rbdlsim/3rdparty/tracy/examples/ToyPathTracer/Windows/ComputeShader.hlsl

396 lines
11 KiB
HLSL

#include "../Source/Config.h"
inline uint RNG(inout uint state)
{
uint x = state;
x ^= x << 13;
x ^= x >> 17;
x ^= x << 15;
state = x;
return x;
}
float RandomFloat01(inout uint state)
{
return (RNG(state) & 0xFFFFFF) / 16777216.0f;
}
float3 RandomInUnitDisk(inout uint state)
{
float a = RandomFloat01(state) * 2.0f * 3.1415926f;
float2 xy = float2(cos(a), sin(a));
xy *= sqrt(RandomFloat01(state));
return float3(xy, 0);
}
float3 RandomInUnitSphere(inout uint state)
{
float z = RandomFloat01(state) * 2.0f - 1.0f;
float t = RandomFloat01(state) * 2.0f * 3.1415926f;
float r = sqrt(max(0.0, 1.0f - z * z));
float x = r * cos(t);
float y = r * sin(t);
float3 res = float3(x, y, z);
res *= pow(RandomFloat01(state), 1.0 / 3.0);
return res;
}
float3 RandomUnitVector(inout uint state)
{
float z = RandomFloat01(state) * 2.0f - 1.0f;
float a = RandomFloat01(state) * 2.0f * 3.1415926f;
float r = sqrt(1.0f - z * z);
float x = r * cos(a);
float y = r * sin(a);
return float3(x, y, z);
}
struct Ray
{
float3 orig;
float3 dir;
};
Ray MakeRay(float3 orig_, float3 dir_) { Ray r; r.orig = orig_; r.dir = dir_; return r; }
float3 RayPointAt(Ray r, float t) { return r.orig + r.dir * t; }
inline bool refract(float3 v, float3 n, float nint, out float3 outRefracted)
{
float dt = dot(v, n);
float discr = 1.0f - nint * nint*(1 - dt * dt);
if (discr > 0)
{
outRefracted = nint * (v - n * dt) - n * sqrt(discr);
return true;
}
return false;
}
inline float schlick(float cosine, float ri)
{
float r0 = (1 - ri) / (1 + ri);
r0 = r0 * r0;
// note: saturate to guard against possible tiny negative numbers
return r0 + (1 - r0)*pow(saturate(1 - cosine), 5);
}
struct Hit
{
float3 pos;
float3 normal;
float t;
};
struct Sphere
{
float3 center;
float radius;
float invRadius;
};
#define MatLambert 0
#define MatMetal 1
#define MatDielectric 2
struct Material
{
int type;
float3 albedo;
float3 emissive;
float roughness;
float ri;
};
groupshared Sphere s_GroupSpheres[kCSMaxObjects];
groupshared Material s_GroupMaterials[kCSMaxObjects];
groupshared int s_GroupEmissives[kCSMaxObjects];
struct Camera
{
float3 origin;
float3 lowerLeftCorner;
float3 horizontal;
float3 vertical;
float3 u, v, w;
float lensRadius;
};
Ray CameraGetRay(Camera cam, float s, float t, inout uint state)
{
float3 rd = cam.lensRadius * RandomInUnitDisk(state);
float3 offset = cam.u * rd.x + cam.v * rd.y;
return MakeRay(cam.origin + offset, normalize(cam.lowerLeftCorner + s * cam.horizontal + t * cam.vertical - cam.origin - offset));
}
int HitSpheres(Ray r, int sphereCount, float tMin, float tMax, inout Hit outHit)
{
float hitT = tMax;
int id = -1;
for (int i = 0; i < sphereCount; ++i)
{
Sphere s = s_GroupSpheres[i];
float3 co = s.center - r.orig;
float nb = dot(co, r.dir);
float c = dot(co, co) - s.radius*s.radius;
float discr = nb * nb - c;
if (discr > 0)
{
float discrSq = sqrt(discr);
// Try earlier t
float t = nb - discrSq;
if (t <= tMin) // before min, try later t!
