndian);
uint32_t glInternalFormat;
bx::readHE(_reader, glInternalFormat, fromLittleEndian);
uint32_t glBaseInternalFormat;
bx::readHE(_reader, glBaseInternalFormat, fromLittleEndian);
uint32_t width;
bx::readHE(_reader, width, fromLittleEndian);
uint32_t height;
bx::readHE(_reader, height, fromLittleEndian);
uint32_t depth;
bx::readHE(_reader, depth, fromLittleEndian);
uint32_t numberOfArrayElements;
bx::readHE(_reader, numberOfArrayElements, fromLittleEndian);
uint32_t numFaces;
bx::readHE(_reader, numFaces, fromLittleEndian);
uint32_t numMips;
bx::readHE(_reader, numMips, fromLittleEndian);
uint32_t metaDataSize;
bx::readHE(_reader, metaDataSize, fromLittleEndian);
// skip meta garbage...
int64_t offset = bx::skip(_reader, metaDataSize);
TextureFormat::Enum format = TextureFormat::Unknown;
bool hasAlpha = false;
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateKtxFormat); ++ii)
{
if (s_translateKtxFormat[ii].m_internalFmt == glInternalFormat)
{
format = TextureFormat::Enum(ii);
break;
}
}
if (TextureFormat::Unknown == format)
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateKtxFormat2); ++ii)
{
if (s_translateKtxFormat2[ii].m_internalFmt == glInternalFormat)
{
format = s_translateKtxFormat2[ii].m_format;
break;
}
}
}
_imageContainer.m_data = NULL;
_imageContainer.m_size = 0;
_imageContainer.m_offset = (uint32_t)offset;
_imageContainer.m_width = width;
_imageContainer.m_height = height;
_imageContainer.m_depth = depth;
_imageContainer.m_format = format;
_imageContainer.m_numLayers = uint16_t(bx::uint32_max(numberOfArrayElements, 1) );
_imageContainer.m_numMips = uint8_t(bx::uint32_max(numMips, 1) );
_imageContainer.m_hasAlpha = hasAlpha;
_imageContainer.m_cubeMap = numFaces > 1;
_imageContainer.m_ktx = true;
_imageContainer.m_ktxLE = fromLittleEndian;
_imageContainer.m_srgb = false;
return TextureFormat::Unknown != format;
}
// PVR3
#define PVR3_MAKE8CC(_a, _b, _c, _d, _e, _f, _g, _h) (uint64_t(BX_MAKEFOURCC(_a, _b, _c, _d) ) | (uint64_t(BX_MAKEFOURCC(_e, _f, _g, _h) )<<32) )
#define PVR3_MAGIC BX_MAKEFOURCC('P', 'V', 'R', 3)
#define PVR3_HEADER_SIZE 52
#define PVR3_PVRTC1_2BPP_RGB 0
#define PVR3_PVRTC1_2BPP_RGBA 1
#define PVR3_PVRTC1_4BPP_RGB 2
#define PVR3_PVRTC1_4BPP_RGBA 3
#define PVR3_PVRTC2_2BPP_RGBA 4
#define PVR3_PVRTC2_4BPP_RGBA 5
#define PVR3_ETC1 6
#define PVR3_DXT1 7
#define PVR3_DXT2 8
#define PVR3_DXT3 9
#define PVR3_DXT4 10
#define PVR3_DXT5 11
#define PVR3_BC4 12
#define PVR3_BC5 13
#define PVR3_R8 PVR3_MAKE8CC('r', 0, 0, 0, 8, 0, 0, 0)
#define PVR3_R16 PVR3_MAKE8CC('r', 0, 0, 0, 16, 0, 0, 0)
#define PVR3_R32 PVR3_MAKE8CC('r', 0, 0, 0, 32, 0, 0, 0)
#define PVR3_RG8 PVR3_MAKE8CC('r', 'g', 0, 0, 8, 8, 0, 0)
#define PVR3_RG16 PVR3_MAKE8CC('r', 'g', 0, 0, 16, 16, 0, 0)
#define PVR3_RG32 PVR3_MAKE8CC('r', 'g', 0, 0, 32, 32, 0, 0)
#define PVR3_BGRA8 PVR3_MAKE8CC('b', 'g', 'r', 'a', 8, 8, 8, 8)
#define PVR3_RGBA16 PVR3_MAKE8CC('r', 'g', 'b', 'a', 16, 16, 16, 16)
#define PVR3_RGBA32 PVR3_MAKE8CC('r', 'g', 'b', 'a', 32, 32, 32, 32)
#define PVR3_RGB565 PVR3_MAKE8CC('r', 'g', 'b', 0, 5, 6, 5, 0)
#define PVR3_RGBA4 PVR3_MAKE8CC('r', 'g', 'b', 'a', 4, 4, 4, 4)
#define PVR3_RGBA51 PVR3_MAKE8CC('r', 'g', 'b', 'a', 5, 5, 5, 1)
#define PVR3_RGB10A2 PVR3_MAKE8CC('r', 'g', 'b', 'a', 10, 10, 10, 2)
#define PVR3_CHANNEL_TYPE_ANY UINT32_MAX
