/* * Copyright 2011-2016 Branimir Karadzic. All rights reserved. * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause */ #include "bgfx_p.h" #include "image.h" namespace bgfx { static const ImageBlockInfo s_imageBlockInfo[] = { // +-------------------------------------------- bits per pixel // | +----------------------------------------- block width // | | +-------------------------------------- block height // | | | +---------------------------------- block size // | | | | +------------------------------- min blocks x // | | | | | +---------------------------- min blocks y // | | | | | | +------------------------ depth bits // | | | | | | | +--------------------- stencil bits // | | | | | | | | +---+---+---+----- r, g, b, a bits // | | | | | | | | r g b a +-- encoding type // | | | | | | | | | | | | | { 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // BC1 { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // BC2 { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // BC3 { 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // BC4 { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // BC5 { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // BC6H { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // BC7 { 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // ETC1 { 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // ETC2 { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // ETC2A { 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // ETC2A1 { 2, 8, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // PTC12 { 4, 4, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // PTC14 { 2, 8, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // PTC12A { 4, 4, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // PTC14A { 2, 8, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // PTC22 { 4, 4, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // PTC24 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Count) }, // Unknown { 1, 8, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // R1 { 8, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 8, uint8_t(EncodingType::Unorm) }, // A8 { 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // R8 { 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(EncodingType::Int ) }, // R8I { 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(EncodingType::Uint ) }, // R8U { 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(EncodingType::Snorm) }, // R8S { 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // R16 { 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(EncodingType::Int ) }, // R16I { 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(EncodingType::Uint ) }, // R16U { 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(EncodingType::Float) }, // R16F { 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(EncodingType::Snorm) }, // R16S { 32, 1, 1, 4, 1, 1, 0, 0, 32, 0, 0, 0, uint8_t(EncodingType::Int ) }, // R32I { 32, 1, 1, 4, 1, 1, 0, 0, 32, 0, 0, 0, uint8_t(EncodingType::Uint ) }, // R32U { 32, 1, 1, 4, 1, 1, 0, 0, 32, 0, 0, 0, uint8_t(EncodingType::Float) }, // R32F { 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(EncodingType::Unorm) }, // RG8 { 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(EncodingType::Int ) }, // RG8I { 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(EncodingType::Uint ) }, // RG8U { 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(EncodingType::Snorm) }, // RG8S { 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(EncodingType::Unorm) }, // RG16 { 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(EncodingType::Int ) }, // RG16I { 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(EncodingType::Uint ) }, // RG16U { 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(EncodingType::Float) }, // RG16F { 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(EncodingType::Snorm) }, // RG16S { 64, 1, 1, 8, 1, 1, 0, 0, 32, 32, 0, 0, uint8_t(EncodingType::Int ) }, // RG32I { 64, 1, 1, 8, 1, 1, 0, 0, 32, 32, 0, 0, uint8_t(EncodingType::Uint ) }, // RG32U { 64, 1, 1, 8, 1, 1, 0, 0, 32, 32, 0, 0, uint8_t(EncodingType::Float) }, // RG32F { 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(EncodingType::Unorm) }, // RGB8 { 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(EncodingType::Int ) }, // RGB8I { 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(EncodingType::Uint ) }, // RGB8U { 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(EncodingType::Snorm) }, // RGB8S { 32, 1, 1, 4, 1, 1, 0, 0, 9, 9, 9, 5, uint8_t(EncodingType::Float) }, // RGB9E5F { 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(EncodingType::Unorm) }, // BGRA8 { 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(EncodingType::Unorm) }, // RGBA8 { 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(EncodingType::Int ) }, // RGBA8I { 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(EncodingType::Uint ) }, // RGBA8U { 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(EncodingType::Snorm) }, // RGBA8S { 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(EncodingType::Unorm) }, // RGBA16 { 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(EncodingType::Int ) }, // RGBA16I { 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(EncodingType::Uint ) }, // RGBA16U { 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(EncodingType::Float) }, // RGBA16F { 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(EncodingType::Snorm) }, // RGBA16S { 128, 1, 1, 16, 1, 1, 0, 0, 32, 32, 32, 32, uint8_t(EncodingType::Int ) }, // RGBA32I { 128, 1, 1, 16, 1, 1, 0, 0, 32, 32, 32, 32, uint8_t(EncodingType::Uint ) }, // RGBA32U { 128, 1, 1, 16, 1, 1, 0, 0, 32, 32, 32, 32, uint8_t(EncodingType::Float) }, // RGBA32F { 16, 1, 1, 2, 1, 1, 0, 0, 5, 6, 5, 0, uint8_t(EncodingType::Unorm) }, // R5G6B5 { 16, 1, 1, 2, 1, 1, 0, 0, 4, 4, 4, 4, uint8_t(EncodingType::Unorm) }, // RGBA4 { 16, 1, 1, 2, 1, 1, 0, 0, 5, 5, 5, 1, uint8_t(EncodingType::Unorm) }, // RGB5A1 { 32, 1, 1, 4, 1, 1, 0, 0, 10, 10, 10, 2, uint8_t(EncodingType::Unorm) }, // RGB10A2 { 32, 1, 1, 4, 1, 1, 0, 0, 11, 11, 10, 0, uint8_t(EncodingType::Unorm) }, // R11G11B10F { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, uint8_t(EncodingType::Count) }, // UnknownDepth { 16, 1, 1, 2, 1, 1, 16, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // D16 { 24, 1, 1, 3, 1, 1, 24, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // D24 { 32, 1, 1, 4, 1, 1, 24, 8, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // D24S8 { 32, 1, 1, 4, 1, 1, 32, 0, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // D32 { 16, 1, 1, 2, 1, 1, 16, 0, 0, 0, 0, 0, uint8_t(EncodingType::Float) }, // D16F { 24, 1, 1, 3, 1, 1, 24, 0, 0, 0, 0, 0, uint8_t(EncodingType::Float) }, // D24F { 32, 1, 1, 4, 1, 1, 32, 0, 0, 0, 0, 0, uint8_t(EncodingType::Float) }, // D32F { 8, 1, 1, 1, 1, 1, 0, 8, 0, 0, 0, 0, uint8_t(EncodingType::Unorm) }, // D0S8 }; BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_imageBlockInfo) ); static const char* s_textureFormatName[] = { "BC1", // BC1 "BC2", // BC2 "BC3", // BC3 "BC4", // BC4 "BC5", // BC5 "BC6H", // BC6H "BC7", // BC7 "ETC1", // ETC1 "ETC2", // ETC2 "ETC2A", // ETC2A "ETC2A1", // ETC2A1 "PTC12", // PTC12 "PTC14", // PTC14 "PTC12A", // PTC12A "PTC14A", // PTC14A "PTC22", // PTC22 "PTC24", // PTC24 "", // Unknown "R1", // R1 "A8", // A8 "R8", // R8 "R8I", // R8I "R8U", // R8U "R8S", // R8S "R16", // R16 "R16I", // R16I "R16U", // R16U "R16F", // R16F "R16S", // R16S "R32I", // R32I "R32U", // R32U "R32F", // R32F "RG8", // RG8 "RG8I", // RG8I "RG8U", // RG8U "RG8S", // RG8S "RG16", // RG16 "RG16I", // RG16I "RG16U", // RG16U "RG16F", // RG16F "RG16S", // RG16S "RG32I", // RG32I "RG32U", // RG32U "RG32F", // RG32F "RGB8", // RGB8 "RGB8I", // RGB8I "RGB8U", // RGB8U "RGB8S", // RGB8S "RGB9E5", // RGB9E5F "BGRA8", // BGRA8 "RGBA8", // RGBA8 "RGBA8I", // RGBA8I "RGBA8U", // RGBA8U "RGBA8S", // RGBA8S "RGBA16", // RGBA16 "RGBA16I", // RGBA16I "RGBA16U", // RGBA16U "RGBA16F", // RGBA16F "RGBA16S", // RGBA16S "RGBA32I", // RGBA32I "RGBA32U", // RGBA32U "RGBA32F", // RGBA32F "R5G6B5", // R5G6B5 "RGBA4", // RGBA4 "RGB5A1", // RGB5A1 "RGB10A2", // RGB10A2 "R11G11B10F", // R11G11B10F "", // UnknownDepth "D16", // D16 "D24", // D24 "D24S8", // D24S8 "D32", // D32 "D16F", // D16F "D24F", // D24F "D32F", // D32F "D0S8", // D0S8 }; BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormatName) ); bool isCompressed(TextureFormat::Enum _format) { return _format < TextureFormat::Unknown; } bool isColor(TextureFormat::Enum _format) { return _format > TextureFormat::Unknown && _format < TextureFormat::UnknownDepth ; } bool isDepth(TextureFormat::Enum _format) { return _format > TextureFormat::UnknownDepth && _format < TextureFormat::Count ; } bool isValid(TextureFormat::Enum _format) { return _format != TextureFormat::Unknown && _format != TextureFormat::UnknownDepth && _format != TextureFormat::Count ; } uint8_t getBitsPerPixel(TextureFormat::Enum _format) { return s_imageBlockInfo[_format].bitsPerPixel; } const ImageBlockInfo& getBlockInfo(TextureFormat::Enum _format) { return s_imageBlockInfo[_format]; } uint8_t getBlockSize(TextureFormat::Enum _format) { return s_imageBlockInfo[_format].blockSize; } const char* getName(TextureFormat::Enum _format) { return s_textureFormatName[_format]; } TextureFormat::Enum getFormat(const char* _name) { for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii) { const TextureFormat::Enum fmt = TextureFormat::Enum(ii); if (isValid(fmt) ) { if (0 == bx::stricmp(s_textureFormatName[ii], _name) ) { return fmt; } } } return TextureFormat::Unknown; } uint8_t imageGetNumMips(TextureFormat::Enum _format, uint16_t _width, uint16_t _height, uint16_t _depth) { const ImageBlockInfo& blockInfo = getBlockInfo(_format); const uint16_t blockWidth = blockInfo.blockWidth; const uint16_t blockHeight = blockInfo.blockHeight; const uint16_t minBlockX = blockInfo.minBlockX; const uint16_t minBlockY = blockInfo.minBlockY; _width = bx::uint16_max(blockWidth * minBlockX, ( (_width + blockWidth - 1) / blockWidth)*blockWidth); _height = bx::uint16_max(blockHeight * minBlockY, ( (_height + blockHeight - 1) / blockHeight)*blockHeight); _depth = bx::uint16_max(1, _depth); uint32_t max = bx::uint32_max(_width, bx::uint32_max(_height, _depth) ); uint32_t numMips = bx::uint32_max(1, uint8_t(bx::flog2(float(max) ) ) ); return uint8_t(numMips); } uint32_t imageGetSize(TextureFormat::Enum _format, uint16_t _width, uint16_t _height, uint16_t _depth, uint16_t _numLayers, bool _cubeMap, uint8_t _numMips) { const ImageBlockInfo& blockInfo = getBlockInfo(_format); const uint8_t bpp = blockInfo.bitsPerPixel; const uint16_t blockWidth = blockInfo.blockWidth; const uint16_t blockHeight = blockInfo.blockHeight; const uint16_t minBlockX = blockInfo.minBlockX; const uint16_t minBlockY = blockInfo.minBlockY; _width = bx::uint16_max(blockWidth * minBlockX, ( (_width + blockWidth - 1) / blockWidth)*blockWidth); _height = bx::uint16_max(blockHeight * minBlockY, ( (_height + blockHeight - 1) / blockHeight)*blockHeight); _depth = bx::uint16_max(1, _depth); uint32_t width = _width; uint32_t height = _height; uint32_t depth = _depth; uint32_t sides = _cubeMap ? 6 : 1; uint32_t size = 0; for (uint32_t lod = 0; lod < _numMips; ++lod) { width = bx::uint32_max(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth); height = bx::uint32_max(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight); depth = bx::uint32_max(1, depth); size += width*height*depth*bpp/8 * sides; width >>= 1; height >>= 1; depth >>= 1; } return size * _numLayers; } void imageSolid(uint32_t _width, uint32_t _height, uint32_t _solid, void* _dst) { uint32_t* dst = (uint32_t*)_dst; for (uint32_t ii = 0, num = _width*_height; ii < num; ++ii) { *dst++ = _solid; } } void imageCheckerboard(uint32_t _width, uint32_t _height, uint32_t _step, uint32_t _0, uint32_t _1, void* _dst) { uint32_t* dst = (uint32_t*)_dst; for (uint32_t yy = 0; yy < _height; ++yy) { for (uint32_t xx = 0; xx < _width; ++xx) { uint32_t abgr = ( (xx/_step)&1) ^ ( (yy/_step)&1) ? _1 : _0; *dst++ = abgr; } } } void imageRgba8Downsample2x2Ref(uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, void* _dst) { const uint32_t dstwidth = _width/2; const uint32_t dstheight = _height/2; if (0 == dstwidth || 0 == dstheight) { return; } uint8_t* dst = (uint8_t*)_dst; const uint8_t* src = (const uint8_t*)_src; for (uint32_t yy = 0, ystep = _pitch*2; yy < dstheight; ++yy, src += ystep) { const uint8_t* rgba = src; for (uint32_t xx = 0; xx < dstwidth; ++xx, rgba += 8, dst += 4) { float rr = bx::fpow(rgba[ 0], 2.2f); float gg = bx::fpow(rgba[ 1], 2.2f); float bb = bx::fpow(rgba[ 2], 2.2f); float aa = rgba[ 3]; rr += bx::fpow(rgba[ 4], 2.2f); gg += bx::fpow(rgba[ 5], 2.2f); bb += bx::fpow(rgba[ 6], 2.2f); aa += rgba[ 7]; rr += bx::fpow(rgba[_pitch+0], 2.2f); gg += bx::fpow(rgba[_pitch+1], 2.2f); bb += bx::fpow(rgba[_pitch+2], 2.2f); aa += rgba[_pitch+3]; rr += bx::fpow(rgba[_pitch+4], 2.2f); gg += bx::fpow(rgba[_pitch+5], 2.2f); bb += bx::fpow(rgba[_pitch+6], 2.2f); aa += rgba[_pitch+7]; rr *= 0.25f; gg *= 0.25f; bb *= 0.25f; aa *= 0.25f; rr = bx::fpow(rr, 1.0f/2.2f); gg = bx::fpow(gg, 1.0f/2.2f); bb = bx::fpow(bb, 1.0f/2.2f); dst[0] = (uint8_t)rr; dst[1] = (uint8_t)gg; dst[2] = (uint8_t)bb; dst[3] = (uint8_t)aa; } } } void imageRgba8Downsample2x2(uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, void* _dst) { const uint32_t dstwidth = _width/2; const uint32_t dstheight = _height/2; if (0 == dstwidth || 0 == dstheight) { return; } uint8_t* dst = (uint8_t*)_dst; const uint8_t* src = (const uint8_t*)_src; using namespace bx; const simd128_t unpack = simd_ld(1.0f, 1.0f/256.0f, 1.0f/65536.0f, 1.0f/16777216.0f); const simd128_t pack = simd_ld(1.0f, 256.0f*0.5f, 65536.0f, 16777216.0f*0.5f); const simd128_t umask = simd_ild(0xff, 0xff00, 0xff0000, 0xff000000); const simd128_t pmask = simd_ild(0xff, 0x7f80, 0xff0000, 0x7f800000); const simd128_t wflip = simd_ild(0, 0, 0, 0x80000000); const simd128_t wadd = simd_ld(0.0f, 0.0f, 0.0f, 32768.0f*65536.0f); const simd128_t gamma = simd_ld(1.0f/2.2f, 1.0f/2.2f, 1.0f/2.2f, 1.0f); const simd128_t linear = simd_ld(2.2f, 2.2f, 2.2f, 1.0f); const simd128_t quater = simd_splat(0.25f); for (uint32_t yy = 0, ystep = _pitch*2; yy < dstheight; ++yy, src += ystep) { const uint8_t* rgba = src; for (uint32_t xx = 0; xx < dstwidth; ++xx, rgba += 8, dst += 4) { const simd128_t abgr0 = simd_splat(rgba); const simd128_t abgr1 = simd_splat(rgba+4); const simd128_t abgr2 = simd_splat(rgba+_pitch); const simd128_t abgr3 = simd_splat(rgba+_pitch+4); const simd128_t abgr0m = simd_and(abgr0, umask); const simd128_t abgr1m = simd_and(abgr1, umask); const simd128_t abgr2m = simd_and(abgr2, umask); const simd128_t abgr3m = simd_and(abgr3, umask); const simd128_t abgr0x = simd_xor(abgr0m, wflip); const simd128_t abgr1x = simd_xor(abgr1m, wflip); const simd128_t abgr2x = simd_xor(abgr2m, wflip); const simd128_t abgr3x = simd_xor(abgr3m, wflip); const simd128_t abgr0f = simd_itof(abgr0x); const simd128_t abgr1f = simd_itof(abgr1x); const simd128_t abgr2f = simd_itof(abgr2x); const simd128_t abgr3f = simd_itof(abgr3x); const simd128_t abgr0c = simd_add(abgr0f, wadd); const simd128_t abgr1c = simd_add(abgr1f, wadd); const simd128_t abgr2c = simd_add(abgr2f, wadd); const simd128_t abgr3c = simd_add(abgr3f, wadd); const simd128_t abgr0n = simd_mul(abgr0c, unpack); const simd128_t abgr1n = simd_mul(abgr1c, unpack); const simd128_t abgr2n = simd_mul(abgr2c, unpack); const simd128_t abgr3n = simd_mul(abgr3c, unpack); const simd128_t abgr0l = simd_pow(abgr0n, linear); const simd128_t abgr1l = simd_pow(abgr1n, linear); const simd128_t abgr2l = simd_pow(abgr2n, linear); const simd128_t abgr3l = simd_pow(abgr3n, linear); const simd128_t sum0 = simd_add(abgr0l, abgr1l); const simd128_t sum1 = simd_add(abgr2l, abgr3l); const simd128_t sum2 = simd_add(sum0, sum1); const simd128_t avg0 = simd_mul(sum2, quater); const simd128_t avg1 = simd_pow(avg0, gamma); const simd128_t avg2 = simd_mul(avg1, pack); const simd128_t ftoi0 = simd_ftoi(avg2); const simd128_t ftoi1 = simd_and(ftoi0, pmask); const simd128_t zwxy = simd_swiz_zwxy(ftoi1); const simd128_t tmp0 = simd_or(ftoi1, zwxy); const simd128_t yyyy = simd_swiz_yyyy(tmp0); const simd128_t tmp1 = simd_iadd(yyyy, yyyy); const simd128_t result = simd_or(tmp0, tmp1); simd_stx(dst, result); } } } void imageRgba32fToLinear(void* _dst, uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src) { uint8_t* dst = ( uint8_t*)_dst; const uint8_t* src = (const uint8_t*)_src; for (uint32_t yy = 0; yy < _height; ++yy, src += _pitch) { for (uint32_t xx = 0; xx < _width; ++xx, dst += 16) { float* fd = ( float*)dst; const float* fs = (const float*)src; fd[0] = bx::fpow(fs[0], 1.0f/2.2f); fd[1] = bx::fpow(fs[1], 1.0f/2.2f); fd[2] = bx::fpow(fs[2], 1.0f/2.2f); fd[3] = fs[3]; } } } void imageRgba32fToGamma(void* _dst, uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src) { uint8_t* dst = ( uint8_t*)_dst; const uint8_t* src = (const uint8_t*)_src; for (uint32_t yy = 0; yy < _height; ++yy, src += _pitch) { for (uint32_t xx = 0; xx < _width; ++xx, dst += 16) { float* fd = ( float*)dst; const float* fs = (const float*)src; fd[0] = bx::fpow(fs[0], 2.2f); fd[1] = bx::fpow(fs[1], 2.2f); fd[2] = bx::fpow(fs[2], 2.2f); fd[3] = fs[3]; } } } void imageRgba32fLinearDownsample2x2Ref(uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, void* _dst) { const uint32_t dstwidth = _width/2; const uint32_t dstheight = _height/2; if (0 == dstwidth || 0 == dstheight) { return; } const uint8_t* src = (const uint8_t*)_src; uint8_t* dst = (uint8_t*)_dst; for (uint32_t yy = 0, ystep = _pitch*2; yy < dstheight; ++yy, src += ystep) { const float* rgba0 = (const float*)&src[0]; const float* rgba1 = (const float*)&src[_pitch]; for (uint32_t xx = 0; xx < dstwidth; ++xx, rgba0 += 8, rgba1 += 8, dst += 16) { float xyz[4]; xyz[0] = rgba0[0]; xyz[1] = rgba0[1]; xyz[2] = rgba0[2]; xyz[3] = rgba0[3]; xyz[0] += rgba0[4]; xyz[1] += rgba0[5]; xyz[2] += rgba0[6]; xyz[3] += rgba0[7]; xyz[0] += rgba1[0]; xyz[1] += rgba1[1]; xyz[2] += rgba1[2]; xyz[3] += rgba1[3]; xyz[0] += rgba1[4]; xyz[1] += rgba1[5]; xyz[2] += rgba1[6]; xyz[3] += rgba1[7]; xyz[0] *= 0.25f; xyz[1] *= 0.25f; xyz[2] *= 0.25f; xyz[3] *= 0.25f; } } } void imageRgba32fLinearDownsample2x2(uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, void* _dst) { imageRgba32fLinearDownsample2x2Ref(_width, _height, _pitch, _src, _dst); } void imageRgba32fDownsample2x2NormalMapRef(uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, void* _dst) { const uint32_t dstwidth = _width/2; const uint32_t dstheight = _height/2; if (0 == dstwidth || 0 == dstheight) { return; } const uint8_t* src = (const uint8_t*)_src; uint8_t* dst = (uint8_t*)_dst; for (uint32_t yy = 0, ystep = _pitch*2; yy < dstheight; ++yy, src += ystep) { const float* rgba0 = (const float*)&src[0]; const float* rgba1 = (const float*)&src[_pitch]; for (uint32_t xx = 0; xx < dstwidth; ++xx, rgba0 += 8, rgba1 += 8, dst += 16) { float xyz[3]; xyz[0] = rgba0[0]; xyz[1] = rgba0[1]; xyz[2] = rgba0[2]; xyz[0] += rgba0[4]; xyz[1] += rgba0[5]; xyz[2] += rgba0[6]; xyz[0] += rgba1[0]; xyz[1] += rgba1[1]; xyz[2] += rgba1[2]; xyz[0] += rgba1[4]; xyz[1] += rgba1[5]; xyz[2] += rgba1[6]; bx::vec3Norm( (float*)dst, xyz); } } } void imageRgba32fDownsample2x2NormalMap(uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, void* _dst) { imageRgba32fDownsample2x2NormalMapRef(_width, _height, _pitch, _src, _dst); } void imageSwizzleBgra8Ref(uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, void* _dst) { const uint8_t* src = (uint8_t*) _src; const uint8_t* next = src + _pitch; uint8_t* dst = (uint8_t*)_dst; for (uint32_t yy = 0; yy < _height; ++yy, src = next, next += _pitch) { for (uint32_t xx = 0; xx < _width; ++xx, src += 4, dst += 4) { uint8_t rr = src[0]; uint8_t gg = src[1]; uint8_t bb = src[2]; uint8_t aa = src[3]; dst[0] = bb; dst[1] = gg; dst[2] = rr; dst[3] = aa; } } } void imageSwizzleBgra8(uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, void* _dst) { // Test can we do four 4-byte pixels at the time. if (0 != (_width&0x3) || _width < 4 || !bx::isPtrAligned(_src, 16) || !bx::isPtrAligned(_dst, 16) ) { BX_WARN(false, "Image swizzle is taking slow path."); BX_WARN(bx::isPtrAligned(_src, 16), "Source %p is not 16-byte aligned.", _src); BX_WARN(bx::isPtrAligned(_dst, 16), "Destination %p is not 16-byte aligned.", _dst); BX_WARN(_width < 4, "Image width must be multiple of 4 (width %d).", _width); imageSwizzleBgra8Ref(_width, _height, _pitch, _src, _dst); return; } using namespace bx; const simd128_t mf0f0 = simd_isplat(0xff00ff00); const simd128_t m0f0f = simd_isplat(0x00ff00ff); const uint8_t* src = (uint8_t*) _src; const uint8_t* next = src + _pitch; uint8_t* dst = (uint8_t*)_dst; const uint32_t width = _width/4; for (uint32_t yy = 0; yy < _height; ++yy, src = next, next += _pitch) { for (uint32_t xx = 0; xx < width; ++xx, src += 16, dst += 16) { const simd128_t tabgr = simd_ld(src); const simd128_t t00ab = simd_srl(tabgr, 16); const simd128_t tgr00 = simd_sll(tabgr, 16); const simd128_t tgrab = simd_or(t00ab, tgr00); const simd128_t ta0g0 = simd_and(tabgr, mf0f0); const simd128_t t0r0b = simd_and(tgrab, m0f0f); const simd128_t targb = simd_or(ta0g0, t0r0b); simd_st(dst, targb); } } } void imageCopy(uint32_t _height, uint32_t _srcPitch, const void* _src, uint32_t _dstPitch, void* _dst) { const uint32_t pitch = bx::uint32_min(_srcPitch, _dstPitch); const uint8_t* src = (uint8_t*)_src; uint8_t* dst = (uint8_t*)_dst; for (uint32_t yy = 0; yy < _height; ++yy, src += _srcPitch, dst += _dstPitch) { memcpy(dst, src, pitch); } } void imageCopy(uint32_t _width, uint32_t _height, uint32_t _bpp, uint32_t _pitch, const void* _src, void* _dst) { const uint32_t dstPitch = _width*_bpp/8; imageCopy(_height, _pitch, _src, dstPitch, _dst); } uint32_t toUnorm(float _value, float _scale) { return uint32_t(bx::fround( bx::fsaturate(_value) * _scale) ); } float fromUnorm(uint32_t _value, float _scale) { return float(_value) / _scale; } int32_t toSnorm(float _value, float _scale) { return int32_t(bx::fround( bx::fclamp(_value, -1.0f, 1.0f) * _scale) ); } float fromSnorm(int32_t _value, float _scale) { return bx::fmax(-1.0f, float(_value) / _scale); } // R8 void packR8(void* _dst, const float* _src) { uint8_t* dst = (uint8_t*)_dst; dst[0] = uint8_t(toUnorm(_src[0], 255.0f) ); } void unpackR8(float* _dst, const void* _src) { const uint8_t* src = (const uint8_t*)_src; _dst[0] = fromUnorm(src[0], 255.0f); _dst[1] = 0.0f; _dst[2] = 0.0f; _dst[3] = 1.0f; } // R8S void packR8S(void* _dst, const float* _src) { int8_t* dst = (int8_t*)_dst; dst[0] = int8_t(toSnorm(_src[0], 127.0f) ); } void unpackR8S(float* _dst, const void* _src) { const int8_t* src = (const int8_t*)_src; _dst[0] = fromSnorm(src[0], 127.0f); _dst[1] = 0.0f; _dst[2] = 0.0f; _dst[3] = 1.0f; } // R8I void packR8I(void* _dst, const float* _src) { int8_t* dst = (int8_t*)_dst; dst[0] = int8_t(_src[0]); } void unpackR8I(float* _dst, const void* _src) { const int8_t* src = (const int8_t*)_src; _dst[0] = float(src[0]); _dst[1] = 0.0f; _dst[2] = 0.0f; _dst[3] = 1.0f; } // R8U void packR8U(void* _dst, const float* _src) { uint8_t* dst = (uint8_t*)_dst; dst[0] = uint8_t(_src[0]); } void unpackR8U(float* _dst, const void* _src) { const uint8_t* src = (const uint8_t*)_src; _dst[0] = float(src[0]); _dst[1] = 0.0f; _dst[2] = 0.0f; _dst[3] = 1.0f; } // RG8 void packRg8(void* _dst, const float* _src) { uint8_t* dst = (uint8_t*)_dst; dst[0] = uint8_t(toUnorm(_src[0], 255.0f) ); dst[1] = uint8_t(toUnorm(_src[1], 255.0f) ); } void unpackRg8(float* _dst, const void* _src) { const uint8_t* src = (const uint8_t*)_src; _dst[0] = fromUnorm(src[0], 255.0f); _dst[1] = fromUnorm(src[1], 255.0f); _dst[2] = 0.0f; _dst[3] = 1.0f; } // RG8S void packRg8S(void* _dst, const float* _src) { int8_t* dst = (int8_t*)_dst; dst[0] = int8_t(toSnorm(_src[0], 127.0f) ); dst[1] = int8_t(toSnorm(_src[1], 127.0f) ); } void unpackRg8S(float* _dst, const void* _src) { const int8_t* src = (const int8_t*)_src; _dst[0] = fromSnorm(src[0], 127.0f); _dst[1] = fromSnorm(src[1], 127.0f); _dst[2] = 0.0f; _dst[3] = 1.0f; } // RG8I void packRg8I(void* _dst, const float* _src) { int8_t* dst = (int8_t*)_dst; dst[0] = int8_t(_src[0]); dst[1] = int8_t(_src[1]); } void unpackRg8I(float* _dst, const void* _src) { const int8_t* src = (const int8_t*)_src; _dst[0] = float(src[0]); _dst[1] = float(src[1]); _dst[2] = 0.0f; _dst[3] = 1.0f; } // RG8U void packRg8U(void* _dst, const float* _src) { uint8_t* dst = (uint8_t*)_dst; dst[0] = uint8_t(_src[0]); dst[1] = uint8_t(_src[1]); } void unpackRg8U(float* _dst, const void* _src) { const uint8_t* src = (const uint8_t*)_src; _dst[0] = float(src[0]); _dst[1] = float(src[1]); _dst[2] = 0.0f; _dst[3] = 1.0f; } // RGB8 void packRgb8(void* _dst, const float* _src) { uint8_t* dst = (uint8_t*)_dst; dst[0] = uint8_t(toUnorm(_src[0], 255.0f) ); dst[1] = uint8_t(toUnorm(_src[1], 255.0f) ); dst[2] = uint8_t(toUnorm(_src[2], 255.0f) ); } void unpackRgb8(float* _dst, const void* _src) { const uint8_t* src = (const uint8_t*)_src; _dst[0] = fromUnorm(src[0], 255.0f); _dst[1] = fromUnorm(src[1], 255.0f); _dst[2] = fromUnorm(src[2], 255.0f); _dst[3] = 1.0f; } // RGB8S void packRgb8S(void* _dst, const float* _src) { int8_t* dst = (int8_t*)_dst; dst[0] = int8_t(toSnorm(_src[0], 127.0f) ); dst[1] = int8_t(toSnorm(_src[1], 127.0f) ); dst[2] = int8_t(toSnorm(_src[2], 127.0f) ); } void unpackRgb8S(float* _dst, const void* _src) { const int8_t* src = (const int8_t*)_src; _dst[0] = fromSnorm(src[0], 127.0f); _dst[1] = fromSnorm(src[1], 127.0f); _dst[2] = fromSnorm(src[2], 127.0f); _dst[3] = 1.0f; } // RGB8I void packRgb8I(void* _dst, const float* _src) { int8_t* dst = (int8_t*)_dst; dst[0] = int8_t(_src[0]); dst[1] = int8_t(_src[1]); dst[2] = int8_t(_src[2]); } void unpackRgb8I(float* _dst, const void* _src) { const int8_t* src = (const int8_t*)_src; _dst[0] = float(src[0]); _dst[1] = float(src[1]); _dst[2] = float(src[2]); _dst[3] = 1.0f; } // RGB8U void packRgb8U(void* _dst, const float* _src) { uint8_t* dst = (uint8_t*)_dst; dst[0] = uint8_t(_src[0]); dst[1] = uint8_t(_src[1]); dst[2] = uint8_t(_src[2]); } void unpackRgb8U(float* _dst, const void* _src) { const uint8_t* src = (const uint8_t*)_src; _dst[0] = float(src[0]); _dst[1] = float(src[1]); _dst[2] = float(src[2]); _dst[3] = 1.0f; } // BGRA8 void packBgra8(void* _dst, const float* _src) { uint8_t* dst = (uint8_t*)_dst; dst[2] = uint8_t(toUnorm(_src[0], 255.0f) ); dst[1] = uint8_t(toUnorm(_src[1], 255.0f) ); dst[0] = uint8_t(toUnorm(_src[2], 255.0f) ); dst[3] = uint8_t(toUnorm(_src[3], 255.0f) ); } void unpackBgra8(float* _dst, const void* _src) { const uint8_t* src = (const uint8_t*)_src; _dst[0] = fromUnorm(src[2], 255.0f); _dst[1] = fromUnorm(src[1], 255.0f); _dst[2] = fromUnorm(src[0], 255.0f); _dst[3] = fromUnorm(src[3], 255.0f); } // RGBA8 void packRgba8(void* _dst, const float* _src) { uint8_t* dst = (uint8_t*)_dst; dst[0] = uint8_t(toUnorm(_src[0], 255.0f) ); dst[1] = uint8_t(toUnorm(_src[1], 255.0f) ); dst[2] = uint8_t(toUnorm(_src[2], 255.0f) ); dst[3] = uint8_t(toUnorm(_src[3], 255.0f) ); } void unpackRgba8(float* _dst, const void* _src) { const uint8_t* src = (const uint8_t*)_src; _dst[0] = fromUnorm(src[0], 255.0f); _dst[1] = fromUnorm(src[1], 255.0f); _dst[2] = fromUnorm(src[2], 255.0f); _dst[3] = fromUnorm(src[3], 255.0f); } // RGBA8S void packRgba8S(void* _dst, const float* _src) { int8_t* dst = (int8_t*)_dst; dst[0] = int8_t(toSnorm(_src[0], 127.0f) ); dst[1] = int8_t(toSnorm(_src[1], 127.0f) ); dst[2] = int8_t(toSnorm(_src[2], 127.0f) ); dst[3] = int8_t(toSnorm(_src[3], 127.0f) ); } void unpackRgba8S(float* _dst, const void* _src) { const int8_t* src = (const int8_t*)_src; _dst[0] = fromSnorm(src[0], 127.0f); _dst[1] = fromSnorm(src[1], 127.0f); _dst[2] = fromSnorm(src[2], 127.0f); _dst[3] = fromSnorm(src[3], 127.0f); } // RGBA8I void packRgba8I(void* _dst, const float* _src) { int8_t* dst = (int8_t*)_dst; dst[0] = int8_t(_src[0]); dst[1] = int8_t(_src[1]); dst[2] = int8_t(_src[2]); dst[3] = int8_t(_src[3]); } void unpackRgba8I(float* _dst, const void* _src) { const int8_t* src = (const int8_t*)_src; _dst[0] = float(src[0]); _dst[1] = float(src[1]); _dst[2] = float(src[2]); _dst[3] = float(src[3]); } // RGBA8U void packRgba8U(void* _dst, const float* _src) { uint8_t* dst = (uint8_t*)_dst; dst[0] = uint8_t(_src[0]); dst[1] = uint8_t(_src[1]); dst[2] = uint8_t(_src[2]); dst[3] = uint8_t(_src[3]); } void unpackRgba8U(float* _dst, const