t = nb + discrSq;
if (t > tMin && t < hitT)
{
id = i;
hitT = t;
}
}
}
if (id != -1)
{
outHit.pos = RayPointAt(r, hitT);
outHit.normal = (outHit.pos - s_GroupSpheres[id].center) * s_GroupSpheres[id].invRadius;
outHit.t = hitT;
}
return id;
}
struct Params
{
Camera cam;
int sphereCount;
int screenWidth;
int screenHeight;
int frames;
float invWidth;
float invHeight;
float lerpFac;
int emissiveCount;
};
#define kMinT 0.001f
#define kMaxT 1.0e7f
#define kMaxDepth 10
static int HitWorld(int sphereCount, Ray r, float tMin, float tMax, inout Hit outHit)
{
return HitSpheres(r, sphereCount, tMin, tMax, outHit);
}
static bool Scatter(int sphereCount, int emissiveCount, int matID, Ray r_in, Hit rec, out float3 attenuation, out Ray scattered, out float3 outLightE, inout int inoutRayCount, inout uint state)
{
outLightE = float3(0, 0, 0);
Material mat = s_GroupMaterials[matID];
if (mat.type == MatLambert)
{
// random point on unit sphere that is tangent to the hit point
float3 target = rec.pos + rec.normal + RandomUnitVector(state);
scattered = MakeRay(rec.pos, normalize(target - rec.pos));
attenuation = mat.albedo;
// sample lights
#if DO_LIGHT_SAMPLING
for (int j = 0; j < emissiveCount; ++j)
{
int i = s_GroupEmissives[j];
if (matID == i)
continue; // skip self
Material smat = s_GroupMaterials[i];
Sphere s = s_GroupSpheres[i];
// create a random direction towards sphere
// coord system for sampling: sw, su, sv
float3 sw = normalize(s.center - rec.pos);
float3 su = normalize(cross(abs(sw.x)>0.01f ? float3(0, 1, 0) : float3(1, 0, 0), sw));
float3 sv = cross(sw, su);
// sample sphere by solid angle
float cosAMax = sqrt(1.0f - s.radius*s.radius / dot(rec.pos - s.center, rec.pos - s.center));
float eps1 = RandomFloat01(state), eps2 = RandomFloat01(state);
float cosA = 1.0f - eps1 + eps1 * cosAMax;
float sinA = sqrt(1.0f - cosA * cosA);
float phi = 2 * 3.1415926 * eps2;
float3 l = su * cos(phi) * sinA + sv * sin(phi) * sinA + sw * cosA;
// shoot shadow ray
Hit lightHit;
++inoutRayCount;
int hitID = HitWorld(sphereCount, MakeRay(rec.pos, l), kMinT, kMaxT, lightHit);
if (hitID == i)
{
float omega = 2 * 3.1415926 * (1 - cosAMax);
float3 rdir = r_in.dir;
float3 nl = dot(rec.normal, rdir) < 0 ? rec.normal : -rec.normal;
outLightE += (mat.albedo * smat.emissive) * (max(0.0f, dot(l, nl)) * omega / 3.1415926);
}
}
#endif
return true;
}
else if (mat.type == MatMetal)
{
float3 refl = reflect(r_in.dir, rec.normal);
// reflected ray, and random inside of sphere based on roughness
float roughness = mat.roughness;
#if DO_MITSUBA_COMPARE
roughness = 0; // until we get better BRDF for metals
#endif
scattered = MakeRay(rec.pos, normalize(refl + roughness*RandomInUnitSphere(state)));
attenuation = mat.albedo;
return dot(scattered.dir, rec.normal) > 0;
}
else if (mat.type == MatDielectric)
{
float3 outwardN;
float3 rdir = r_in.dir;
float3 refl = reflect(rdir, rec.normal);
float nint;
attenuation = float3(1, 1, 1);
float3 refr;
float reflProb;
float cosine;
if (dot(rdir, rec.normal) > 0)
{
outwardN = -rec.normal;
nint = mat.ri;
cosine = mat.ri * dot(rdir, rec.normal);
}
else
{
outwardN = rec.normal;
nint = 1.0f / mat.ri;
cosine = -dot(rdir, rec.normal);
}
if (refract(rdir, outwardN, nint, refr))
{
reflProb = schlick(cosine, mat.ri);
}
else
{
reflProb = 1;