#define PVR3_CHANNEL_TYPE_FLOAT UINT32_C(12)
struct TranslatePvr3Format
{
uint64_t m_format;
uint32_t m_channelTypeMask;
TextureFormat::Enum m_textureFormat;
};
static const TranslatePvr3Format s_translatePvr3Format[] =
{
{ PVR3_PVRTC1_2BPP_RGB, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC12 },
{ PVR3_PVRTC1_2BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC12A },
{ PVR3_PVRTC1_4BPP_RGB, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC14 },
{ PVR3_PVRTC1_4BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC14A },
{ PVR3_PVRTC2_2BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC22 },
{ PVR3_PVRTC2_4BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC24 },
{ PVR3_ETC1, PVR3_CHANNEL_TYPE_ANY, TextureFormat::ETC1 },
{ PVR3_DXT1, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC1 },
{ PVR3_DXT2, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC2 },
{ PVR3_DXT3, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC2 },
{ PVR3_DXT4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC3 },
{ PVR3_DXT5, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC3 },
{ PVR3_BC4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC4 },
{ PVR3_BC5, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC5 },
{ PVR3_R8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R8 },
{ PVR3_R16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R16U },
{ PVR3_R16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::R16F },
{ PVR3_R32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R32U },
{ PVR3_R32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::R32F },
{ PVR3_RG8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG8 },
{ PVR3_RG16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG16 },
{ PVR3_RG16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RG16F },
{ PVR3_RG32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG16 },
{ PVR3_RG32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RG32F },
{ PVR3_BGRA8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BGRA8 },
{ PVR3_RGBA16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA16 },
{ PVR3_RGBA16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RGBA16F },
{ PVR3_RGBA32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA32U },
{ PVR3_RGBA32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RGBA32F },
{ PVR3_RGB565, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R5G6B5 },
{ PVR3_RGBA4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA4 },
{ PVR3_RGBA51, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGB5A1 },
{ PVR3_RGB10A2, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGB10A2 },
};
bool imageParsePvr3(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader)
{
uint32_t flags;
bx::read(_reader, flags);
uint64_t pixelFormat;
bx::read(_reader, pixelFormat);
uint32_t colorSpace;
bx::read(_reader, colorSpace); // 0 - linearRGB, 1 - sRGB
uint32_t channelType;
bx::read(_reader, channelType);
uint32_t height;
bx::read(_reader, height);
uint32_t width;
bx::read(_reader, width);
uint32_t depth;
bx::read(_reader, depth);
uint32_t numSurfaces;
bx::read(_reader, numSurfaces);
uint32_t numFaces;
bx::read(_reader, numFaces);
uint32_t numMips;
bx::read(_reader, numMips);
uint32_t metaDataSize;
bx::read(_reader, metaDataSize);
// skip meta garbage...