void* _src) { const uint8_t* src = (const uint8_t*)_src; _dst[0] = float(src[0]); _dst[1] = float(src[1]); _dst[2] = float(src[2]); _dst[3] = float(src[3]); } // R16 void packR16(void* _dst, const float* _src) { uint16_t* dst = (uint16_t*)_dst; dst[0] = uint16_t(toUnorm(_src[0], 65535.0f) ); } void unpackR16(float* _dst, const void* _src) { const uint16_t* src = (const uint16_t*)_src; _dst[0] = fromUnorm(src[0], 65535.0f); _dst[1] = 0.0f; _dst[2] = 0.0f; _dst[3] = 1.0f; } // R16S void packR16S(void* _dst, const float* _src) { int16_t* dst = (int16_t*)_dst; dst[0] = int16_t(toSnorm(_src[0], 32767.0f) ); } void unpackR16S(float* _dst, const void* _src) { const int16_t* src = (const int16_t*)_src; _dst[0] = fromSnorm(src[0], 32767.0f); _dst[1] = 0.0f; _dst[2] = 0.0f; _dst[3] = 1.0f; } // R16I void packR16I(void* _dst, const float* _src) { int16_t* dst = (int16_t*)_dst; dst[0] = int16_t(_src[0]); } void unpackR16I(float* _dst, const void* _src) { const int16_t* src = (const int16_t*)_src; _dst[0] = float(src[0]); _dst[1] = 0.0f; _dst[2] = 0.0f; _dst[3] = 1.0f; } // R16U void packR16U(void* _dst, const float* _src) { uint16_t* dst = (uint16_t*)_dst; dst[0] = uint16_t(_src[0]); } void unpackR16U(float* _dst, const void* _src) { const uint16_t* src = (const uint16_t*)_src; _dst[0] = float(src[0]); } // R16F void packR16F(void* _dst, const float* _src) { uint16_t* dst = (uint16_t*)_dst; dst[0] = bx::halfFromFloat(_src[0]); } void unpackR16F(float* _dst, const void* _src) { const uint16_t* src = (const uint16_t*)_src; _dst[0] = bx::halfToFloat(src[0]); _dst[1] = 0.0f; _dst[2] = 0.0f; _dst[3] = 1.0f; } // RG16 void packRg16(void* _dst, const float* _src) { uint16_t* dst = (uint16_t*)_dst; dst[0] = uint16_t(toUnorm(_src[0], 65535.0f) ); dst[1] = uint16_t(toUnorm(_src[1], 65535.0f) ); } void unpackRg16(float* _dst, const void* _src) { const uint16_t* src = (const uint16_t*)_src; _dst[0] = fromUnorm(src[0], 65535.0f); _dst[1] = fromUnorm(src[1], 65535.0f); _dst[2] = 0.0f; _dst[3] = 1.0f; } // RG16S void packRg16S(void* _dst, const float* _src) { int16_t* dst = (int16_t*)_dst; dst[0] = int16_t(toSnorm(_src[0], 32767.0f) ); dst[1] = int16_t(toSnorm(_src[1], 32767.0f) ); } void unpackRg16S(float* _dst, const void* _src) { const int16_t* src = (const int16_t*)_src; _dst[0] = fromSnorm(src[0], 32767.0f); _dst[1] = fromSnorm(src[1], 32767.0f); _dst[2] = 0.0f; _dst[3] = 1.0f; } // RG16I void packRg16I(void* _dst, const float* _src) { int16_t* dst = (int16_t*)_dst; dst[0] = int16_t(_src[0]); dst[1] = int16_t(_src[1]); } void unpackRg16I(float* _dst, const void* _src) { const int16_t* src = (const int16_t*)_src; _dst[0] = float(src[0]); _dst[1] = float(src[1]); _dst[2] = 0.0f; _dst[3] = 1.0f; } // RG16U void packRg16U(void* _dst, const float* _src) { uint16_t* dst = (uint16_t*)_dst; dst[0] = uint16_t(_src[0]); dst[1] = uint16_t(_src[1]); } void unpackRg16U(float* _dst, const void* _src) { const uint16_t* src = (const uint16_t*)_src; _dst[0] = float(src[0]); _dst[1] = float(src[1]); _dst[2] = 0.0f; _dst[3] = 1.0f; } // RG16F void packRg16F(void* _dst, const float* _src) { uint16_t* dst = (uint16_t*)_dst; dst[0] = bx::halfFromFloat(_src[0]); dst[1] = bx::halfFromFloat(_src[1]); } void unpackRg16F(float* _dst, const void* _src) { const uint16_t* src = (const uint16_t*)_src; _dst[0] = bx::halfToFloat(src[0]); _dst[1] = bx::halfToFloat(src[1]); _dst[2] = 0.0f; _dst[3] = 1.0f; } // RGBA16 void packRgba16(void* _dst, const float* _src) { uint16_t* dst = (uint16_t*)_dst; dst[0] = uint16_t(toUnorm(_src[0], 65535.0f) ); dst[1] = uint16_t(toUnorm(_src[1], 65535.0f) ); dst[2] = uint16_t(toUnorm(_src[2], 65535.0f) ); dst[3] = uint16_t(toUnorm(_src[3], 65535.0f) ); } void unpackRgba16(float* _dst, const void* _src) { const uint16_t* src = (const uint16_t*)_src; _dst[0] = fromUnorm(src[0], 65535.0f); _dst[1] = fromUnorm(src[1], 65535.0f); _dst[2] = fromUnorm(src[2], 65535.0f); _dst[3] = fromUnorm(src[3], 65535.0f); } // RGBA16S void packRgba16S(void* _dst, const float* _src) { int16_t* dst = (int16_t*)_dst; dst[0] = int16_t(toSnorm(_src[0], 32767.0f) ); dst[1] = int16_t(toSnorm(_src[1], 32767.0f) ); dst[2] = int16_t(toSnorm(_src[2], 32767.0f) ); dst[3] = int16_t(toSnorm(_src[3], 32767.0f) ); } void unpackRgba16S(float* _dst, const void* _src) { const int16_t* src = (const int16_t*)_src; _dst[0] = fromSnorm(src[0], 32767.0f); _dst[1] = fromSnorm(src[1], 32767.0f); _dst[2] = fromSnorm(src[2], 32767.0f); _dst[3] = fromSnorm(src[3], 32767.0f); } // RGBA16I void packRgba16I(void* _dst, const float* _src) { int16_t* dst = (int16_t*)_dst; dst[0] = int16_t(_src[0]); dst[1] = int16_t(_src[1]); dst[2] = int16_t(_src[2]); dst[3] = int16_t(_src[3]); } void unpackRgba16I(float* _dst, const void* _src) { const int16_t* src = (const int16_t*)_src; _dst[0] = float(src[0]); _dst[1] = float(src[1]); _dst[2] = float(src[2]); _dst[3] = float(src[3]); } // RGBA16U void packRgba16U(void* _dst, const float* _src) { uint16_t* dst = (uint16_t*)_dst; dst[0] = uint16_t(_src[0]); dst[1] = uint16_t(_src[1]); dst[2] = uint16_t(_src[2]); dst[3] = uint16_t(_src[3]); } void unpackRgba16U(float* _dst, const void* _src) { const uint16_t* src = (const uint16_t*)_src; _dst[0] = float(src[0]); _dst[1] = float(src[1]); _dst[2] = float(src[2]); _dst[3] = float(src[3]); } // RGBA16F void packRgba16F(void* _dst, const float* _src) { uint16_t* dst = (uint16_t*)_dst; dst[0] = bx::halfFromFloat(_src[0]); dst[1] = bx::halfFromFloat(_src[1]); dst[2] = bx::halfFromFloat(_src[2]); dst[3] = bx::halfFromFloat(_src[3]); } void unpackRgba16F(float* _dst, const void* _src) { const uint16_t* src = (const uint16_t*)_src; _dst[0] = bx::halfToFloat(src[0]); _dst[1] = bx::halfToFloat(src[1]); _dst[2] = bx::halfToFloat(src[2]); _dst[3] = bx::halfToFloat(src[3]); } // R24 void packR24(void* _dst, const float* _src) { uint8_t* dst = (uint8_t*)_dst; const uint32_t rr = uint32_t(toUnorm(_src[0], 16777216.0f) ); dst[0] = uint8_t(rr ); dst[1] = uint8_t(rr>> 8); dst[2] = uint8_t(rr>>16); } void unpackR24(float* _dst, const void* _src) { const uint8_t* src = (const uint8_t*)_src; const uint32_t rr = 0 | (src[0] ) | (src[1]<< 8) | (src[2]<<16) ; _dst[0] = fromUnorm(rr, 16777216.0f); _dst[1] = 0.0f; _dst[2] = 0.0f; _dst[3] = 1.0f; } // R24G8 void packR24G8(void* _dst, const float* _src) { uint8_t* dst = (uint8_t*)_dst; const uint32_t rr = uint32_t(toUnorm(_src[0], 16777216.0f) ); dst[0] = uint8_t(rr ); dst[1] = uint8_t(rr>> 8); dst[2] = uint8_t(rr>>16); dst[3] = uint8_t(toUnorm(_src[1], 255.0f) ); } void unpackR24G8(float* _dst, const void* _src) { const uint8_t* src = (const uint8_t*)_src; const uint32_t rr = 0 | (src[0] ) | (src[1]<< 8) | (src[2]<<16) ; _dst[0] = fromUnorm(rr, 16777216.0f); _dst[1] = fromUnorm(src[3], 255.0f); _dst[2] = 0.0f; _dst[3] = 1.0f; } // R32I void packR32I(void* _dst, const float* _src) { memcpy(_dst, _src, 4); } void unpackR32I(float* _dst, const void* _src) { memcpy(_dst, _src, 4); } // R32U void packR32U(void* _dst, const float* _src) { memcpy(_dst, _src, 4); } void unpackR32U(float* _dst, const void* _src) { memcpy(_dst, _src, 4); } // R32F void packR32F(void* _dst, const float* _src) { memcpy(_dst, _src, 4); } void unpackR32F(float* _dst, const void* _src) { memcpy(_dst, _src, 4); } // RG32I void packRg32I(void* _dst, const float* _src) { memcpy(_dst, _src, 8); } void unpackRg32I(float* _dst, const void* _src) { memcpy(_dst, _src, 8); } // RG32U void packRg32U(void* _dst, const float* _src) { memcpy(_dst, _src, 8); } void unpackRg32U(float* _dst, const void* _src) { memcpy(_dst, _src, 8); } // RG32F void packRg32F(void* _dst, const float* _src) { memcpy(_dst, _src, 8); } void unpackRg32F(float* _dst, const void* _src) { memcpy(_dst, _src, 8); } template void encodeRgbE(float* _dst, const float* _src) { // Reference: // https://www.opengl.org/registry/specs/EXT/texture_shared_exponent.txt const int32_t expMax = (1<>23) & 0xff) - 127) ) ) + 1 + expBias; float denom = bx::fpow(2.0f, float(expShared - expBias - MantissaBits) ); if ( (1< void decodeRgbE(float* _dst, const float* _src) { const int32_t expBias = (1<<(ExpBits - 1) ) - 1; const float exponent = _src[3]-float(expBias-MantissaBits); const float scale = bx::fpow(2.0f, exponent); _dst[0] = _src[0] * scale; _dst[1] = _src[1] * scale; _dst[2] = _src[2] * scale; } // RGB9E5F void packRgb9E5F(void* _dst, const float* _src) { float tmp[4]; encodeRgbE<9, 5>(tmp, _src); *( (uint32_t*)_dst) = 0 | (uint32_t(tmp[0]) ) | (uint32_t(tmp[1]) << 9) | (uint32_t(tmp[2]) <<18) | (uint32_t(tmp[3]) <<27) ; } void unpackRgb9E5F(float* _dst, const void* _src) { uint32_t packed = *( (const uint32_t*)_src); float tmp[4]; tmp[0] = float( ( (packed ) & 0x1ff) ) / 511.0f; tmp[1] = float( ( (packed>> 9) & 0x1ff) ) / 511.0f; tmp[2] = float( ( (packed>>18) & 0x1ff) ) / 511.0f; tmp[3] = float( ( (packed>>27) & 0x1f) ); decodeRgbE<9, 5>(_dst, tmp); } // RGBA32I void packRgba32I(void* _dst, const float* _src) { memcpy(_dst, _src, 16); } void unpackRgba32I(float* _dst, const void* _src) { memcpy(_dst, _src, 16); } // RGBA32U void packRgba32U(void* _dst, const float* _src) { memcpy(_dst, _src, 16); } void unpackRgba32U(float* _dst, const void* _src) { memcpy(_dst, _src, 16); } // RGBA32F void packRgba32F(void* _dst, const float* _src) { memcpy(_dst, _src, 16); } void unpackRgba32F(float* _dst, const void* _src) { memcpy(_dst, _src, 16); } // R5G6B5 void packR5G6B5(void* _dst, const float* _src) { *( (uint16_t*)_dst) = 0 | uint16_t(toUnorm(_src[0], 31.0f)<<11) | uint16_t(toUnorm(_src[1], 63.0f)<< 5) | uint16_t(toUnorm(_src[2], 31.0f) ) ; } void unpackR5G6B5(float* _dst, const void* _src) { uint16_t packed = *( (const uint16_t*)_src); _dst[0] = float( ( (packed>>11) & 0x1f) ) / 31.0f; _dst[1] = float( ( (packed>> 5) & 0x3f) ) / 63.0f; _dst[2] = float( ( (packed ) & 0x1f) ) / 31.0f; _dst[3] = 1.0f; } // RGBA4 void packRgba4(void* _dst, const float* _src) { *( (uint16_t*)_dst) = 0 | uint16_t(toUnorm(_src[0], 15.0f) ) | uint16_t(toUnorm(_src[1], 15.0f)<< 4) | uint16_t(toUnorm(_src[2], 15.0f)<< 8) | uint16_t(toUnorm(_src[3], 15.0f)<<12) ; } void unpackRgba4(float* _dst, const void* _src) { uint16_t packed = *( (const uint16_t*)_src); _dst[0] = float( ( (packed ) & 0xf) ) / 15.0f; _dst[1] = float( ( (packed>> 4) & 0xf) ) / 15.0f; _dst[2] = float( ( (packed>> 8) & 0xf) ) / 15.0f; _dst[3] = float( ( (packed>>12) & 0xf) ) / 15.0f; } // RGBA4 void packBgra4(void* _dst, const float* _src) { *( (uint16_t*)_dst) = 0 | uint16_t(toUnorm(_src[0], 15.0f)<< 8) | uint16_t(toUnorm(_src[1], 15.0f)<< 4) | uint16_t(toUnorm(_src[2], 15.0f) ) | uint16_t(toUnorm(_src[3], 15.0f)<<12) ; } void unpackBgra4(float* _dst, const void* _src) { uint16_t packed = *( (const uint16_t*)_src); _dst[0] = float( ( (packed>> 8) & 0xf) ) / 15.0f; _dst[1] = float( ( (packed>> 4) & 0xf) ) / 15.0f; _dst[2] = float( ( (packed ) & 0xf) ) / 15.0f; _dst[3] = float( ( (packed>>12) & 0xf) ) / 15.0f; } // RGB5A1 void packRgb5a1(void* _dst, const float* _src) { *( (uint16_t*)_dst) = 0 | uint16_t(toUnorm(_src[0], 31.0f) ) | uint16_t(toUnorm(_src[1], 31.0f)<< 5) | uint16_t(toUnorm(_src[2], 31.0f)<<10) | uint16_t(toUnorm(_src[3], 1.0f)<<15) ; } void unpackRgb5a1(float* _dst, const void* _src) { uint16_t packed = *( (const uint16_t*)_src); _dst[0] = float( ( (packed ) & 0x1f) ) / 31.0f; _dst[1] = float( ( (packed>> 5) & 0x1f) ) / 31.0f; _dst[2] = float( ( (packed>>10) & 0x1f) ) / 31.0f; _dst[3] = float( ( (packed>>14) & 0x1) ); } // BGR5A1 void packBgr5a1(void* _dst, const float* _src) { *( (uint16_t*)_dst) = 0 | uint16_t(toUnorm(_src[0], 31.0f)<<10) | uint16_t(toUnorm(_src[1], 31.0f)<< 5) | uint16_t(toUnorm(_src[2], 31.0f) ) | uint16_t(toUnorm(_src[3], 1.0f)<<15) ; } void unpackBgr5a1(float* _dst, const void* _src) { uint16_t packed = *( (const uint16_t*)_src); _dst[0] = float( ( (packed>>10) & 0x1f) ) / 31.0f; _dst[1] = float( ( (packed>> 5) & 0x1f) ) / 31.0f; _dst[2] = float( ( (packed ) & 0x1f) ) / 31.0f; _dst[3] = float( ( (packed>>14) & 0x1) ); } // RGB10A2 void packRgb10A2(void* _dst, const float* _src) { *( (uint32_t*)_dst) = 0 | (toUnorm(_src[0], 1023.0f) ) | (toUnorm(_src[1], 1023.0f)<<10) | (toUnorm(_src[2], 1023.0f)<<20) | (toUnorm(_src[3], 3.0f)<<30) ; } void unpackRgb10A2(float* _dst, const void* _src) { uint32_t packed = *( (const uint32_t*)_src); _dst[0] = float( ( (packed ) & 0x3ff) ) / 1023.0f; _dst[1] = float( ( (packed>>10) & 0x3ff) ) / 1023.0f; _dst[2] = float( ( (packed>>20) & 0x3ff) ) / 1023.0f; _dst[3] = float( ( (packed>>30) & 0x3) ) / 3.0f; } // R11G11B10F void packR11G11B10F(void* _dst, const float* _src) { *( (uint32_t*)_dst) = 0 | ( (bx::halfFromFloat(_src[0])>> 4) & 0x7ff) | ( (bx::halfFromFloat(_src[0])<< 7) & 0x3ff800) | ( (bx::halfFromFloat(_src[0])<<17) & 0xffc00000) ; } void unpackR11G11B10F(float* _dst, const void* _src) { uint32_t packed = *( (const uint32_t*)_src); _dst[0] = bx::halfToFloat( (packed<< 4) & 0x7ff0); _dst[1] = bx::halfToFloat( (packed>> 7) & 0x7ff0); _dst[2] = bx::halfToFloat( (packed>>17) & 0x7fe0); _dst[3] = 1.0f; } struct PackUnpack { PackFn pack; UnpackFn unpack; }; static const PackUnpack s_packUnpack[] = { { NULL, NULL }, // BC1 { NULL, NULL }, // BC2 { NULL, NULL }, // BC3 { NULL, NULL }, // BC4 { NULL, NULL }, // BC5 { NULL, NULL }, // BC6H { NULL, NULL }, // BC7 { NULL, NULL }, // ETC1 { NULL, NULL }, // ETC2 { NULL, NULL }, // ETC2A { NULL, NULL }, // ETC2A1 { NULL, NULL }, // PTC12 { NULL, NULL }, // PTC14 { NULL, NULL }, // PTC12A { NULL, NULL }, // PTC14A { NULL, NULL }, // PTC22 { NULL, NULL }, // PTC24 { NULL, NULL }, // Unknown { NULL, NULL }, // R1 { packR8, unpackR8 }, // A8 { packR8, unpackR8 }, // R8 { packR8I, unpackR8I }, // R8I { packR8U, unpackR8U }, // R8U { packR8S, unpackR8S }, // R8S { packR16, unpackR16 }, // R16 { packR16I, unpackR16I }, // R16I { packR16U, unpackR16U }, // R16U { packR16F, unpackR16F }, // R16F { packR16S, unpackR16S }, // R16S { packR32I, unpackR32I }, // R32I { packR32U, unpackR32U }, // R32U { packR32F, unpackR32F }, // R32F { packRg8, unpackRg8 }, // RG8 { packRg8I, unpackRg8I }, // RG8I { packRg8U, unpackRg8U }, // RG8U { packRg8S, unpackRg8S }, // RG8S { packRg16, unpackRg16 }, // RG16 { packRg16I, unpackRg16I }, // RG16I { packRg16U, unpackRg16U }, // RG16U { packRg16F, unpackRg16F }, // RG16F { packRg16S, unpackRg16S }, // RG16S { packRg32I, unpackRg32I }, // RG32I { packRg32U, unpackRg32U }, // RG32U { packRg32F, unpackRg32F }, // RG32F { packRgb8, unpackRgb8 }, // RGB8 { packRgb8S, unpackRgb8S }, // RGB8S { packRgb8I, unpackRgb8I }, // RGB8I { packRgb8U, unpackRgb8U }, // RGB8U { packRgb9E5F, unpackRgb9E5F }, // RGB9E5F { packBgra8, unpackBgra8 }, // BGRA8 { packRgba8, unpackRgba8 }, // RGBA8 { packRgba8I, unpackRgba8I }, // RGBA8I { packRgba8U, unpackRgba8U }, // RGBA8U { packRgba8S, unpackRgba8S }, // RGBA8S { packRgba16, unpackRgba16 }, // RGBA16 { packRgba16I, unpackRgba16I }, // RGBA16I { packRgba16U, unpackRgba16U }, // RGBA16U { packRgba16F, unpackRgba16F }, // RGBA16F { packRgba16S, unpackRgba16S }, // RGBA16S { packRgba32I, unpackRgba32I }, // RGBA32I { packRgba32U, unpackRgba32U }, // RGBA32U { packRgba32F, unpackRgba32F }, // RGBA32F { packR5G6B5, unpackR5G6B5 }, // R5G6B5 { packRgba4, unpackRgba4 }, // RGBA4 { packRgb5a1, unpackRgb5a1 }, // RGB5A1 { packRgb10A2, unpackRgb10A2 }, // RGB10A2 { packR11G11B10F, unpackR11G11B10F }, // R11G11B10F { NULL, NULL }, // UnknownDepth { packR16, unpackR16 }, // D16 { packR24, unpackR24 }, // D24 { packR24G8, unpackR24G8 }, // D24S8 { NULL, NULL }, // D32 { packR16F, unpackR16F }, // D16F { NULL, NULL }, // D24F { packR32F, unpackR32F }, // D32F { packR8, unpackR8 }, // D0S8 }; BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_packUnpack) ); bool imageConvert(TextureFormat::Enum _dstFormat, TextureFormat::Enum _srcFormat) { UnpackFn unpack = s_packUnpack[_srcFormat].unpack; PackFn pack = s_packUnpack[_dstFormat].pack; return NULL != pack && NULL != unpack ; } void imageConvert(void* _dst, uint32_t _bpp, PackFn _pack, const void* _src, UnpackFn _unpack, uint32_t _size) { const uint8_t* src = (uint8_t*)_src; uint8_t* dst = (uint8_t*)_dst; const uint32_t size = _size * 8 / _bpp; for (uint32_t ii = 0; ii < size; ++ii) { float rgba[4]; _unpack(rgba, &src[ii*_bpp/8]); _pack(&dst[ii*_bpp/8], rgba); } } void imageConvert(void* _dst, uint32_t _dstBpp, PackFn _pack, const void* _src, uint32_t _srcBpp, UnpackFn _unpack, uint32_t _width, uint32_t _height, uint32_t _srcPitch) { const uint8_t* src = (uint8_t*)_src; uint8_t* dst = (uint8_t*)_dst; const uint32_t dstPitch = _width * _dstBpp / 8; for (uint32_t yy = 0; yy < _height; ++yy, src += _srcPitch, dst += dstPitch) { for (uint32_t xx = 0; xx < _width; ++xx) { float rgba[4]; _unpack(rgba, &src[xx*_srcBpp/8]); _pack(&dst[xx*_dstBpp/8], rgba); } } } bool imageConvert(void* _dst, TextureFormat::Enum _dstFormat, const void* _src, TextureFormat::Enum _srcFormat, uint32_t _width, uint32_t _height, uint32_t _srcPitch) { UnpackFn unpack = s_packUnpack[_srcFormat].unpack; PackFn pack = s_packUnpack[_dstFormat].pack; if (NULL == pack || NULL == unpack) { return false; } const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel; const uint32_t dstBpp = s_imageBlockInfo[_dstFormat].bitsPerPixel; imageConvert(_dst, dstBpp, pack, _src, srcBpp, unpack, _width, _height, _srcPitch); return true; } bool imageConvert(void* _dst, TextureFormat::Enum _dstFormat, const void* _src, TextureFormat::Enum _srcFormat, uint32_t _width, uint32_t _height) { const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel; return imageConvert(_dst, _dstFormat, _src, _srcFormat, _width, _height, _width*srcBpp/8); } uint8_t bitRangeConvert(uint32_t _in, uint32_t _from, uint32_t _to) { using namespace bx; uint32_t tmp0 = uint32_sll(1, _to); uint32_t tmp1 = uint32_sll(1, _from); uint32_t tmp2 = uint32_dec(tmp0); uint32_t tmp3 = uint32_dec(tmp1); uint32_t tmp4 = uint32_mul(_in, tmp2); uint32_t tmp5 = uint32_add(tmp3, tmp4); uint32_t tmp6 = uint32_srl(tmp5, _from); uint32_t tmp7 = uint32_add(tmp5, tmp6); uint32_t result = uint32_srl(tmp7, _from); return uint8_t(result); } void decodeBlockDxt(uint8_t _dst[16*4], const uint8_t _src[8]) { uint8_t colors[4*3]; uint32_t c0 = _src[0] | (_src[1] << 8); colors[0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8); colors[1] = bitRangeConvert( (c0>> 5)&0x3f, 6, 8); colors[2] = bitRangeConvert( (c0>>11)&0x1f, 5, 8); uint32_t c1 = _src[2] | (_src[3] << 8); colors[3] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8); colors[4] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8); colors[5] = bitRangeConvert( (c1>>11)&0x1f, 5, 8); colors[6] = (2*colors[0] + colors[3]) / 3; colors[7] = (2*colors[1] + colors[4]) / 3; colors[8] = (2*colors[2] + colors[5]) / 3; colors[ 9] = (colors[0] + 2*colors[3]) / 3; colors[10] = (colors[1] + 2*colors[4]) / 3; colors[11] = (colors[2] + 2*colors[5]) / 3; for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2) { int idx = ( (_src[next>>3] >> (next & 7) ) & 3) * 3; _dst[ii+0] = colors[idx+0]; _dst[ii+1] = colors[idx+1]; _dst[ii+2] = colors[idx+2]; } } void decodeBlockDxt1(uint8_t _dst[16*4], const uint8_t _src[8]) { uint8_t colors[4*4]; uint32_t c0 = _src[0] | (_src[1] << 8); colors[0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8); colors[1] = bitRangeConvert( (c0>> 5)&0x3f, 6, 8); colors[2] = bitRangeConvert( (c0>>11)&0x1f, 5, 8); colors[3] = 255; uint32_t c1 = _src[2] | (_src[3] << 8); colors[4] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8); colors[5] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8); colors[6] = bitRangeConvert( (c1>>11)&0x1f, 5, 8); colors[7] = 255; if (c0 > c1) { colors[ 8] = (2*colors[0] + colors[4]) / 3; colors[ 9] = (2*colors[1] + colors[5]) / 3; colors[10] = (2*colors[2] + colors[6]) / 3; colors[11] = 255; colors[12] = (colors[0] + 2*colors[4]) / 3; colors[13] = (colors[1] + 2*colors[5]) / 3; colors[14] = (colors[2] + 2*colors[6]) / 3; colors[15] = 255; } else { colors[ 8] = (colors[0] + colors[4]) / 2; colors[ 9] = (colors[1] + colors[5]) / 2; colors[10] = (colors[2] + colors[6]) / 2; colors[11] = 255; colors[12] = 0; colors[13] = 0; colors[14] = 0; colors[15] = 0; } for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2) { int idx = ( (_src[next>>3] >> (next & 7) ) & 3) * 4; _dst[ii+0] = colors[idx+0]; _dst[ii+1] = colors[idx+1]; _dst[ii+2] = colors[idx+2]; _dst[ii+3] = colors[idx+3]; } } void decodeBlockDxt23A(uint8_t _dst[16*4], const uint8_t _src[8]) { for (uint32_t ii = 0, next = 0; ii < 16*4; ii += 4, next += 4) { uint32_t c0 = (_src[next>>3] >> (next&7) ) & 0xf; _dst[ii] = bitRangeConvert(c0, 4, 8); } } void decodeBlockDxt45A(uint8_t _dst[16*4], const uint8_t _src[8]) { uint8_t alpha[8]; alpha[0] = _src[0]; alpha[1] = _src[1]; if (alpha[0] > alpha[1]) { alpha[2] = (6*alpha[0] + 1*alpha[1]) / 7; alpha[3] = (5*alpha[0] + 2*alpha[1]) / 7; alpha[4] = (4*alpha[0] + 3*alpha[1]) / 7; alpha[5] = (3*alpha[0] + 4*alpha[1]) / 7; alpha[6] = (2*alpha[0] + 5*alpha[1]) / 7; alpha[7] = (1*alpha[0] + 6*alpha[1]) / 7; } else { alpha[2] = (4*alpha[0] + 1*alpha[1]) / 5; alpha[3] = (3*alpha[0] + 2*alpha[1]) / 5; alpha[4] = (2*alpha[0] + 3*alpha[1]) / 5; alpha[5] = (1*alpha[0] + 4*alpha[1]) / 5; alpha[6] = 0; alpha[7] = 255; } uint32_t idx0 = _src[2]; uint32_t idx1 = _src[5]; idx0 |= uint32_t(_src[3])<<8; idx1 |= uint32_t(_src[6])<<8; idx0 |= uint32_t(_src[4])<<16; idx1 |= uint32_t(_src[7])<<16; for (uint32_t ii = 0; ii < 8*4; ii += 4) { _dst[ii] = alpha[idx0&7]; _dst[ii+32] = alpha[idx1&7]; idx0 >>= 3; idx1 >>= 3; } } static const int32_t s_etc1Mod[8][4] = { { 2, 8, -2, -8}, { 5, 17, -5, -17}, { 9, 29, -9, -29}, { 13, 42, -13, -42}, { 18, 60, -18, -60}, { 24, 80, -24, -80}, { 33, 106, -33, -106}, { 47, 183, -47, -183}, }; static const uint8_t s_etc2Mod[8] = { 3, 6, 11, 16, 23, 32, 41, 64 }; uint8_t uint8_sat(int32_t _a) { using namespace bx; const uint32_t min = uint32_imin(_a, 255); const uint32_t result = uint32_imax(min, 0); return (uint8_t)result; } uint8_t uint8_satadd(int32_t _a, int32_t _b) { const int32_t add = _a + _b; return uint8_sat(add); } void decodeBlockEtc2ModeT(uint8_t _dst[16*4], const uint8_t _src[8]) { uint8_t rgb[16]; // 0 1 2 3 4 5 6 7 // 7654321076543210765432107654321076543210765432107654321076543210 // ...rr.rrggggbbbbrrrrggggbbbbDDD.mmmmmmmmmmmmmmmmllllllllllllllll // ^ ^ ^ ^ ^ // +-- c0 +-- c1 | +-- msb +-- lsb // +-- dist rgb[ 0] = ( (_src[0] >> 1) & 0xc) | (_src[0] & 0x3) ; rgb[ 1] = _src[1] >> 4; rgb[ 2] = _src[1] & 0xf; rgb[ 8] = _src[2] >> 4; rgb[ 9] = _src[2] & 0xf; rgb[10] = _src[3] >> 4; rgb[ 0] = bitRangeConvert(rgb[ 0], 4, 8); rgb[ 1] = bitRangeConvert(rgb[ 1], 4, 8); rgb[ 2] = bitRangeConvert(rgb[ 2], 4, 8); rgb[ 8] = bitRangeConvert(rgb[ 8], 4, 8); rgb[ 9] = bitRangeConvert(rgb[ 9], 4, 8); rgb[10] = bitRangeConvert(rgb[10], 4, 8); uint8_t dist = (_src[3] >> 1) & 0x7; int32_t mod = s_etc2Mod[dist]; rgb[ 4] = uint8_satadd(rgb[ 8], mod); rgb[ 5] = uint8_satadd(rgb[ 9], mod); rgb[ 6] = uint8_satadd(rgb[10], mod); rgb[12] = uint8_satadd(rgb[ 8], -mod); rgb[13] = uint8_satadd(rgb[ 9], -mod); rgb[14] = uint8_satadd(rgb[10], -mod); uint32_t indexMsb = (_src[4]<<8) | _src[5]; uint32_t indexLsb = (_src[6]<<8) | _src[7]; for (uint32_t ii = 0; ii < 16; ++ii) { const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4); const uint32_t lsbi = indexLsb & 1; const uint32_t msbi = (indexMsb & 1)<<1; const uint32_t pal = (lsbi | msbi)<<2; _dst[idx + 0] = rgb[pal+2]; _dst[idx + 1] = rgb[pal+1]; _dst[idx + 2] = rgb[pal+0]; _dst[idx + 3] = 255; indexLsb >>= 1; indexMsb >>= 1; } } void decodeBlockEtc2ModeH(uint8_t _dst[16*4], const uint8_t _src[8]) { uint8_t rgb[16]; // 0 1 2 3 4 5 6 7 // 7654321076543210765432107654321076543210765432107654321076543210 // .rrrrggg...gb.bbbrrrrggggbbbbDD.mmmmmmmmmmmmmmmmllllllllllllllll // ^ ^ ^ ^ ^ // +-- c0 +-- c1 | +-- msb +-- lsb // +-- dist rgb[ 0] = (_src[0] >> 3) & 0xf; rgb[ 1] = ( (_src[0] << 1) & 0xe) | ( (_src[1] >> 4) & 0x1) ; rgb[ 2] = (_src[1] & 0x8) | ( (_src[1] << 1) & 0x6) | (_src[2] >> 7) ; rgb[ 8] = (_src[2] >> 3) & 0xf; rgb[ 9] = ( (_src[2] << 1) & 0xe) | (_src[3] >> 7) ; rgb[10] = (_src[2] >> 3) & 0xf; rgb[ 0] = bitRangeConvert(rgb[ 0], 4, 8); rgb[ 1] = bitRangeConvert(rgb[ 1], 4, 8); rgb[ 2] = bitRangeConvert(rgb[ 2], 4, 8); rgb[ 8] = bitRangeConvert(rgb[ 8], 4, 8); rgb[ 9] = bitRangeConvert(rgb[ 9], 4, 8); rgb[10] = bitRangeConvert(rgb[10], 4, 8); uint32_t col0 = uint32_t(rgb[0]<<16) | uint32_t(rgb[1]<<8) | uint32_t(rgb[ 2]); uint32_t col1 = uint32_t(rgb[8]<<16) | uint32_t(rgb[9]<<8) | uint32_t(rgb[10]); uint8_t dist = (_src[3] & 0x6) | (col0 >= col1); int32_t mod = s_etc2Mod[dist]; rgb[ 4] = uint8_satadd(rgb[ 0], -mod); rgb[ 5] = uint8_satadd(rgb[ 1], -mod); rgb[ 6] = uint8_satadd(rgb[ 2], -mod); rgb[ 0] = uint8_satadd(rgb[ 0], mod); rgb[ 1] = uint8_satadd(rgb[ 1], mod); rgb[ 2] = uint8_satadd(rgb[ 2], mod); rgb[12] = uint8_satadd(rgb[ 8], -mod); rgb[13] = uint8_satadd(rgb[ 9], -mod); rgb[14] = uint8_satadd(rgb[10], -mod); rgb[ 8] = uint8_satadd(rgb[ 8], mod); rgb[ 9] = uint8_satadd(rgb[ 9], mod); rgb[10] = uint8_satadd(rgb[10], mod); uint32_t indexMsb = (_src[4]<<8) | _src[5]; uint32_t indexLsb = (_src[6]<<8) | _src[7]; for (uint32_t ii = 0; ii < 16; ++ii) { const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4); const uint32_t lsbi = indexLsb & 1; const uint32_t msbi = (indexMsb & 1)<<1; const uint32_t pal = (lsbi | msbi)<<2; _dst[idx + 0] = rgb[pal+2]; _dst[idx + 1] = rgb[pal+1]; _dst[idx + 2] = rgb[pal+0]; _dst[idx + 3] = 255; indexLsb >>= 1; indexMsb >>= 1; } } void decodeBlockEtc2ModePlanar(uint8_t _dst[16*4], const uint8_t _src[8]) { // 0 1 2 3 4 5 6 7 // 7654321076543210765432107654321076543210765432107654321076543210 // .rrrrrrg.ggggggb...bb.bbbrrrrr.rgggggggbbbbbbrrrrrrgggggggbbbbbb // ^ ^ ^ // +-- c0 +-- cH +-- cV uint8_t c0[3]; uint8_t cH[3]; uint8_t cV[3]; c0[0] = (_src[0] >> 1) & 0x3f; c0[1] = ( (_src[0] & 1) << 6) | ( (_src[1] >> 1) & 0x3f) ; c0[2] = ( (_src[1] & 1) << 5) | ( (_src[2] & 0x18) ) | ( (_src[2] << 1) & 6) | ( (_src[3] >> 7) ) ; cH[0] = ( (_src[3] >> 1) & 0x3e) | (_src[3] & 1) ; cH[1] = _src[4] >> 1; cH[2] = ( (_src[4] & 1) << 5) | (_src[5] >> 3) ; cV[0] = ( (_src[5] & 0x7) << 3) | (_src[6] >> 5) ; cV[1] = ( (_src[6] & 0x1f) << 2) | (_src[7] >> 5) ; cV[2] = _src[7] & 0x3f; c0[0] = bitRangeConvert(c0[0], 6, 8); c0[1] = bitRangeConvert(c0[1], 7, 8); c0[2] = bitRangeConvert(c0[2], 6, 8); cH[0] = bitRangeConvert(cH[0], 6, 8); cH[1] = bitRangeConvert(cH[1], 7, 8); cH[2] = bitRangeConvert(cH[2], 6, 8); cV[0] = bitRangeConvert(cV[0], 6, 8); cV[1] = bitRangeConvert(cV[1], 7, 8); cV[2] = bitRangeConvert(cV[2], 6, 8); int16_t dy[3]; dy[0] = cV[0] - c0[0]; dy[1] = cV[1] - c0[1]; dy[2] = cV[2] - c0[2]; int16_t sx[3]; sx[0] = int16_t(c0[0])<<2; sx[1] = int16_t(c0[1])<<2; sx[2] = int16_t(c0[2])<<2; int16_t ex[3]; ex[0] = int16_t(cH[0])<<2; ex[1] = int16_t(cH[1])<<2; ex[2] = int16_t(cH[2])<<2; for (int32_t vv = 0; vv < 4; ++vv) { int16_t dx[3]; dx[0] = (ex[0] - sx[0])>>2; dx[1] = (ex[1] - sx[1])>>2; dx[2] = (ex[2] - sx[2])>>2; for (int32_t hh = 0; hh < 4; ++hh) { const uint32_t idx = (vv<<4) + (hh<<2); _dst[idx + 0] = uint8_sat( (sx[2] + dx[2]*hh)>>2); _dst[idx + 1] = uint8_sat( (sx[1] + dx[1]*hh)>>2); _dst[idx + 2] = uint8_sat( (sx[0] + dx[0]*hh)>>2); _dst[idx + 3] = 255; } sx[0] += dy[0]; sx[1] += dy[1]; sx[2] += dy[2]; ex[0] += dy[0]; ex[1] += dy[1]; ex[2] += dy[2]; } } void decodeBlockEtc12(uint8_t _dst[16*4], const uint8_t _src[8]) { bool flipBit = 0 != (_src[3] & 0x1); bool diffBit = 0 != (_src[3] & 0x2); uint8_t rgb[8]; if (diffBit) { rgb[0] = _src[0] >> 3; rgb[1] = _src[1] >> 3; rgb[2] = _src[2] >> 3; int8_t diff[3]; diff[0] = int8_t( (_src[0] & 0x7)<<5)>>5; diff[1] = int8_t( (_src[1] & 0x7)<<5)>>5; diff[2] = int8_t( (_src[2] & 0x7)<<5)>>5; int8_t rr = rgb[0] + diff[0]; int8_t gg = rgb[1] + diff[1]; int8_t bb = rgb[2] + diff[2]; // Etc2 3-modes if (rr < 0 || rr > 31) { decodeBlockEtc2ModeT(_dst, _src); return; } if (gg < 0 || gg > 31) { decodeBlockEtc2ModeH(_dst, _src); return; } if (bb < 0 || bb > 31) { decodeBlockEtc2ModePlanar(_dst, _src); return; } // Etc1 rgb[0] = bitRangeConvert(rgb[0], 5, 8); rgb[1] = bitRangeConvert(rgb[1], 5, 8); rgb[2] = bitRangeConvert(rgb[2], 5, 8); rgb[4] = bitRangeConvert(rr, 5, 8); rgb[5] = bitRangeConvert(gg, 5, 8); rgb[6] = bitRangeConvert(bb, 5, 8); } else { rgb[0] = _src[0] >> 4; rgb[1] = _src[1] >> 4; rgb[2] = _src[2] >> 4; rgb[4] = _src[0] & 0xf; rgb[5] = _src[1] & 0xf; rgb[6] = _src[2] & 0xf; rgb[0] = bitRangeConvert(rgb[0], 4, 8); rgb[1] = bitRangeConvert(rgb[1], 4, 8); rgb[2] = bitRangeConvert(rgb[2], 4, 8); rgb[4] = bitRangeConvert(rgb[4], 4, 8); rgb[5] = bitRangeConvert(rgb[5], 4, 8); rgb[6] = bitRangeConvert(rgb[6], 