}
if (RandomFloat01(state) < reflProb)
scattered = MakeRay(rec.pos, normalize(refl));
else
scattered = MakeRay(rec.pos, normalize(refr));
}
else
{
attenuation = float3(1, 0, 1);
scattered = MakeRay(float3(0,0,0), float3(0, 0, 1));
return false;
}
return true;
}
static float3 Trace(int sphereCount, int emissiveCount, Ray r, inout int inoutRayCount, inout uint state)
{
float3 col = 0;
float3 curAtten = 1;
bool doMaterialE = true;
// GPUs don't support recursion, so do tracing iterations in a loop up to max depth
for (int depth = 0; depth < kMaxDepth; ++depth)
{
Hit rec;
++inoutRayCount;
int id = HitWorld(sphereCount, r, kMinT, kMaxT, rec);
if (id >= 0)
{
Ray scattered;
float3 attenuation;
float3 lightE;
Material mat = s_GroupMaterials[id];
float3 matE = mat.emissive;
if (Scatter(sphereCount, emissiveCount, id, r, rec, attenuation, scattered, lightE, inoutRayCount, state))
{
#if DO_LIGHT_SAMPLING
if (!doMaterialE) matE = 0;
doMaterialE = (mat.type != MatLambert);
#endif
col += curAtten * (matE + lightE);
curAtten *= attenuation;
r = scattered;
}
else
{
col += curAtten * matE;
break;
}
}
else
{
// sky
#if DO_MITSUBA_COMPARE
col += curAtten * float3(0.15f, 0.21f, 0.3f); // easier compare with Mitsuba's constant environment light
#else
float3 unitDir = r.dir;
float t = 0.5f*(unitDir.y + 1.0f);
float3 skyCol = ((1.0f - t)*float3(1.0f, 1.0f, 1.0f) + t * float3(0.5f, 0.7f, 1.0f)) * 0.3f;
col += curAtten * skyCol;
#endif
break;
}
}
return col;
}
Texture2D srcImage : register(t0);
RWTexture2D<float4> dstImage : register(u0);
StructuredBuffer<Sphere> g_Spheres : register(t1);
StructuredBuffer<Material> g_Materials : register(t2);
StructuredBuffer<Params> g_Params : register(t3);
StructuredBuffer<int> g_Emissives : register(t4);
RWByteAddressBuffer g_OutRayCount : register(u1);
[numthreads(kCSGroupSizeX, kCSGroupSizeY, 1)]
void main(uint3 gid : SV_DispatchThreadID, uint3 tid : SV_GroupThreadID)
{
// First, move scene data (spheres, materials, emissive indices) into group shared
// memory. Do this in parallel; each thread in group copies its own chunk of data.
uint threadID = tid.y * kCSGroupSizeX + tid.x;
uint groupSize = kCSGroupSizeX * kCSGroupSizeY;
uint objCount = g_Params[0].sphereCount;
uint myObjCount = (objCount + groupSize - 1) / groupSize;
uint myObjStart = threadID * myObjCount;
for (uint io = myObjStart; io < myObjStart + myObjCount; ++io)
{
if (io < objCount)
{
s_GroupSpheres[io] = g_Spheres[io];
s_GroupMaterials[io] = g_Materials[io];
}
if (io < g_Params[0].emissiveCount)
{
s_GroupEmissives[io] = g_Emissives[io];
}
}
GroupMemoryBarrierWithGroupSync();
int rayCount = 0;
float3 col = 0;
Params params = g_Params[0];
uint rngState = (gid.x * 1973 + gid.y * 9277 + params.frames * 26699) | 1;
for (int s = 0; s < DO_SAMPLES_PER_PIXEL; s++)
{
float u = float(gid.x + RandomFloat01(rngState)) * params.invWidth;
float v = float(gid.y + RandomFloat01(rngState)) * params.invHeight;
Ray r = CameraGetRay(params.cam, u, v, rngState);
col += Trace(params.sphereCount, params.emissiveCount, r, rayCount, rngState);
}
col *= 1.0f / float(DO_SAMPLES_PER_PIXEL);
float3 prev = srcImage.Load(int3(gid.xy,0)).rgb;
col = lerp(col, prev, params.lerpFac);
dstImage[gid.xy] = float4(col, 1);
g_OutRayCount.InterlockedAdd(0, rayCount);
}