int64_t offset = bx::skip(_reader, metaDataSize);
TextureFormat::Enum format = TextureFormat::Unknown;
bool hasAlpha = false;
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translatePvr3Format); ++ii)
{
if (s_translatePvr3Format[ii].m_format == pixelFormat
&& channelType == (s_translatePvr3Format[ii].m_channelTypeMask & channelType) )
{
format = s_translatePvr3Format[ii].m_textureFormat;
break;
}
}
_imageContainer.m_data = NULL;
_imageContainer.m_size = 0;
_imageContainer.m_offset = (uint32_t)offset;
_imageContainer.m_width = width;
_imageContainer.m_height = height;
_imageContainer.m_depth = depth;
_imageContainer.m_format = format;
_imageContainer.m_numLayers = 1;
_imageContainer.m_numMips = uint8_t(bx::uint32_max(numMips, 1) );
_imageContainer.m_hasAlpha = hasAlpha;
_imageContainer.m_cubeMap = numFaces > 1;
_imageContainer.m_ktx = false;
_imageContainer.m_ktxLE = false;
_imageContainer.m_srgb = colorSpace > 0;
return TextureFormat::Unknown != format;
}
bool imageParse(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader)
{
uint32_t magic;
bx::read(_reader, magic);
if (DDS_MAGIC == magic)
{
return imageParseDds(_imageContainer, _reader);
}
else if (KTX_MAGIC == magic)
{
return imageParseKtx(_imageContainer, _reader);
}
else if (PVR3_MAGIC == magic)
{
return imageParsePvr3(_imageContainer, _reader);
}
else if (BGFX_CHUNK_MAGIC_TEX == magic)
{
TextureCreate tc;
bx::read(_reader, tc);
_imageContainer.m_format = tc.m_format;
_imageContainer.m_offset = UINT32_MAX;
if (NULL == tc.m_mem)
{
_imageContainer.m_data = NULL;
_imageContainer.m_size = 0;
}
else
{
_imageContainer.m_data = tc.m_mem->data;
_imageContainer.m_size = tc.m_mem->size;
}
_imageContainer.m_width = tc.m_width;
_imageContainer.m_height = tc.m_height;
_imageContainer.m_depth = tc.m_depth;
_imageContainer.m_numLayers = tc.m_numLayers;
_imageContainer.m_numMips = tc.m_numMips;
_imageContainer.m_hasAlpha = false;
_imageContainer.m_cubeMap = tc.m_cubeMap;
_imageContainer.m_ktx = false;
_imageContainer.m_ktxLE = false;
_imageContainer.m_srgb = false;
return true;
}
BX_TRACE("Unrecognized image format (magic: 0x%08x)!", magic);
return false;
}
bool imageParse(ImageContainer& _imageContainer, const void* _data, uint32_t _size)
{
bx::MemoryReader reader(_data, _size);
return imageParse(_imageContainer, &reader);
}
void imageDecodeToBgra8(void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _pitch, TextureFormat::Enum _format)
{
const uint8_t* src = (const uint8_t*)_src;
uint8_t* dst = (uint8_t*)_dst;
uint32_t width = _width/4;
uint32_t height = _height/4;
uint8_t temp[16*4];
switch (_format)
{
case TextureFormat::BC1:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt1(temp, src);
src += 8;
uint8_t* block = &dst[(yy*_pitch+xx*4)*4];
memcpy(&block[0*_pitch], &temp[ 0], 16);
memcpy(&block[1*_pitch], &temp[16], 16);
memcpy(&block[2*_pitch], &temp[32], 16);
memcpy(&block[3*_pitch], &temp[48], 16);
}
}
break;
case TextureFormat::BC2:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt23A(temp+3, src);
src += 8;
decodeBlockDxt(temp, src);
src += 8;
uint8_t* block = &dst[(yy*_pitch+xx*4)*4];
memcpy(&block[0*_pitch], &temp[ 0], 16);
memcpy(&block[1*_pitch], &temp[16], 16);
memcpy(&block[2*_pitch], &temp[32], 16);
memcpy(&block[3*_pitch], &temp[48], 16);
}
}
break;
case TextureFormat::BC3:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt45A(temp+3, src);
src += 8;
decodeBlockDxt(temp, src);
src += 8;
uint8_t* block = &dst[(yy*_pitch+xx*4)*4];
memcpy(&block[0*_pitch], &temp[ 0], 16);