4, 8); } uint32_t table[2]; table[0] = (_src[3] >> 5) & 0x7; table[1] = (_src[3] >> 2) & 0x7; uint32_t indexMsb = (_src[4]<<8) | _src[5]; uint32_t indexLsb = (_src[6]<<8) | _src[7]; if (flipBit) { for (uint32_t ii = 0; ii < 16; ++ii) { const uint32_t block = (ii>>1)&1; const uint32_t color = block<<2; const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4); const uint32_t lsbi = indexLsb & 1; const uint32_t msbi = (indexMsb & 1)<<1; const int32_t mod = s_etc1Mod[table[block] ][lsbi | msbi]; _dst[idx + 0] = uint8_satadd(rgb[color+2], mod); _dst[idx + 1] = uint8_satadd(rgb[color+1], mod); _dst[idx + 2] = uint8_satadd(rgb[color+0], mod); _dst[idx + 3] = 255; indexLsb >>= 1; indexMsb >>= 1; } } else { for (uint32_t ii = 0; ii < 16; ++ii) { const uint32_t block = ii>>3; const uint32_t color = block<<2; const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4); const uint32_t lsbi = indexLsb & 1; const uint32_t msbi = (indexMsb & 1)<<1; const int32_t mod = s_etc1Mod[table[block] ][lsbi | msbi]; _dst[idx + 0] = uint8_satadd(rgb[color+2], mod); _dst[idx + 1] = uint8_satadd(rgb[color+1], mod); _dst[idx + 2] = uint8_satadd(rgb[color+0], mod); _dst[idx + 3] = 255; indexLsb >>= 1; indexMsb >>= 1; } } } static const uint8_t s_pvrtcFactors[16][4] = { { 4, 4, 4, 4 }, { 2, 6, 2, 6 }, { 8, 0, 8, 0 }, { 6, 2, 6, 2 }, { 2, 2, 6, 6 }, { 1, 3, 3, 9 }, { 4, 0, 12, 0 }, { 3, 1, 9, 3 }, { 8, 8, 0, 0 }, { 4, 12, 0, 0 }, { 16, 0, 0, 0 }, { 12, 4, 0, 0 }, { 6, 6, 2, 2 }, { 3, 9, 1, 3 }, { 12, 0, 4, 0 }, { 9, 3, 3, 1 }, }; static const uint8_t s_pvrtcWeights[8][4] = { { 8, 0, 8, 0 }, { 5, 3, 5, 3 }, { 3, 5, 3, 5 }, { 0, 8, 0, 8 }, { 8, 0, 8, 0 }, { 4, 4, 4, 4 }, { 4, 4, 4, 4 }, { 0, 8, 0, 8 }, }; uint32_t morton2d(uint32_t _x, uint32_t _y) { using namespace bx; const uint32_t tmpx = uint32_part1by1(_x); const uint32_t xbits = uint32_sll(tmpx, 1); const uint32_t ybits = uint32_part1by1(_y); const uint32_t result = uint32_or(xbits, ybits); return result; } uint32_t getColor(const uint8_t _src[8]) { return 0 | _src[7]<<24 | _src[6]<<16 | _src[5]<<8 | _src[4] ; } void decodeBlockPtc14RgbAddA(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint8_t _factor) { if (0 != (_block & (1<<15) ) ) { *_r += bitRangeConvert( (_block >> 10) & 0x1f, 5, 8) * _factor; *_g += bitRangeConvert( (_block >> 5) & 0x1f, 5, 8) * _factor; *_b += bitRangeConvert( (_block >> 1) & 0x0f, 4, 8) * _factor; } else { *_r += bitRangeConvert( (_block >> 8) & 0xf, 4, 8) * _factor; *_g += bitRangeConvert( (_block >> 4) & 0xf, 4, 8) * _factor; *_b += bitRangeConvert( (_block >> 1) & 0x7, 3, 8) * _factor; } } void decodeBlockPtc14RgbAddB(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint8_t _factor) { if (0 != (_block & (1<<31) ) ) { *_r += bitRangeConvert( (_block >> 26) & 0x1f, 5, 8) * _factor; *_g += bitRangeConvert( (_block >> 21) & 0x1f, 5, 8) * _factor; *_b += bitRangeConvert( (_block >> 16) & 0x1f, 5, 8) * _factor; } else { *_r += bitRangeConvert( (_block >> 24) & 0xf, 4, 8) * _factor; *_g += bitRangeConvert( (_block >> 20) & 0xf, 4, 8) * _factor; *_b += bitRangeConvert( (_block >> 16) & 0xf, 4, 8) * _factor; } } void decodeBlockPtc14(uint8_t _dst[16*4], const uint8_t* _src, uint32_t _x, uint32_t _y, uint32_t _width, uint32_t _height) { // 0 1 2 3 4 5 6 7 // 7654321076543210765432107654321076543210765432107654321076543210 // mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmyrrrrrgggggbbbbbxrrrrrgggggbbbbp // ^ ^^ ^^ ^ // +-- modulation data |+- B color |+- A color | // +-- B opaque +-- A opaque | // alpha punchthrough --+ const uint8_t* bc = &_src[morton2d(_x, _y) * 8]; uint32_t mod = 0 | bc[3]<<24 | bc[2]<<16 | bc[1]<<8 | bc[0] ; const bool punchthrough = !!(bc[7] & 1); const uint8_t* weightTable = s_pvrtcWeights[4 * punchthrough]; const uint8_t* factorTable = s_pvrtcFactors[0]; for (int yy = 0; yy < 4; ++yy) { const uint32_t yOffset = (yy < 2) ? -1 : 0; const uint32_t y0 = (_y + yOffset) % _height; const uint32_t y1 = (y0 + 1) % _height; for (int xx = 0; xx < 4; ++xx) { const uint32_t xOffset = (xx < 2) ? -1 : 0; const uint32_t x0 = (_x + xOffset) % _width; const uint32_t x1 = (x0 + 1) % _width; const uint32_t bc0 = getColor(&_src[morton2d(x0, y0) * 8]); const uint32_t bc1 = getColor(&_src[morton2d(x1, y0) * 8]); const uint32_t bc2 = getColor(&_src[morton2d(x0, y1) * 8]); const uint32_t bc3 = getColor(&_src[morton2d(x1, y1) * 8]); const uint8_t f0 = factorTable[0]; const uint8_t f1 = factorTable[1]; const uint8_t f2 = factorTable[2]; const uint8_t f3 = factorTable[3]; uint32_t ar = 0, ag = 0, ab = 0; decodeBlockPtc14RgbAddA(bc0, &ar, &ag, &ab, f0); decodeBlockPtc14RgbAddA(bc1, &ar, &ag, &ab, f1); decodeBlockPtc14RgbAddA(bc2, &ar, &ag, &ab, f2); decodeBlockPtc14RgbAddA(bc3, &ar, &ag, &ab, f3); uint32_t br = 0, bg = 0, bb = 0; decodeBlockPtc14RgbAddB(bc0, &br, &bg, &bb, f0); decodeBlockPtc14RgbAddB(bc1, &br, &bg, &bb, f1); decodeBlockPtc14RgbAddB(bc2, &br, &bg, &bb, f2); decodeBlockPtc14RgbAddB(bc3, &br, &bg, &bb, f3); const uint8_t* weight = &weightTable[(mod & 3)*4]; const uint8_t wa = weight[0]; const uint8_t wb = weight[1]; _dst[(yy*4 + xx)*4+0] = uint8_t( (ab * wa + bb * wb) >> 7); _dst[(yy*4 + xx)*4+1] = uint8_t( (ag * wa + bg * wb) >> 7); _dst[(yy*4 + xx)*4+2] = uint8_t( (ar * wa + br * wb) >> 7); _dst[(yy*4 + xx)*4+3] = 255; mod >>= 2; factorTable += 4; } } } void decodeBlockPtc14ARgbaAddA(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint32_t* _a, uint8_t _factor) { if (0 != (_block & (1<<15) ) ) { *_r += bitRangeConvert( (_block >> 10) & 0x1f, 5, 8) * _factor; *_g += bitRangeConvert( (_block >> 5) & 0x1f, 5, 8) * _factor; *_b += bitRangeConvert( (_block >> 1) & 0x0f, 4, 8) * _factor; *_a += 255 * _factor; } else { *_r += bitRangeConvert( (_block >> 8) & 0xf, 4, 8) * _factor; *_g += bitRangeConvert( (_block >> 4) & 0xf, 4, 8) * _factor; *_b += bitRangeConvert( (_block >> 1) & 0x7, 3, 8) * _factor; *_a += bitRangeConvert( (_block >> 12) & 0x7, 3, 8) * _factor; } } void decodeBlockPtc14ARgbaAddB(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint32_t* _a, uint8_t _factor) { if (0 != (_block & (1<<31) ) ) { *_r += bitRangeConvert( (_block >> 26) & 0x1f, 5, 8) * _factor; *_g += bitRangeConvert( (_block >> 21) & 0x1f, 5, 8) * _factor; *_b += bitRangeConvert( (_block >> 16) & 0x1f, 5, 8) * _factor; *_a += 255 * _factor; } else { *_r += bitRangeConvert( (_block >> 24) & 0xf, 4, 8) * _factor; *_g += bitRangeConvert( (_block >> 20) & 0xf, 4, 8) * _factor; *_b += bitRangeConvert( (_block >> 16) & 0xf, 4, 8) * _factor; *_a += bitRangeConvert( (_block >> 28) & 0x7, 3, 8) * _factor; } } void decodeBlockPtc14A(uint8_t _dst[16*4], const uint8_t* _src, uint32_t _x, uint32_t _y, uint32_t _width, uint32_t _height) { // 0 1 2 3 4 5 6 7 // 7654321076543210765432107654321076543210765432107654321076543210 // mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmyrrrrrgggggbbbbbxrrrrrgggggbbbbp // ^ ^^ ^^ ^ // +-- modulation data |+- B color |+- A color | // +-- B opaque +-- A opaque | // alpha punchthrough --+ const uint8_t* bc = &_src[morton2d(_x, _y) * 8]; uint32_t mod = 0 | bc[3]<<24 | bc[2]<<16 | bc[1]<<8 | bc[0] ; const bool punchthrough = !!(bc[7] & 1); const uint8_t* weightTable = s_pvrtcWeights[4 * punchthrough]; const uint8_t* factorTable = s_pvrtcFactors[0]; for (int yy = 0; yy < 4; ++yy) { const uint32_t yOffset = (yy < 2) ? -1 : 0; const uint32_t y0 = (_y + yOffset) % _height; const uint32_t y1 = (y0 + 1) % _height; for (int xx = 0; xx < 4; ++xx) { const uint32_t xOffset = (xx < 2) ? -1 : 0; const uint32_t x0 = (_x + xOffset) % _width; const uint32_t x1 = (x0 + 1) % _width; const uint32_t bc0 = getColor(&_src[morton2d(x0, y0) * 8]); const uint32_t bc1 = getColor(&_src[morton2d(x1, y0) * 8]); const uint32_t bc2 = getColor(&_src[morton2d(x0, y1) * 8]); const uint32_t bc3 = getColor(&_src[morton2d(x1, y1) * 8]); const uint8_t f0 = factorTable[0]; const uint8_t f1 = factorTable[1]; const uint8_t f2 = factorTable[2]; const uint8_t f3 = factorTable[3]; uint32_t ar = 0, ag = 0, ab = 0, aa = 0; decodeBlockPtc14ARgbaAddA(bc0, &ar, &ag, &ab, &aa, f0); decodeBlockPtc14ARgbaAddA(bc1, &ar, &ag, &ab, &aa, f1); decodeBlockPtc14ARgbaAddA(bc2, &ar, &ag, &ab, &aa, f2); decodeBlockPtc14ARgbaAddA(bc3, &ar, &ag, &ab, &aa, f3); uint32_t br = 0, bg = 0, bb = 0, ba = 0; decodeBlockPtc14ARgbaAddB(bc0, &br, &bg, &bb, &ba, f0); decodeBlockPtc14ARgbaAddB(bc1, &br, &bg, &bb, &ba, f1); decodeBlockPtc14ARgbaAddB(bc2, &br, &bg, &bb, &ba, f2); decodeBlockPtc14ARgbaAddB(bc3, &br, &bg, &bb, &ba, f3); const uint8_t* weight = &weightTable[(mod & 3)*4]; const uint8_t wa = weight[0]; const uint8_t wb = weight[1]; const uint8_t wc = weight[2]; const uint8_t wd = weight[3]; _dst[(yy*4 + xx)*4+0] = uint8_t( (ab * wa + bb * wb) >> 7); _dst[(yy*4 + xx)*4+1] = uint8_t( (ag * wa + bg * wb) >> 7); _dst[(yy*4 + xx)*4+2] = uint8_t( (ar * wa + br * wb) >> 7); _dst[(yy*4 + xx)*4+3] = uint8_t( (aa * wc + ba * wd) >> 7); mod >>= 2; factorTable += 4; } } } const Memory* imageAlloc(ImageContainer& _imageContainer, TextureFormat::Enum _format, uint16_t _width, uint16_t _height, uint16_t _depth, uint16_t _numLayers, bool _cubeMap, bool _generateMips) { const ImageBlockInfo& blockInfo = getBlockInfo(_format); const uint16_t blockWidth = blockInfo.blockWidth; const uint16_t blockHeight = blockInfo.blockHeight; const uint16_t minBlockX = blockInfo.minBlockX; const uint16_t minBlockY = blockInfo.minBlockY; _width = bx::uint16_max(blockWidth * minBlockX, ( (_width + blockWidth - 1) / blockWidth)*blockWidth); _height = bx::uint16_max(blockHeight * minBlockY, ( (_height + blockHeight - 1) / blockHeight)*blockHeight); _depth = bx::uint16_max(1, _depth); _numLayers = bx::uint16_max(1, _numLayers); const uint8_t numMips = _generateMips ? imageGetNumMips(_format, _width, _height) : 1; uint32_t size = imageGetSize(_format, _width, _height, _depth, _numLayers, _cubeMap, numMips); const Memory* image = alloc(size); _imageContainer.m_data = image->data; _imageContainer.m_format = _format; _imageContainer.m_size = image->size; _imageContainer.m_offset = 0; _imageContainer.m_width = _width; _imageContainer.m_height = _height; _imageContainer.m_depth = _depth; _imageContainer.m_numLayers = _numLayers; _imageContainer.m_numMips = numMips; _imageContainer.m_hasAlpha = false; _imageContainer.m_cubeMap = _cubeMap; _imageContainer.m_ktx = false; _imageContainer.m_ktxLE = false; _imageContainer.m_srgb = false; return image; } void imageFree(const Memory* _memory) { release(_memory); } // DDS #define DDS_MAGIC BX_MAKEFOURCC('D', 'D', 'S', ' ') #define DDS_HEADER_SIZE 124 #define DDS_DXT1 BX_MAKEFOURCC('D', 'X', 'T', '1') #define DDS_DXT2 BX_MAKEFOURCC('D', 'X', 'T', '2') #define DDS_DXT3 BX_MAKEFOURCC('D', 'X', 'T', '3') #define DDS_DXT4 BX_MAKEFOURCC('D', 'X', 'T', '4') #define DDS_DXT5 BX_MAKEFOURCC('D', 'X', 'T', '5') #define DDS_ATI1 BX_MAKEFOURCC('A', 'T', 'I', '1') #define DDS_BC4U BX_MAKEFOURCC('B', 'C', '4', 'U') #define DDS_ATI2 BX_MAKEFOURCC('A', 'T', 'I', '2') #define DDS_BC5U BX_MAKEFOURCC('B', 'C', '5', 'U') #define DDS_DX10 BX_MAKEFOURCC('D', 'X', '1', '0') #define DDS_A8R8G8B8 21 #define DDS_R5G6B5 23 #define DDS_A1R5G5B5 25 #define DDS_A4R4G4B4 26 #define DDS_A2B10G10R10 31 #define DDS_G16R16 34 #define DDS_A2R10G10B10 35 #define DDS_A16B16G16R16 36 #define DDS_A8L8 51 #define DDS_R16F 111 #define DDS_G16R16F 112 #define DDS_A16B16G16R16F 113 #define DDS_R32F 114 #define DDS_G32R32F 115 #define DDS_A32B32G32R32F 116 #define DDS_FORMAT_R32G32B32A32_FLOAT 2 #define DDS_FORMAT_R32G32B32A32_UINT 3 #define DDS_FORMAT_R16G16B16A16_FLOAT 10 #define DDS_FORMAT_R16G16B16A16_UNORM 11 #define DDS_FORMAT_R16G16B16A16_UINT 12 #define DDS_FORMAT_R32G32_FLOAT 16 #define DDS_FORMAT_R32G32_UINT 17 #define DDS_FORMAT_R10G10B10A2_UNORM 24 #define DDS_FORMAT_R11G11B10_FLOAT 26 #define DDS_FORMAT_R8G8B8A8_UNORM 28 #define DDS_FORMAT_R8G8B8A8_UNORM_SRGB 29 #define DDS_FORMAT_R16G16_FLOAT 34 #define DDS_FORMAT_R16G16_UNORM 35 #define DDS_FORMAT_R32_FLOAT 41 #define DDS_FORMAT_R32_UINT 42 #define DDS_FORMAT_R8G8_UNORM 49 #define DDS_FORMAT_R16_FLOAT 54 #define DDS_FORMAT_R16_UNORM 56 #define DDS_FORMAT_R8_UNORM 61 #define DDS_FORMAT_R1_UNORM 66 #define DDS_FORMAT_BC1_UNORM 71 #define DDS_FORMAT_BC1_UNORM_SRGB 72 #define DDS_FORMAT_BC2_UNORM 74 #define DDS_FORMAT_BC2_UNORM_SRGB 75 #define DDS_FORMAT_BC3_UNORM 77 #define DDS_FORMAT_BC3_UNORM_SRGB 78 #define DDS_FORMAT_BC4_UNORM 80 #define DDS_FORMAT_BC5_UNORM 83 #define DDS_FORMAT_B5G6R5_UNORM 85 #define DDS_FORMAT_B5G5R5A1_UNORM 86 #define DDS_FORMAT_B8G8R8A8_UNORM 87 #define DDS_FORMAT_B8G8R8A8_UNORM_SRGB 91 #define DDS_FORMAT_BC6H_SF16 96 #define DDS_FORMAT_BC7_UNORM 98 #define DDS_FORMAT_BC7_UNORM_SRGB 99 #define DDS_FORMAT_B4G4R4A4_UNORM 115 #define DDSD_CAPS 0x00000001 #define DDSD_HEIGHT 0x00000002 #define DDSD_WIDTH 0x00000004 #define DDSD_PITCH 0x00000008 #define DDSD_PIXELFORMAT 0x00001000 #define DDSD_MIPMAPCOUNT 0x00020000 #define DDSD_LINEARSIZE 0x00080000 #define DDSD_DEPTH 0x00800000 #define DDPF_ALPHAPIXELS 0x00000001 #define DDPF_ALPHA 0x00000002 #define DDPF_FOURCC 0x00000004 #define DDPF_INDEXED 0x00000020 #define DDPF_RGB 0x00000040 #define DDPF_YUV 0x00000200 #define DDPF_LUMINANCE 0x00020000 #define DDSCAPS_COMPLEX 0x00000008 #define DDSCAPS_TEXTURE 0x00001000 #define DDSCAPS_MIPMAP 0x00400000 #define DDSCAPS2_CUBEMAP 0x00000200 #define DDSCAPS2_CUBEMAP_POSITIVEX 0x00000400 #define DDSCAPS2_CUBEMAP_NEGATIVEX 0x00000800 #define DDSCAPS2_CUBEMAP_POSITIVEY 0x00001000 #define DDSCAPS2_CUBEMAP_NEGATIVEY 0x00002000 #define DDSCAPS2_CUBEMAP_POSITIVEZ 0x00004000 #define DDSCAPS2_CUBEMAP_NEGATIVEZ 0x00008000 #define DDS_CUBEMAP_ALLFACES (DDSCAPS2_CUBEMAP_POSITIVEX|DDSCAPS2_CUBEMAP_NEGATIVEX \ |DDSCAPS2_CUBEMAP_POSITIVEY|DDSCAPS2_CUBEMAP_NEGATIVEY \ |DDSCAPS2_CUBEMAP_POSITIVEZ|DDSCAPS2_CUBEMAP_NEGATIVEZ) #define DDSCAPS2_VOLUME 0x00200000 struct TranslateDdsFormat { uint32_t m_format; TextureFormat::Enum m_textureFormat; bool m_srgb; }; static const TranslateDdsFormat s_translateDdsFourccFormat[] = { { DDS_DXT1, TextureFormat::BC1, false }, { DDS_DXT2, TextureFormat::BC2, false }, { DDS_DXT3, TextureFormat::BC2, false }, { DDS_DXT4, TextureFormat::BC3, false }, { DDS_DXT5, TextureFormat::BC3, false }, { DDS_ATI1, TextureFormat::BC4, false }, { DDS_BC4U, TextureFormat::BC4, false }, { DDS_ATI2, TextureFormat::BC5, false }, { DDS_BC5U, TextureFormat::BC5, false }, { DDS_A16B16G16R16, TextureFormat::RGBA16, false }, { DDS_A16B16G16R16F, TextureFormat::RGBA16F, false }, { DDPF_RGB|DDPF_ALPHAPIXELS, TextureFormat::BGRA8, false }, { DDPF_INDEXED, TextureFormat::R8, false }, { DDPF_LUMINANCE, TextureFormat::R8, false }, { DDPF_ALPHA, TextureFormat::R8, false }, { DDS_R16F, TextureFormat::R16F, false }, { DDS_R32F, TextureFormat::R32F, false }, { DDS_A8L8, TextureFormat::RG8, false }, { DDS_G16R16, TextureFormat::RG16, false }, { DDS_G16R16F, TextureFormat::RG16F, false }, { DDS_G32R32F, TextureFormat::RG32F, false }, { DDS_A8R8G8B8, TextureFormat::BGRA8, false }, { DDS_A16B16G16R16, TextureFormat::RGBA16, false }, { DDS_A16B16G16R16F, TextureFormat::RGBA16F, false }, { DDS_A32B32G32R32F, TextureFormat::RGBA32F, false }, { DDS_R5G6B5, TextureFormat::R5G6B5, false }, { DDS_A4R4G4B4, TextureFormat::RGBA4, false }, { DDS_A1R5G5B5, TextureFormat::RGB5A1, false }, { DDS_A2B10G10R10, TextureFormat::RGB10A2, false }, }; static const TranslateDdsFormat s_translateDxgiFormat[] = { { DDS_FORMAT_BC1_UNORM, TextureFormat::BC1, false }, { DDS_FORMAT_BC1_UNORM_SRGB, TextureFormat::BC1, true }, { DDS_FORMAT_BC2_UNORM, TextureFormat::BC2, false }, { DDS_FORMAT_BC2_UNORM_SRGB, TextureFormat::BC2, true }, { DDS_FORMAT_BC3_UNORM, TextureFormat::BC3, false }, { DDS_FORMAT_BC3_UNORM_SRGB, TextureFormat::BC3, true }, { DDS_FORMAT_BC4_UNORM, TextureFormat::BC4, false }, { DDS_FORMAT_BC5_UNORM, TextureFormat::BC5, false }, { DDS_FORMAT_BC6H_SF16, TextureFormat::BC6H, false }, { DDS_FORMAT_BC7_UNORM, TextureFormat::BC7, false }, { DDS_FORMAT_BC7_UNORM_SRGB, TextureFormat::BC7, true }, { DDS_FORMAT_R1_UNORM, TextureFormat::R1, false }, { DDS_FORMAT_R8_UNORM, TextureFormat::R8, false }, { DDS_FORMAT_R16_UNORM, TextureFormat::R16, false }, { DDS_FORMAT_R16_FLOAT, TextureFormat::R16F, false }, { DDS_FORMAT_R32_UINT, TextureFormat::R32U, false }, { DDS_FORMAT_R32_FLOAT, TextureFormat::R32F, false }, { DDS_FORMAT_R8G8_UNORM, TextureFormat::RG8, false }, { DDS_FORMAT_R16G16_UNORM, TextureFormat::RG16, false }, { DDS_FORMAT_R16G16_FLOAT, TextureFormat::RG16F, false }, { DDS_FORMAT_R32G32_UINT, TextureFormat::RG32U, false }, { DDS_FORMAT_R32G32_FLOAT, TextureFormat::RG32F, false }, { DDS_FORMAT_B8G8R8A8_UNORM, TextureFormat::BGRA8, false }, { DDS_FORMAT_B8G8R8A8_UNORM_SRGB, TextureFormat::BGRA8, true }, { DDS_FORMAT_R8G8B8A8_UNORM, TextureFormat::RGBA8, false }, { DDS_FORMAT_R8G8B8A8_UNORM_SRGB, TextureFormat::RGBA8, true }, { DDS_FORMAT_R16G16B16A16_UNORM, TextureFormat::RGBA16, false }, { DDS_FORMAT_R16G16B16A16_FLOAT, TextureFormat::RGBA16F, false }, { DDS_FORMAT_R32G32B32A32_UINT, TextureFormat::RGBA32U, false }, { DDS_FORMAT_R32G32B32A32_FLOAT, TextureFormat::RGBA32F, false }, { DDS_FORMAT_B5G6R5_UNORM, TextureFormat::R5G6B5, false }, { DDS_FORMAT_B4G4R4A4_UNORM, TextureFormat::RGBA4, false }, { DDS_FORMAT_B5G5R5A1_UNORM, TextureFormat::RGB5A1, false }, { DDS_FORMAT_R10G10B10A2_UNORM, TextureFormat::RGB10A2, false }, { DDS_FORMAT_R11G11B10_FLOAT, TextureFormat::R11G11B10F, false }, }; struct TranslateDdsPixelFormat { uint32_t m_bitCount; uint32_t m_bitmask[4]; TextureFormat::Enum m_textureFormat; }; static const TranslateDdsPixelFormat s_translateDdsPixelFormat[] = { { 8, { 0x000000ff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R8 }, { 16, { 0x0000ffff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R16U }, { 16, { 0x00000f00, 0x000000f0, 0x0000000f, 0x0000f000 }, TextureFormat::RGBA4 }, { 16, { 0x0000f800, 0x000007e0, 0x0000001f, 0x00000000 }, TextureFormat::R5G6B5 }, { 16, { 0x00007c00, 0x000003e0, 0x0000001f, 0x00008000 }, TextureFormat::RGB5A1 }, { 24, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 }, TextureFormat::RGB8 }, { 32, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0xff000000 }, TextureFormat::BGRA8 }, { 32, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 }, TextureFormat::BGRA8 }, { 32, { 0x000003ff, 0x000ffc00, 0x3ff00000, 0xc0000000 }, TextureFormat::RGB10A2 }, { 32, { 0x0000ffff, 0xffff0000, 0x00000000, 0x00000000 }, TextureFormat::RG16 }, { 32, { 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R32U }, }; bool imageParseDds(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader) { uint32_t headerSize; bx::read(_reader, headerSize); if (headerSize < DDS_HEADER_SIZE) { return false; } uint32_t flags; bx::read(_reader, flags); if ( (flags & (DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT) ) != (DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT) ) { return false; } uint32_t height; bx::read(_reader, height); uint32_t width; bx::read(_reader, width); uint32_t pitch; bx::read(_reader, pitch); uint32_t depth; bx::read(_reader, depth); uint32_t mips; bx::read(_reader, mips); bx::skip(_reader, 44); // reserved uint32_t pixelFormatSize; bx::read(_reader, pixelFormatSize); uint32_t pixelFlags; bx::read(_reader, pixelFlags); uint32_t fourcc; bx::read(_reader, fourcc); uint32_t bitCount; bx::read(_reader, bitCount); uint32_t bitmask[4]; bx::read(_reader, bitmask, sizeof(bitmask) ); uint32_t caps[4]; bx::read(_reader, caps); bx::skip(_reader, 4); // reserved uint32_t dxgiFormat = 0; uint32_t arraySize = 1; if (DDPF_FOURCC == pixelFlags && DDS_DX10 == fourcc) { bx::read(_reader, dxgiFormat); uint32_t dims; bx::read(_reader, dims); uint32_t miscFlags; bx::read(_reader, miscFlags); bx::read(_reader, arraySize); uint32_t miscFlags2; bx::read(_reader, miscFlags2); } if ( (caps[0] & DDSCAPS_TEXTURE) == 0) { return false; } bool cubeMap = 0 != (caps[1] & DDSCAPS2_CUBEMAP); if (cubeMap) { if ( (caps[1] & DDS_CUBEMAP_ALLFACES) != DDS_CUBEMAP_ALLFACES) { // partial cube map is not supported. return false; } } TextureFormat::Enum format = TextureFormat::Unknown; bool hasAlpha = pixelFlags & DDPF_ALPHAPIXELS; bool srgb = false; if (dxgiFormat == 0) { if (DDPF_FOURCC == (pixelFlags & DDPF_FOURCC) ) { for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsFourccFormat); ++ii) { if (s_translateDdsFourccFormat[ii].m_format == fourcc) { format = s_translateDdsFourccFormat[ii].m_textureFormat; break; } } } else { for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsPixelFormat); ++ii) { const TranslateDdsPixelFormat& pf = s_translateDdsPixelFormat[ii]; if (pf.m_bitCount == bitCount && pf.m_bitmask[0] == bitmask[0] && pf.m_bitmask[1] == bitmask[1] && pf.m_bitmask[2] == bitmask[2] && pf.m_bitmask[3] == bitmask[3]) { format = pf.m_textureFormat; break; } } } } else { for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDxgiFormat); ++ii) { if (s_translateDxgiFormat[ii].m_format == dxgiFormat) { format = s_translateDxgiFormat[ii].m_textureFormat; srgb = s_translateDxgiFormat[ii].m_srgb; break; } } } _imageContainer.m_data = NULL; _imageContainer.m_size = 0; _imageContainer.m_offset = (uint32_t)bx::seek(_reader); _imageContainer.m_width = width; _imageContainer.m_height = height; _imageContainer.m_depth = depth; _imageContainer.m_format = format; _imageContainer.m_numLayers = uint16_t(arraySize); _imageContainer.m_numMips = uint8_t( (caps[0] & DDSCAPS_MIPMAP) ? mips : 1); _imageContainer.m_hasAlpha = hasAlpha; _imageContainer.m_cubeMap = cubeMap; _imageContainer.m_ktx = false; _imageContainer.m_ktxLE = false; _imageContainer.m_srgb = srgb; return TextureFormat::Unknown != format; } // KTX #define KTX_MAGIC BX_MAKEFOURCC(0xAB, 'K', 'T', 'X') #define KTX_HEADER_SIZE 64 #define KTX_ETC1_RGB8_OES 0x8D64 #define KTX_COMPRESSED_R11_EAC 0x9270 #define KTX_COMPRESSED_SIGNED_R11_EAC 0x9271 #define KTX_COMPRESSED_RG11_EAC 0x9272 #define KTX_COMPRESSED_SIGNED_RG11_EAC 0x9273 #define KTX_COMPRESSED_RGB8_ETC2 0x9274 #define KTX_COMPRESSED_SRGB8_ETC2 0x9275 #define KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9276 #define KTX_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9277 #define KTX_COMPRESSED_RGBA8_ETC2_EAC 0x9278 #define KTX_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC 0x9279 #define KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00 #define KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 0x8C01 #define KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02 #define KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 0x8C03 #define KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG 0x9137 #define KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG 0x9138 #define KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1 #define KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2 #define KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3 #define KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT 0x8C4D #define KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT 0x8C4E #define KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT 0x8C4F #define KTX_COMPRESSED_LUMINANCE_LATC1_EXT 0x8C70 #define KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT 0x8C72 #define KTX_COMPRESSED_RGBA_BPTC_UNORM_ARB 0x8E8C #define KTX_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB 0x8E8D #define KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB 0x8E8E #define KTX_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_ARB 0x8E8F #define KTX_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT 0x8A54 #define KTX_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT 0x8A55 #define KTX_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT 0x8A56 #define KTX_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT 0x8A57 #define KTX_R8 0x8229 #define KTX_R16 0x822A #define KTX_RG8 0x822B #define KTX_RG16 0x822C #define KTX_R16F 0x822D #define KTX_R32F 0x822E #define KTX_RG16F 0x822F #define KTX_RG32F 0x8230 #define KTX_RGBA8 0x8058 #define KTX_RGBA16 0x805B #define KTX_RGBA16F 0x881A #define KTX_R32UI 0x8236 #define KTX_RG32UI 0x823C #define KTX_RGBA32UI 0x8D70 #define KTX_RGBA32F 0x8814 #define KTX_RGB565 0x8D62 #define KTX_RGBA4 0x8056 #define KTX_RGB5_A1 0x8057 #define KTX_RGB10_A2 0x8059 #define KTX_R8I 0x8231 #define KTX_R8UI 0x8232 #define KTX_R16I 0x8233 #define KTX_R16UI 0x8234 #define KTX_R32I 0x8235 #define KTX_R32UI 0x8236 #define KTX_RG8I 0x8237 #define KTX_RG8UI 0x8238 #define KTX_RG16I 0x8239 #define KTX_RG16UI 0x823A #define KTX_RG32I 0x823B #define KTX_RG32UI 0x823C #define KTX_R8_SNORM 0x8F94 #define KTX_RG8_SNORM 0x8F95 #define KTX_RGB8_SNORM 0x8F96 #define KTX_RGBA8_SNORM 0x8F97 #define KTX_R16_SNORM 0x8F98 #define KTX_RG16_SNORM 0x8F99 #define KTX_RGB16_SNORM 0x8F9A #define KTX_RGBA16_SNORM 0x8F9B #define KTX_SRGB8 0x8C41 #define KTX_SRGB8_ALPHA8 0x8C43 #define KTX_RGBA32UI 0x8D70 #define KTX_RGB32UI 0x8D71 #define KTX_RGBA16UI 0x8D76 #define KTX_RGB16UI 0x8D77 #define KTX_RGBA8UI 0x8D7C #define KTX_RGB8UI 0x8D7D #define KTX_RGBA32I 0x8D82 #define KTX_RGB32I 0x8D83 #define KTX_RGBA16I 0x8D88 #define KTX_RGB16I 0x8D89 #define KTX_RGBA8I 0x8D8E #define KTX_RGB8 0x8051 #define KTX_RGB8I 0x8D8F #define KTX_RGB9_E5 0x8C3D #define KTX_R11F_G11F_B10F 0x8C3A #define KTX_ZERO 0 #define KTX_RED 0x1903 #define KTX_ALPHA 0x1906 #define KTX_RGB 0x1907 #define KTX_RGBA 0x1908 #define KTX_BGRA 0x80E1 #define KTX_RG 0x8227 #define KTX_BYTE 0x1400 #define KTX_UNSIGNED_BYTE 0x1401 #define KTX_SHORT 0x1402 #define KTX_UNSIGNED_SHORT 0x1403 #define KTX_INT 0x1404 #define KTX_UNSIGNED_INT 0x1405 #define KTX_FLOAT 0x1406 #define KTX_HALF_FLOAT 0x140B #define KTX_UNSIGNED_INT_5_9_9_9_REV 0x8C3E #define KTX_UNSIGNED_SHORT_5_6_5 0x8363 #define KTX_UNSIGNED_SHORT_4_4_4_4 0x8033 #define KTX_UNSIGNED_SHORT_5_5_5_1 0x8034 #define KTX_UNSIGNED_INT_2_10_10_10_REV 0x8368 #define KTX_UNSIGNED_INT_10F_11F_11F_REV 0x8C3B struct KtxFormatInfo { uint32_t m_internalFmt; uint32_t m_internalFmtSrgb; uint32_t m_fmt; uint32_t m_type; }; static const KtxFormatInfo s_translateKtxFormat[] = { { KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT, KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT, KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT, KTX_ZERO, }, // BC1 { KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT, KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT, KTX_ZERO, }, // BC2 { KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT, KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT, KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT, KTX_ZERO, }, // BC3 { KTX_COMPRESSED_LUMINANCE_LATC1_EXT, KTX_ZERO, KTX_COMPRESSED_LUMINANCE_LATC1_EXT, KTX_ZERO, }, // BC4 { KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, KTX_ZERO, KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, KTX_ZERO, }, // BC5 { KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB, KTX_ZERO, KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB, KTX_ZERO, }, // BC6H { KTX_COMPRESSED_RGBA_BPTC_UNORM_ARB, KTX_ZERO, KTX_COMPRESSED_RGBA_BPTC_UNORM_ARB, KTX_ZERO, }, // BC7 { KTX_ETC1_RGB8_OES, KTX_ZERO, KTX_ETC1_RGB8_OES, KTX_ZERO, }, // ETC1 { KTX_COMPRESSED_RGB8_ETC2, KTX_ZERO, KTX_COMPRESSED_RGB8_ETC2, KTX_ZERO, }, // ETC2 { KTX_COMPRESSED_RGBA8_ETC2_EAC, KTX_COMPRESSED_SRGB8_ETC2, KTX_COMPRESSED_RGBA8_ETC2_EAC, KTX_ZERO, }, // ETC2A { KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, KTX_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2, KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, KTX_ZERO, }, // ETC2A1 { KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, KTX_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT, KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, KTX_ZERO, }, // PTC12 { KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, KTX_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT, KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, KTX_ZERO, }, // PTC14 { KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, KTX_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT, KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, KTX_ZERO, }, // PTC12A { KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, KTX_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT, KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, KTX_ZERO, }, // PTC14A { KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, KTX_ZERO, KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, KTX_ZERO, }, // PTC22 { KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, KTX_ZERO, KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, KTX_ZERO, }, // PTC24 { KTX_ZERO, KTX_ZERO, KTX_ZERO, KTX_ZERO, }, // Unknown { KTX_ZERO, KTX_ZERO, KTX_ZERO, KTX_ZERO, }, // R1 { KTX_ALPHA, KTX_ZERO, KTX_ALPHA, KTX_UNSIGNED_BYTE, }, // A8 { KTX_R8, KTX_ZERO, KTX_RED, KTX_UNSIGNED_BYTE, }, // R8 { KTX_R8I, KTX_ZERO, KTX_RED, KTX_BYTE, }, // R8S { KTX_R8UI, KTX_ZERO, KTX_RED, KTX_UNSIGNED_BYTE, }, // R8S { KTX_R8_SNORM, KTX_ZERO, KTX_RED, KTX_BYTE, }, // R8S { KTX_R16, KTX_ZERO, KTX_RED, KTX_UNSIGNED_SHORT, }, // R16 { KTX_R16I, KTX_ZERO, KTX_RED, KTX_SHORT, }, // R16I { KTX_R16UI, KTX_ZERO, KTX_RED, KTX_UNSIGNED_SHORT, }, // R16U { KTX_R16F, KTX_ZERO, KTX_RED, KTX_HALF_FLOAT, }, // R16F { KTX_R16_SNORM, KTX_ZERO, KTX_RED, KTX_SHORT, }, // R16S { KTX_R32I, KTX_ZERO, KTX_RED, KTX_INT, }, // R32I { KTX_R32UI, KTX_ZERO, KTX_RED, KTX_UNSIGNED_INT, }, // R32U { KTX_R32F, KTX_ZERO, KTX_RED, KTX_FLOAT, }, // R32F { KTX_RG8, KTX_ZERO, KTX_RG, KTX_UNSIGNED_BYTE, }, // RG8 { KTX_RG8I, KTX_ZERO, KTX_RG, KTX_BYTE, }, // RG8I { KTX_RG8UI, KTX_ZERO, KTX_RG, KTX_UNSIGNED_BYTE, }, // RG8U { KTX_RG8_SNORM, KTX_ZERO, KTX_RG, KTX_BYTE, }, // RG8S { KTX_RG16, KTX_ZERO, KTX_RG, KTX_UNSIGNED_SHORT, }, // RG16 { KTX_RG16I, KTX_ZERO, KTX_RG, KTX_SHORT, }, // RG16 { KTX_RG16UI, KTX_ZERO, KTX_RG, KTX_UNSIGNED_SHORT, }, // RG16 { KTX_RG16F, KTX_ZERO, KTX_RG, KTX_FLOAT, }, // RG16F { KTX_RG16_SNORM, KTX_ZERO, KTX_RG, KTX_SHORT, }, // RG16S { KTX_RG32I, KTX_ZERO, KTX_RG, KTX_INT, }, // RG32I { KTX_RG32UI, KTX_ZERO, KTX_RG, KTX_UNSIGNED_INT, }, // RG32U { KTX_RG32F, KTX_ZERO, KTX_RG, KTX_FLOAT, }, // RG32F { KTX_RGB8, KTX_SRGB8, KTX_RGB, KTX_UNSIGNED_BYTE, }, // RGB8 { KTX_RGB8I, KTX_ZERO, KTX_RGB, KTX_BYTE, }, // RGB8I { KTX_RGB8UI, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_BYTE, }, // RGB8U { KTX_RGB8_SNORM, KTX_ZERO, KTX_RGB, KTX_BYTE, }, // RGB8S { KTX_RGB9_E5, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_INT_5_9_9_9_REV, }, // RGB9E5F { KTX_BGRA, KTX_SRGB8_ALPHA8, KTX_BGRA, KTX_UNSIGNED_BYTE, }, // BGRA8 { KTX_RGBA8, KTX_SRGB8_ALPHA8, KTX_RGBA, KTX_UNSIGNED_BYTE, }, // RGBA8 { KTX_RGBA8I, KTX_ZERO, KTX_RGBA, KTX_BYTE, }, // RGBA8I { KTX_RGBA8UI, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_BYTE, }, // RGBA8U { KTX_RGBA8_SNORM, KTX_ZERO, KTX_RGBA, KTX_BYTE, }, // RGBA8S { KTX_RGBA16, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT, }, // RGBA16 { KTX_RGBA16I, KTX_ZERO, KTX_RGBA, KTX_SHORT, }, // RGBA16I { KTX_RGBA16UI, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT, }, // RGBA16U { KTX_RGBA16F, KTX_ZERO, KTX_RGBA, KTX_HALF_FLOAT, }, // RGBA16F { KTX_RGBA16_SNORM, KTX_ZERO, KTX_RGBA, KTX_SHORT, }, // RGBA16S { KTX_RGBA32I, KTX_ZERO, KTX_RGBA, KTX_INT, }, // RGBA32I { KTX_RGBA32UI, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_INT, }, // RGBA32U { KTX_RGBA32F, KTX_ZERO, KTX_RGBA, KTX_FLOAT, }, // RGBA32F { KTX_RGB565, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_SHORT_5_6_5, }, // R5G6B5 { KTX_RGBA4, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT_4_4_4_4, }, // RGBA4 { KTX_RGB5_A1, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT_5_5_5_1, }, // RGB5A1 { KTX_RGB10_A2, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_INT_2_10_10_10_REV, }, // RGB10A2 { KTX_R11F_G11F_B10F, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_INT_10F_11F_11F_REV, }, // R11G11B10F }; BX_STATIC_ASSERT(TextureFormat::UnknownDepth == BX_COUNTOF(s_translateKtxFormat) ); struct KtxFormatInfo2 { uint32_t m_internalFmt; TextureFormat::Enum m_format; }; static const KtxFormatInfo2 s_translateKtxFormat2[] = { { KTX_RED, TextureFormat::R8 }, { KTX_RGB, TextureFormat::RGB8 }, }; bool imageParseKtx(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader) { uint8_t identifier[8]; bx::read(_reader, identifier); if (identifier[1] != '1' && identifier[2] != '1') { return false; } uint32_t endianness; bx::read(_reader, endianness); bool fromLittleEndian = 0x04030201 == endianness; uint32_t glType; bx::readHE(_reader, glType, fromLittleEndian); uint32_t glTypeSize; bx::readHE(_reader, glTypeSize, fromLittleEndian); uint32_t glFormat; bx::readHE(_reader, glFormat, fromLittleEndian); uint32_t glInternalFormat; bx::readHE(_reader, glInternalFormat, fromLittleEndian); uint32_t glBaseInternalFormat; bx::readHE(_reader, glBaseInternalFormat, fromLittleEndian); uint32_t width; bx::readHE(_reader, width, fromLittleEndian); uint32_t height; bx::readHE(_reader, height, fromLittleEndian); uint32_t depth; bx::readHE(_reader, depth, fromLittleEndian); uint32_t numberOfArrayElements; bx::readHE(_reader, numberOfArrayElements, fromLittleEndian); uint32_t numFaces; bx::readHE(_reader, numFaces, fromLittleEndian); uint32_t numMips; bx::readHE(_reader, numMips, fromLittleEndian); uint32_t metaDataSize; bx::readHE(_reader, metaDataSize, fromLittleEndian); // skip meta garbage... int64_t offset = bx::skip(_reader, metaDataSize); TextureFormat::Enum format = TextureFormat::Unknown; bool hasAlpha = false; for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateKtxFormat); ++ii) { if (s_translateKtxFormat[ii].m_internalFmt == glInternalFormat) { format = TextureFormat::Enum(ii); break; } } if (TextureFormat::Unknown == format) { for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateKtxFormat2); ++ii) { if (s_translateKtxFormat2[ii].m_internalFmt == glInternalFormat) { format = s_translateKtxFormat2[ii].m_format; break; } } } _imageContainer.m_data = NULL; _imageContainer.m_size = 0; _imageContainer.m_offset = (uint32_t)offset; _imageContainer.m_width = width; _imageContainer.m_height = height; _imageContainer.m_depth = depth; _imageContainer.m_format = format; _imageContainer.m_numLayers = uint16_t(bx::uint32_max(numberOfArrayElements, 1) ); _imageContainer.m_numMips = uint8_t(bx::uint32_max(numMips, 1) ); _imageContainer.m_hasAlpha = hasAlpha; _imageContainer.m_cubeMap = numFaces > 1; _imageContainer.m_ktx = true; _imageContainer.m_ktxLE = fromLittleEndian; _imageContainer.m_srgb = false; return TextureFormat::Unknown != format; } // PVR3 #define PVR3_MAKE8CC(_a, _b, _c, _d, _e, _f, _g, _h) (uint64_t(BX_MAKEFOURCC(_a, _b, _c, _d) ) | (uint64_t(BX_MAKEFOURCC(_e, _f, _g, _h) )<<32) ) #define PVR3_MAGIC BX_MAKEFOURCC('P', 'V', 'R', 3) #define PVR3_HEADER_SIZE 52 #define PVR3_PVRTC1_2BPP_RGB 0 #define PVR3_PVRTC1_2BPP_RGBA 1 #define PVR3_PVRTC1_4BPP_RGB 2 #define PVR3_PVRTC1_4BPP_RGBA 3 #define PVR3_PVRTC2_2BPP_RGBA 4 #define PVR3_PVRTC2_4BPP_RGBA 5 #define PVR3_ETC1 6 #define PVR3_DXT1 7 #define PVR3_DXT2 8 #define PVR3_DXT3 9 #define PVR3_DXT4 10 #define PVR3_DXT5 11 #define PVR3_BC4 12 #define PVR3_BC5 13 #define PVR3_R8 PVR3_MAKE8CC('r', 0, 0, 0, 8, 0, 0, 0) #define PVR3_R16 PVR3_MAKE8CC('r', 0, 0, 0, 16, 0, 0, 0) #define PVR3_R32 PVR3_MAKE8CC('r', 0, 0, 0, 32, 0, 0, 0) #define PVR3_RG8 PVR3_MAKE8CC('r', 'g', 0, 0, 8, 8, 0, 0) #define PVR3_RG16 PVR3_MAKE8CC('r', 'g', 0, 0, 16, 16, 0, 0) #define PVR3_RG32 PVR3_MAKE8CC('r', 'g', 0, 0, 32, 32, 0, 0) #define PVR3_BGRA8 PVR3_MAKE8CC('b', 'g', 'r', 'a', 8, 8, 8, 8) #define PVR3_RGBA16 PVR3_MAKE8CC('r', 'g', 'b', 'a', 16, 16, 16, 16) #define PVR3_RGBA32 PVR3_MAKE8CC('r', 'g', 'b', 'a', 32, 32, 32, 32) #define PVR3_RGB565 PVR3_MAKE8CC('r', 'g', 'b', 0, 5, 6, 5, 0) #define PVR3_RGBA4 PVR3_MAKE8CC('r', 'g', 'b', 'a', 4, 4, 4, 4) #define PVR3_RGBA51 PVR3_MAKE8CC('r', 'g', 'b', 'a', 5, 5, 5, 1) #define PVR3_RGB10A2 PVR3_MAKE8CC('r', 'g', 'b', 'a', 10, 10, 10, 2) #define PVR3_CHANNEL_TYPE_ANY UINT32_MAX #define PVR3_CHANNEL_TYPE_FLOAT UINT32_C(12) struct TranslatePvr3Format { uint64_t m_format; uint32_t m_channelTypeMask; TextureFormat::Enum m_textureFormat; }; static const TranslatePvr3Format s_translatePvr3Format[] = { { PVR3_PVRTC1_2BPP_RGB, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC12 }, { PVR3_PVRTC1_2BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC12A }, { PVR3_PVRTC1_4BPP_RGB, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC14 }, { PVR3_PVRTC1_4BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC14A }, { PVR3_PVRTC2_2BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC22 }, { PVR3_PVRTC2_4BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC24 }, { PVR3_ETC1, PVR3_CHANNEL_TYPE_ANY, TextureFormat::ETC1 }, { PVR3_DXT1, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC1 }, { PVR3_DXT2, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC2 }, { PVR3_DXT3, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC2 }, { PVR3_DXT4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC3 }, { PVR3_DXT5, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC3 }, { PVR3_BC4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC4 }, { PVR3_BC5, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC5 }, { PVR3_R8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R8 }, { PVR3_R16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R16U }, { PVR3_R16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::R16F }, { PVR3_R32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R32U }, { PVR3_R32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::R32F }, { PVR3_RG8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG8 }, { PVR3_RG16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG16 }, { PVR3_RG16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RG16F }, { PVR3_RG32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG16 }, { PVR3_RG32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RG32F }, { PVR3_BGRA8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BGRA8 }, { PVR3_RGBA16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA16 }, { PVR3_RGBA16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RGBA16F }, { PVR3_RGBA32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA32U }, { PVR3_RGBA32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RGBA32F }, { PVR3_RGB565, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R5G6B5 }, { PVR3_RGBA4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA4 }, { PVR3_RGBA51, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGB5A1 }, { PVR3_RGB10A2, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGB10A2 }, }; bool imageParsePvr3(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader) { uint32_t flags; bx::read(_reader, flags); uint64_t pixelFormat; bx::read(_reader, pixelFormat); uint32_t colorSpace; bx::read(_reader, colorSpace); // 0 - linearRGB, 1 - sRGB uint32_t channelType; bx::read(_reader, channelType); uint32_t height; bx::read(_reader, height); uint32_t width; bx::read(_reader, width); uint32_t depth; bx::read(_reader, depth); uint32_t numSurfaces; bx::read(_reader, numSurfaces); uint32_t numFaces; bx::read(_reader, numFaces); uint32_t numMips; bx::read(_reader, numMips); uint32_t metaDataSize; bx::read(_reader, metaDataSize); // skip meta garbage... int64_t offset = bx::skip(_reader, metaDataSize); TextureFormat::Enum format = TextureFormat::Unknown; bool hasAlpha = false; for (uint32_t ii = 0; ii < BX_COUNTOF(s_translatePvr3Format); ++ii) { if (s_translatePvr3Format[ii].m_format == pixelFormat && channelType == (s_translatePvr3Format[ii].m_channelTypeMask & channelType) ) { format = s_translatePvr3Format[ii].m_textureFormat; break; } } _imageContainer.m_data = NULL; _imageContainer.m_size = 0; _imageContainer.m_offset = (uint32_t)offset; _imageContainer.m_width = width; _imageContainer.m_height = height; _imageContainer.m_depth = depth; _imageContainer.m_format = format; _imageContainer.m_numLayers = 1; _imageContainer.m_numMips = uint8_t(bx::uint32_max(numMips, 1) ); _imageContainer.m_hasAlpha = hasAlpha; _imageContainer.m_cubeMap = numFaces > 1; _imageContainer.m_ktx = false; _imageContainer.m_ktxLE = false; _imageContainer.m_srgb = colorSpace > 0; return TextureFormat::Unknown != format; } bool imageParse(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader) { uint32_t magic; bx::read(_reader, magic); if (DDS_MAGIC == magic) { return imageParseDds(_imageContainer, _reader); } else if (KTX_MAGIC == magic) { return imageParseKtx(_imageContainer, _reader); } else if (PVR3_MAGIC == magic) { return imageParsePvr3(_imageContainer, _reader); } else if (BGFX_CHUNK_MAGIC_TEX == magic) { TextureCreate tc; bx::read(_reader, tc); _imageContainer.m_format = tc.m_format; _imageContainer.m_offset = UINT32_MAX; if (NULL == tc.m_mem) { _imageContainer.m_data = NULL; _imageContainer.m_size = 0; } else { _imageContainer.m_data = tc.m_mem->data; _imageContainer.m_size = tc.m_mem->size; } _imageContainer.m_width = tc.m_width; _imageContainer.m_height = tc.m_height; _imageContainer.m_depth = tc.m_depth; _imageContainer.m_numLayers = tc.m_numLayers; _imageContainer.m_numMips = tc.m_numMips; _imageContainer.m_hasAlpha = false; _imageContainer.m_cubeMap = tc.m_cubeMap; _imageContainer.m_ktx = false; _imageContainer.m_ktxLE = false; _imageContainer.m_srgb = false; return true; } BX_TRACE("Unrecognized image format (magic: 0x%08x)!", magic); return false; } bool imageParse(ImageContainer& _imageContainer, const void* _data, uint32_t _size) { bx::MemoryReader reader(_data, _size); return imageParse(_imageContainer, &reader); } void imageDecodeToBgra8(void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _pitch, TextureFormat::Enum _format) { const uint8_t* src = (const uint8_t*)_src; uint8_t* dst = (uint8_t*)_dst; uint32_t width = _width/4; uint32_t height = _height/4; uint8_t temp[16*4]; switch (_format) { case TextureFormat::BC1: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockDxt1(temp, src); src += 8; uint8_t* block = &dst[(yy*_pitch+xx*4)*4]; memcpy(&block[0*_pitch], &temp[ 0], 16); memcpy(&block[1*_pitch], &temp[16], 16); memcpy(&block[2*_pitch], &temp[32], 16); memcpy(&block[3*_pitch], &temp[48], 16); } } break; case TextureFormat::BC2: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockDxt23A(temp+3, src); src += 8; decodeBlockDxt(temp, src); src += 8; uint8_t* block = &dst[(yy*_pitch+xx*4)*4]; memcpy(&block[0*_pitch], &temp[ 0], 16); memcpy(&block[1*_pitch], &temp[16], 16); memcpy(&block[2*_pitch], &temp[32], 16); memcpy(&block[3*_pitch], &temp[48], 16); } } break; case TextureFormat::BC3: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockDxt45A(temp+3, src); src += 8; decodeBlockDxt(temp, src); src += 8; uint8_t* block = &dst[(yy*_pitch+xx*4)*4]; memcpy(&block[0*_pitch], &temp[ 0], 16); memcpy(&block[1*_pitch], &temp[16], 16); memcpy(&block[2*_pitch], &temp[32], 16); memcpy(&block[3*_pitch], &temp[48], 