memcpy(&block[1*_pitch], &temp[16], 16);
memcpy(&block[2*_pitch], &temp[32], 16);
memcpy(&block[3*_pitch], &temp[48], 16);
}
}
break;
case TextureFormat::BC4:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt45A(temp, src);
src += 8;
uint8_t* block = &dst[(yy*_pitch+xx*4)*4];
memcpy(&block[0*_pitch], &temp[ 0], 16);
memcpy(&block[1*_pitch], &temp[16], 16);
memcpy(&block[2*_pitch], &temp[32], 16);
memcpy(&block[3*_pitch], &temp[48], 16);
}
}
break;
case TextureFormat::BC5:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt45A(temp+2, src);
src += 8;
decodeBlockDxt45A(temp+1, src);
src += 8;
for (uint32_t ii = 0; ii < 16; ++ii)
{
float nx = temp[ii*4+2]*2.0f/255.0f - 1.0f;
float ny = temp[ii*4+1]*2.0f/255.0f - 1.0f;
float nz = bx::fsqrt(1.0f - nx*nx - ny*ny);
temp[ii*4+0] = uint8_t( (nz + 1.0f)*255.0f/2.0f);
temp[ii*4+3] = 0;
}
uint8_t* block = &dst[(yy*_pitch+xx*4)*4];
memcpy(&block[0*_pitch], &temp[ 0], 16);
memcpy(&block[1*_pitch], &temp[16], 16);
memcpy(&block[2*_pitch], &temp[32], 16);
memcpy(&block[3*_pitch], &temp[48], 16);
}
}
break;
case TextureFormat::ETC1:
case TextureFormat::ETC2:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockEtc12(temp, src);
src += 8;
uint8_t* block = &dst[(yy*_pitch+xx*4)*4];
memcpy(&block[0*_pitch], &temp[ 0], 16);
memcpy(&block[1*_pitch], &temp[16], 16);
memcpy(&block[2*_pitch], &temp[32], 16);
memcpy(&block[3*_pitch], &temp[48], 16);
}
}
break;
case TextureFormat::ETC2A:
BX_WARN(false, "ETC2A decoder is not implemented.");
imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xff00ff00), _dst);
break;
case TextureFormat::ETC2A1:
BX_WARN(false, "ETC2A1 decoder is not implemented.");
imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffff0000), _dst);
break;
case TextureFormat::PTC12:
BX_WARN(false, "PTC12 decoder is not implemented.");
imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffff00ff), _dst);
break;
case TextureFormat::PTC12A:
BX_WARN(false, "PTC12A decoder is not implemented.");
imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffff00), _dst);
break;
case TextureFormat::PTC14:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockPtc14(temp, src, xx, yy, width, height);
uint8_t* block = &dst[(yy*_pitch+xx*4)*4];
memcpy(&block[0*_pitch], &temp[ 0], 16);
memcpy(&block[1*_pitch], &temp[16], 16);
memcpy(&block[2*_pitch], &temp[32], 16);
memcpy(&block[3*_pitch], &temp[48], 16);
}
}
break;
case TextureFormat::PTC14A:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockPtc14A(temp, src, xx, yy, width, height);
uint8_t* block = &dst[(yy*_pitch+xx*4)*4];
memcpy(&block[0*_pitch], &temp[ 0], 16);
memcpy(&block[1*_pitch], &temp[16], 16);
memcpy(&block[2*_pitch], &temp[32], 16);
memcpy(&block[3*_pitch], &temp[48], 16);
}
}
break;
case TextureFormat::PTC22:
BX_WARN(false, "PTC22 decoder is not implemented.");
imageCheckerboard(_width, _height, 16, UINT32_C(0xff00ff00), UINT32_C(0xff0000ff), _dst);
break;
case TextureFormat::PTC24:
BX_WARN(false, "PTC24 decoder is not implemented.");
imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffffff), _dst);
break;
case TextureFormat::RGBA8:
imageSwizzleBgra8(_width, _height, _pitch, _src, _dst);
break;
case TextureFormat::BGRA8:
memcpy(_dst, _src, _pitch*_height);
break;
default:
{
const uint32_t srcBpp = s_imageBlockInfo[_format].bitsPerPixel;
const uint32_t srcPitch = _width * srcBpp / 8;
if (!imageConvert(_dst, TextureFormat::BGRA8, _src, _format, _width, _height, srcPitch) )
{
// Failed to convert, just make ugly red-yellow checkerboard texture.