16); } } break; case TextureFormat::BC4: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockDxt45A(temp, src); src += 8; uint8_t* block = &dst[(yy*_pitch+xx*4)*4]; memcpy(&block[0*_pitch], &temp[ 0], 16); memcpy(&block[1*_pitch], &temp[16], 16); memcpy(&block[2*_pitch], &temp[32], 16); memcpy(&block[3*_pitch], &temp[48], 16); } } break; case TextureFormat::BC5: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockDxt45A(temp+2, src); src += 8; decodeBlockDxt45A(temp+1, src); src += 8; for (uint32_t ii = 0; ii < 16; ++ii) { float nx = temp[ii*4+2]*2.0f/255.0f - 1.0f; float ny = temp[ii*4+1]*2.0f/255.0f - 1.0f; float nz = bx::fsqrt(1.0f - nx*nx - ny*ny); temp[ii*4+0] = uint8_t( (nz + 1.0f)*255.0f/2.0f); temp[ii*4+3] = 0; } uint8_t* block = &dst[(yy*_pitch+xx*4)*4]; memcpy(&block[0*_pitch], &temp[ 0], 16); memcpy(&block[1*_pitch], &temp[16], 16); memcpy(&block[2*_pitch], &temp[32], 16); memcpy(&block[3*_pitch], &temp[48], 16); } } break; case TextureFormat::ETC1: case TextureFormat::ETC2: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockEtc12(temp, src); src += 8; uint8_t* block = &dst[(yy*_pitch+xx*4)*4]; memcpy(&block[0*_pitch], &temp[ 0], 16); memcpy(&block[1*_pitch], &temp[16], 16); memcpy(&block[2*_pitch], &temp[32], 16); memcpy(&block[3*_pitch], &temp[48], 16); } } break; case TextureFormat::ETC2A: BX_WARN(false, "ETC2A decoder is not implemented."); imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xff00ff00), _dst); break; case TextureFormat::ETC2A1: BX_WARN(false, "ETC2A1 decoder is not implemented."); imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffff0000), _dst); break; case TextureFormat::PTC12: BX_WARN(false, "PTC12 decoder is not implemented."); imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffff00ff), _dst); break; case TextureFormat::PTC12A: BX_WARN(false, "PTC12A decoder is not implemented."); imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffff00), _dst); break; case TextureFormat::PTC14: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockPtc14(temp, src, xx, yy, width, height); uint8_t* block = &dst[(yy*_pitch+xx*4)*4]; memcpy(&block[0*_pitch], &temp[ 0], 16); memcpy(&block[1*_pitch], &temp[16], 16); memcpy(&block[2*_pitch], &temp[32], 16); memcpy(&block[3*_pitch], &temp[48], 16); } } break; case TextureFormat::PTC14A: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockPtc14A(temp, src, xx, yy, width, height); uint8_t* block = &dst[(yy*_pitch+xx*4)*4]; memcpy(&block[0*_pitch], &temp[ 0], 16); memcpy(&block[1*_pitch], &temp[16], 16); memcpy(&block[2*_pitch], &temp[32], 16); memcpy(&block[3*_pitch], &temp[48], 16); } } break; case TextureFormat::PTC22: BX_WARN(false, "PTC22 decoder is not implemented."); imageCheckerboard(_width, _height, 16, UINT32_C(0xff00ff00), UINT32_C(0xff0000ff), _dst); break; case TextureFormat::PTC24: BX_WARN(false, "PTC24 decoder is not implemented."); imageCheckerboard(_width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffffff), _dst); break; case TextureFormat::RGBA8: imageSwizzleBgra8(_width, _height, _pitch, _src, _dst); break; case TextureFormat::BGRA8: memcpy(_dst, _src, _pitch*_height); break; default: { const uint32_t srcBpp = s_imageBlockInfo[_format].bitsPerPixel; const uint32_t srcPitch = _width * srcBpp / 8; if (!imageConvert(_dst, TextureFormat::BGRA8, _src, _format, _width, _height, srcPitch) ) { // Failed to convert, just make ugly red-yellow checkerboard texture. imageCheckerboard(_width, _height, 16, UINT32_C(0xffff0000), UINT32_C(0xffffff00), _dst); } } break; } } void imageDecodeToRgba8(void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _pitch, TextureFormat::Enum _format) { switch (_format) { case TextureFormat::RGBA8: memcpy(_dst, _src, _pitch*_height); break; case TextureFormat::BGRA8: imageSwizzleBgra8(_width, _height, _pitch, _src, _dst); break; default: imageDecodeToBgra8(_dst, _src, _width, _height, _pitch, _format); imageSwizzleBgra8(_width, _height, _width*4, _dst, _dst); break; } } void imageRgba8ToRgba32fRef(void* _dst, uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src) { const uint32_t dstwidth = _width; const uint32_t dstheight = _height; if (0 == dstwidth || 0 == dstheight) { return; } float* dst = (float*)_dst; const uint8_t* src = (const uint8_t*)_src; for (uint32_t yy = 0, ystep = _pitch; yy < dstheight; ++yy, src += ystep) { const uint8_t* rgba = src; for (uint32_t xx = 0; xx < dstwidth; ++xx, rgba += 4, dst += 4) { dst[0] = bx::fpow(rgba[0], 2.2f); dst[1] = bx::fpow(rgba[1], 2.2f); dst[2] = bx::fpow(rgba[2], 2.2f); dst[3] = rgba[3]; } } } void imageRgba8ToRgba32f(void* _dst, uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src) { const uint32_t dstwidth = _width; const uint32_t dstheight = _height; if (0 == dstwidth || 0 == dstheight) { return; } float* dst = (float*)_dst; const uint8_t* src = (const uint8_t*)_src; using namespace bx; const simd128_t unpack = simd_ld(1.0f, 1.0f/256.0f, 1.0f/65536.0f, 1.0f/16777216.0f); const simd128_t umask = simd_ild(0xff, 0xff00, 0xff0000, 0xff000000); const simd128_t wflip = simd_ild(0, 0, 0, 0x80000000); const simd128_t wadd = simd_ld(0.0f, 0.0f, 0.0f, 32768.0f*65536.0f); for (uint32_t yy = 0, ystep = _pitch; yy < dstheight; ++yy, src += ystep) { const uint8_t* rgba = src; for (uint32_t xx = 0; xx < dstwidth; ++xx, rgba += 4, dst += 4) { const simd128_t abgr0 = simd_splat(rgba); const simd128_t abgr0m = simd_and(abgr0, umask); const simd128_t abgr0x = simd_xor(abgr0m, wflip); const simd128_t abgr0f = simd_itof(abgr0x); const simd128_t abgr0c = simd_add(abgr0f, wadd); const simd128_t abgr0n = simd_mul(abgr0c, unpack); simd_st(dst, abgr0n); } } } void imageDecodeToRgba32f(bx::AllocatorI* _allocator, void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _pitch, TextureFormat::Enum _format) { const uint8_t* src = (const uint8_t*)_src; uint8_t* dst = (uint8_t*)_dst; switch (_format) { case TextureFormat::BC5: { uint32_t width = _width/4; uint32_t height = _height/4; for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { uint8_t temp[16*4]; decodeBlockDxt45A(temp+2, src); src += 8; decodeBlockDxt45A(temp+1, src); src += 8; for (uint32_t ii = 0; ii < 16; ++ii) { float nx = temp[ii*4+2]*2.0f/255.0f - 1.0f; float ny = temp[ii*4+1]*2.0f/255.0f - 1.0f; float nz = bx::fsqrt(1.0f - nx*nx - ny*ny); const uint32_t offset = (yy*4 + ii/4)*_width*16 + (xx*4 + ii%4)*16; float* block = (float*)&dst[offset]; block[0] = nx; block[1] = ny; block[2] = nz; block[3] = 0.0f; } } } } break; case TextureFormat::RGBA32F: memcpy(_dst, _src, _pitch*_height); break; case TextureFormat::RGBA8: imageRgba8ToRgba32f(_dst, _width, _height, _pitch, _src); break; default: if (isCompressed(_format) ) { void* temp = BX_ALLOC(_allocator, imageGetSize(_format, uint16_t(_pitch/4), uint16_t(_height) ) ); imageDecodeToRgba8(temp, _src, _width, _height, _pitch, _format); imageRgba8ToRgba32f(_dst, _width, _height, _pitch, temp); BX_FREE(_allocator, temp); } else { imageConvert(_dst, TextureFormat::RGBA32F, _src, _format, _width, _height, _pitch); } break; } } bool imageGetRawData(const ImageContainer& _imageContainer, uint16_t _side, uint8_t _lod, const void* _data, uint32_t _size, ImageMip& _mip) { uint32_t offset = _imageContainer.m_offset; TextureFormat::Enum format = TextureFormat::Enum(_imageContainer.m_format); bool hasAlpha = _imageContainer.m_hasAlpha; const ImageBlockInfo& blockInfo = s_imageBlockInfo[format]; const uint8_t bpp = blockInfo.bitsPerPixel; const uint32_t blockSize = blockInfo.blockSize; const uint32_t blockWidth = blockInfo.blockWidth; const uint32_t blockHeight = blockInfo.blockHeight; const uint32_t minBlockX = blockInfo.minBlockX; const uint32_t minBlockY = blockInfo.minBlockY; if (UINT32_MAX == _imageContainer.m_offset) { if (NULL == _imageContainer.m_data) { return false; } offset = 0; _data = _imageContainer.m_data; _size = _imageContainer.m_size; } const uint8_t* data = (const uint8_t*)_data; const uint16_t numSides = _imageContainer.m_numLayers * (_imageContainer.m_cubeMap ? 6 : 1); if (_imageContainer.m_ktx) { uint32_t width = _imageContainer.m_width; uint32_t height = _imageContainer.m_height; uint32_t depth = _imageContainer.m_depth; for (uint8_t lod = 0, num = _imageContainer.m_numMips; lod < num; ++lod) { uint32_t imageSize = bx::toHostEndian(*(const uint32_t*)&data[offset], _imageContainer.m_ktxLE) / _imageContainer.m_numLayers; offset += sizeof(uint32_t); width = bx::uint32_max(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth); height = bx::uint32_max(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight); depth = bx::uint32_max(1, depth); uint32_t size = width*height*depth*bpp/8; BX_CHECK(size == imageSize, "KTX: Image size mismatch %d (expected %d).", size, imageSize); for (uint16_t side = 0; side < numSides; ++side) { if (side == _side && lod == _lod) { _mip.m_width = width; _mip.m_height = height; _mip.m_blockSize = blockSize; _mip.m_size = size; _mip.m_data = &data[offset]; _mip.m_bpp = bpp; _mip.m_format = format; _mip.m_hasAlpha = hasAlpha; return true; } offset += imageSize; BX_CHECK(offset <= _size, "Reading past size of data buffer! (offset %d, size %d)", offset, _size); BX_UNUSED(_size); } width >>= 1; height >>= 1; depth >>= 1; } } else { for (uint16_t side = 0; side < numSides; ++side) { uint32_t width = _imageContainer.m_width; uint32_t height = _imageContainer.m_height; uint32_t depth = _imageContainer.m_depth; for (uint8_t lod = 0, num = _imageContainer.m_numMips; lod < num; ++lod) { width = bx::uint32_max(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth); height = bx::uint32_max(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight); depth = bx::uint32_max(1, depth); uint32_t size = width*height*depth*bpp/8; if (side == _side && lod == _lod) { _mip.m_width = width; _mip.m_height = height; _mip.m_blockSize = blockSize; _mip.m_size = size; _mip.m_data = &data[offset]; _mip.m_bpp = bpp; _mip.m_format = format; _mip.m_hasAlpha = hasAlpha; return true; } offset += size; BX_CHECK(offset <= _size, "Reading past size of data buffer! (offset %d, size %d)", offset, _size); BX_UNUSED(_size); width >>= 1; height >>= 1; depth >>= 1; } } } return false; } void imageWriteTga(bx::WriterI* _writer, uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src, bool _grayscale, bool _yflip, bx::Error* _err) { BX_ERROR_SCOPE(_err); uint8_t type = _grayscale ? 3 : 2; uint8_t bpp = _grayscale ? 8 : 32; uint8_t header[18] = {}; header[ 2] = type; header[12] = _width &0xff; header[13] = (_width >>8)&0xff; header[14] = _height &0xff; header[15] = (_height>>8)&0xff; header[16] = bpp; header[17] = 32; bx::write(_writer, header, sizeof(header), _err); uint32_t dstPitch = _width*bpp/8; if (_yflip) { uint8_t* data = (uint8_t*)_src + _pitch*_height - _pitch; for (uint32_t yy = 0; yy < _height; ++yy) { bx::write(_writer, data, dstPitch, _err); data -= _pitch; } } else if (_pitch == dstPitch) { bx::write(_writer, _src, _height*_pitch, _err); } else { uint8_t* data = (uint8_t*)_src; for (uint32_t yy = 0; yy < _height; ++yy) { bx::write(_writer, data, dstPitch, _err); data += _pitch; } } } static int32_t imageWriteKtxHeader(bx::WriterI* _writer, TextureFormat::Enum _format, bool _cubeMap, uint32_t _width, uint32_t _height, uint32_t _depth, uint8_t _numMips, bx::Error* _err) { BX_ERROR_SCOPE(_err); const KtxFormatInfo& tfi = s_translateKtxFormat[_format]; int32_t size = 0; size += bx::write(_writer, "\xabKTX 11\xbb\r\n\x1a\n", 12, _err); size += bx::write(_writer, uint32_t(0x04030201), _err); size += bx::write(_writer, uint32_t(0), _err); // glType size += bx::write(_writer, uint32_t(1), _err); // glTypeSize size += bx::write(_writer, uint32_t(0), _err); // glFormat size += bx::write(_writer, tfi.m_internalFmt, _err); // glInternalFormat size += bx::write(_writer, tfi.m_fmt, _err); // glBaseInternalFormat size += bx::write(_writer, _width, _err); size += bx::write(_writer, _height, _err); size += bx::write(_writer, _depth, _err); size += bx::write(_writer, uint32_t(0), _err); // numberOfArrayElements size += bx::write(_writer, _cubeMap ? uint32_t(6) : uint32_t(0), _err); size += bx::write(_writer, uint32_t(_numMips), _err); size += bx::write(_writer, uint32_t(0), _err); // Meta-data size. BX_WARN(size == 64, "KTX: Failed to write header size %d (expected: %d).", size, 64); return size; } void imageWriteKtx(bx::WriterI* _writer, TextureFormat::Enum _format, bool _cubeMap, uint32_t _width, uint32_t _height, uint32_t _depth, uint8_t _numMips, const void* _src, bx::Error* _err) { BX_ERROR_SCOPE(_err); imageWriteKtxHeader(_writer, _format, _cubeMap, _width, _height, _depth, _numMips, _err); const ImageBlockInfo& blockInfo = s_imageBlockInfo[_format]; const uint8_t bpp = blockInfo.bitsPerPixel; const uint32_t blockWidth = blockInfo.blockWidth; const uint32_t blockHeight = blockInfo.blockHeight; const uint32_t minBlockX = blockInfo.minBlockX; const uint32_t minBlockY = blockInfo.minBlockY; const uint8_t* src = (const uint8_t*)_src; uint32_t width = _width; uint32_t height = _height; uint32_t depth = _depth; for (uint8_t lod = 0, num = _numMips; lod < num; ++lod) { width = bx::uint32_max(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth); height = bx::uint32_max(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight); depth = bx::uint32_max(1, depth); uint32_t size = width*height*depth*bpp/8; bx::write(_writer, size, _err); for (uint8_t side = 0, numSides = _cubeMap ? 6 : 1; side < numSides; ++side) { bx::write(_writer, src, size, _err); src += size; } width >>= 1; height >>= 1; depth >>= 1; } } void imageWriteKtx(bx::WriterI* _writer, ImageContainer& _imageContainer, const void* _data, uint32_t _size, bx::Error* _err) { BX_ERROR_SCOPE(_err); imageWriteKtxHeader(_writer , TextureFormat::Enum(_imageContainer.m_format) , _imageContainer.m_cubeMap , _imageContainer.m_width , _imageContainer.m_height , _imageContainer.m_depth , _imageContainer.m_numMips , _err ); for (uint8_t lod = 0, num = _imageContainer.m_numMips; lod < num; ++lod) { ImageMip mip; imageGetRawData(_imageContainer, 0, lod, _data, _size, mip); bx::write(_writer, mip.m_size, _err); for (uint8_t side = 0, numSides = _imageContainer.m_cubeMap ? 6 : 1; side < numSides; ++side) { if (imageGetRawData(_imageContainer, side, lod, _data, _size, mip) ) { bx::write(_writer, mip.m_data, mip.m_size, _err); } } } } } // namespace bgfx