imageCheckerboard(_width, _height, 16, UINT32_C(0xffff0000), UINT32_C(0xffffff00), _dst);
}
}
break;
}
}
void imageDecodeToRgba8(void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _pitch, TextureFormat::Enum _format)
{
switch (_format)
{
case TextureFormat::RGBA8:
memcpy(_dst, _src, _pitch*_height);
break;
case TextureFormat::BGRA8:
imageSwizzleBgra8(_width, _height, _pitch, _src, _dst);
break;
default:
imageDecodeToBgra8(_dst, _src, _width, _height, _pitch, _format);
imageSwizzleBgra8(_width, _height, _width*4, _dst, _dst);
break;
}
}
void imageRgba8ToRgba32fRef(void* _dst, uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src)
{
const uint32_t dstwidth = _width;
const uint32_t dstheight = _height;
if (0 == dstwidth
|| 0 == dstheight)
{
return;
}
float* dst = (float*)_dst;
const uint8_t* src = (const uint8_t*)_src;
for (uint32_t yy = 0, ystep = _pitch; yy < dstheight; ++yy, src += ystep)
{
const uint8_t* rgba = src;
for (uint32_t xx = 0; xx < dstwidth; ++xx, rgba += 4, dst += 4)
{
dst[0] = bx::fpow(rgba[0], 2.2f);
dst[1] = bx::fpow(rgba[1], 2.2f);
dst[2] = bx::fpow(rgba[2], 2.2f);
dst[3] = rgba[3];
}
}
}
void imageRgba8ToRgba32f(void* _dst, uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src)
{
const uint32_t dstwidth = _width;
const uint32_t dstheight = _height;
if (0 == dstwidth
|| 0 == dstheight)
{
return;
}
float* dst = (float*)_dst;
const uint8_t* src = (const uint8_t*)_src;
using namespace bx;
const simd128_t unpack = simd_ld(1.0f, 1.0f/256.0f, 1.0f/65536.0f, 1.0f/16777216.0f);
const simd128_t umask = simd_ild(0xff, 0xff00, 0xff0000, 0xff000000);
const simd128_t wflip = simd_ild(0, 0, 0, 0x80000000);
const simd128_t wadd = simd_ld(0.0f, 0.0f, 0.0f, 32768.0f*65536.0f);
for (uint32_t yy = 0, ystep = _pitch; yy < dstheight; ++yy, src += ystep)
{
const uint8_t* rgba = src;
for (uint32_t xx = 0; xx < dstwidth; ++xx, rgba += 4, dst += 4)
{
const simd128_t abgr0 = simd_splat(rgba);
const simd128_t abgr0m = simd_and(abgr0, umask);
const simd128_t abgr0x = simd_xor(abgr0m, wflip);
const simd128_t abgr0f = simd_itof(abgr0x);
const simd128_t abgr0c = simd_add(abgr0f, wadd);
const simd128_t abgr0n = simd_mul(abgr0c, unpack);
simd_st(dst, abgr0n);
}
}
}
void imageDecodeToRgba32f(bx::AllocatorI* _allocator, void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _pitch, TextureFormat::Enum _format)
{
const uint8_t* src = (const uint8_t*)_src;
uint8_t* dst = (uint8_t*)_dst;
switch (_format)
{
case TextureFormat::BC5:
{
uint32_t width = _width/4;
uint32_t height = _height/4;
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
uint8_t temp[16*4];
decodeBlockDxt45A(temp+2, src);
src += 8;
decodeBlockDxt45A(temp+1, src);
src += 8;
for (uint32_t ii = 0; ii < 16; ++ii)
{
float nx = temp[ii*4+2]*2.0f/255.0f - 1.0f;
float ny = temp[ii*4+1]*2.0f/255.0f - 1.0f;
float nz = bx::fsqrt(1.0f - nx*nx - ny*ny);
const uint32_t offset = (yy*4 + ii/4)*_width*16 + (xx*4 + ii%4)*16;
float* block = (float*)&dst[offset];
block[0] = nx;
block[1] = ny;
block[2] = nz;
block[3] = 0.0f;
}
}
}
}
break;
case TextureFormat::RGBA32F:
memcpy(_dst, _src, _pitch*_height);
break;
case TextureFormat::RGBA8:
imageRgba8ToRgba32f(_dst, _width, _height, _pitch, _src);
break;
default:
if (isCompressed(_format) )
{
void* temp = BX_ALLOC(_allocator, imageGetSize(_format, uint16_t(_pitch/4), uint16_t(_height) ) );
imageDecodeToRgba8(temp, _src, _width, _height, _pitch, _format);
imageRgba8ToRgba32f(_dst, _width, _height, _pitch, temp);
BX_FREE(_allocator, temp);
}
else
{
imageConvert(_dst, TextureFormat::RGBA32F, _src, _format, _width, _height, _pitch);
}
break;
}
}
bool imageGetRawData(const ImageContainer& _imageContainer, uint16_t _side, uint8_t _lod, const void* _data, uint32_t _size, ImageMip& _mip)
{
uint32_t offset = _imageContainer.m_offset;
TextureFormat::Enum format = TextureFormat::Enum(_imageContainer.m_format);
bool hasAlpha = _imageContainer.m_hasAlpha;
const ImageBlockInfo& blockInfo = s_imageBlockInfo[format];
const uint8_t bpp = blockInfo.bitsPerPixel;
const uint32_t blockSize = blockInfo.blockSize;
const uint32_t blockWidth = blockInfo.blockWidth;
const uint32_t blockHeight = blockInfo.blockHeight;
const uint32_t minBlockX = blockInfo.minBlockX;
const uint32_t minBlockY = blockInfo.minBlockY;
if (UINT32_MAX == _imageContainer.m_offset)
{
if (NULL == _imageContainer.m_data)
{
return false;
}
offset = 0;
_data = _imageContainer.m_data;
_size = _imageContainer.m_size;
}
const uint8_t* data = (const uint8_t*)_data;
const uint16_t numSides = _imageContainer.m_numLayers * (_imageContainer.m_cubeMap ? 6 : 1);
if (_imageContainer.m_ktx)
{
uint32_t width = _imageContainer.m_width;
uint32_t height = _imageContainer.m_height;
uint32_t depth = _imageContainer.m_depth;
for (uint8_t lod = 0, num = _imageContainer.m_numMips; lod < num; ++lod)
{
uint32_t imageSize = bx::toHostEndian(*(const uint32_t*)&data[offset], _imageContainer.m_ktxLE) / _imageContainer.m_numLayers;
offset += sizeof(uint32_t);
width = bx::uint32_max(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth);
height = bx::uint32_max(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight);
depth = bx::uint32_max(1, depth);
uint32_t size = width*height*depth*bpp/8;
BX_CHECK(size == imageSize, "KTX: Image size mismatch %d (expected %d).", size, imageSize);
for (uint16_t side = 0; side < numSides; ++side)
{
if (side == _side
&& lod == _lod)
{
_mip.m_width = width;
_mip.m_height = height;
_mip.m_blockSize = blockSize;
_mip.m_size = size;
_mip.m_data = &data[offset];
_mip.m_bpp = bpp;
_mip.m_format = format;
_mip.m_hasAlpha = hasAlpha;
return true;
}
offset += imageSize;
BX_CHECK(offset <= _size, "Reading past size of data buffer! (offset %d, size %d)", offset, _size);
BX_UNUSED(_size);
}
width >>= 1;
height >>= 1;
depth >>= 1;
}
}
else
{
for (uint16_t side = 0; side < numSides; ++side)
{
uint32_t width = _imageContainer.m_width;
uint32_t height = _imageContainer.m_height;
uint32_t depth = _imageContainer.m_depth;
for (uint8_t lod = 0, num = _imageContainer.m_numMips; lod < num; ++lod)
{
width = bx::uint32_max(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth);
height = bx::uint32_max(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight);
depth = bx::uint32_max(1, depth);
uint32_t size = width*height*depth*bpp/8;
if (side == _side
&& lod == _lod)
{
_mip.m_width = width;
_mip.m_height = height;
_mip.m_blockSize = blockSize;
_mip.m_size = size;
_mip.m_data = &data[offset];
_mip.m_bpp = bpp;
_mip.m_format = format;
_mip.m_hasAlpha = hasAlpha;
return true;
}
offset += size;
BX_CHECK(offset <= _size, "Reading past size of data buffer! (offset %d, size %d)", offset, _size);
BX_UNUSED(_size);
width >>= 1;
height >>= 1;
depth >>= 1;
}
}
}
return false;
}
void imageWriteTga(bx::WriterI* _writer, uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, bool _grayscale, bool _yflip, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
uint8_t type = _grayscale ? 3 : 2;
uint8_t bpp = _grayscale ? 8 : 32;
uint8_t header[18] = {};
header[ 2] = type;
header[12] = _width &0xff;
header[13] = (_width >>8)&0xff;
header[14] = _height &0xff;
header[15] = (_height>>8)&0xff;
header[16] = bpp;
header[17] = 32;
bx::write(_writer, header, sizeof(header), _err);
uint32_t dstPitch = _width*bpp/8;
if (_yflip)
{
uint8_t* data = (uint8_t*)_src + _pitch*_height - _pitch;
for (uint32_t yy = 0; yy < _height; ++yy)
{
bx::write(_writer, data, dstPitch, _err);
data -= _pitch;
}
}
else if (_pitch == dstPitch)
{
bx::write(_writer, _src, _height*_pitch, _err);
}
else
{
uint8_t* data = (uint8_t*)_src;
for (uint32_t yy = 0; yy < _height; ++yy)
{
bx::write(_writer, data, dstPitch, _err);
data += _pitch;
}
}
}
static int32_t imageWriteKtxHeader(bx::WriterI* _writer, TextureFormat::Enum _format, bool _cubeMap, uint32_t _width, uint32_t _height, uint32_t _depth, uint8_t _numMips, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
const KtxFormatInfo& tfi = s_translateKtxFormat[_format];
int32_t size = 0;
size += bx::write(_writer, "\xabKTX 11\xbb\r\n\x1a\n", 12, _err);
size += bx::write(_writer, uint32_t(0x04030201), _err);
size += bx::write(_writer, uint32_t(0), _err); // glType
size += bx::write(_writer, uint32_t(1), _err); // glTypeSize
size += bx::write(_writer, uint32_t(0), _err); // glFormat
size += bx::write(_writer, tfi.m_internalFmt, _err); // glInternalFormat
size += bx::write(_writer, tfi.m_fmt, _err); // glBaseInternalFormat
size += bx::write(_writer, _width, _err);
size += bx::write(_writer, _height, _err);
size += bx::write(_writer, _depth, _err);
size += bx::write(_writer, uint32_t(0), _err); // numberOfArrayElements
size += bx::write(_writer, _cubeMap ? uint32_t(6) : uint32_t(0), _err);
size += bx::write(_writer, uint32_t(_numMips), _err);
size += bx::write(_writer, uint32_t(0), _err); // Meta-data size.
BX_WARN(size == 64, "KTX: Failed to write header size %d (expected: %d).", size, 64);
return size;
}
void imageWriteKtx(bx::WriterI* _writer, TextureFormat::Enum _format, bool _cubeMap, uint32_t _width, uint32_t _height, uint32_t _depth, uint8_t _numMips, const void* _src, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
imageWriteKtxHeader(_writer, _format, _cubeMap, _width, _height, _depth, _numMips, _err);
const ImageBlockInfo& blockInfo = s_imageBlockInfo[_format];
const uint8_t bpp = blockInfo.bitsPerPixel;
const uint32_t blockWidth = blockInfo.blockWidth;
const uint32_t blockHeight = blockInfo.blockHeight;
const uint32_t minBlockX = blockInfo.minBlockX;
const uint32_t minBlockY = blockInfo.minBlockY;
const uint8_t* src = (const uint8_t*)_src;
uint32_t width = _width;
uint32_t height = _height;
uint32_t depth = _depth;
for (uint8_t lod = 0, num = _numMips; lod < num; ++lod)
{
width = bx::uint32_max(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth);
height = bx::uint32_max(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight);
depth = bx::uint32_max(1, depth);
uint32_t size = width*height*depth*bpp/8;
bx::write(_writer, size, _err);
for (uint8_t side = 0, numSides = _cubeMap ? 6 : 1; side < numSides; ++side)
{
bx::write(_writer, src, size, _err);
src += size;
}
width >>= 1;
height >>= 1;
depth >>= 1;
}
}
void imageWriteKtx(bx::WriterI* _writer, ImageContainer& _imageContainer, const void* _data, uint32_t _size, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
imageWriteKtxHeader(_writer
, TextureFormat::Enum(_imageContainer.m_format)
, _imageContainer.m_cubeMap
, _imageContainer.m_width
, _imageContainer.m_height
, _imageContainer.m_depth
, _imageContainer.m_numMips
, _err
);
for (uint8_t lod = 0, num = _imageContainer.m_numMips; lod < num; ++lod)
{
ImageMip mip;
imageGetRawData(_imageContainer, 0, lod, _data, _size, mip);
bx::write(_writer, mip.m_size, _err);
for (uint8_t side = 0, numSides = _imageContainer.m_cubeMap ? 6 : 1; side < numSides; ++side)
{
if (imageGetRawData(_imageContainer, side, lod, _data, _size, mip) )
{
bx::write(_writer, mip.m_data, mip.m_size, _err);
}
}
}
}
} // namespace bgfx