rbdlsim/3rdparty/tracy/examples/ToyPathTracer/Source/enkiTS/TaskScheduler.cpp

437 lines
12 KiB
C++

// Copyright (c) 2013 Doug Binks
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgement in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
#include <assert.h>
#include "TaskScheduler.h"
#include "LockLessMultiReadPipe.h"
using namespace enki;
static const uint32_t PIPESIZE_LOG2 = 8;
static const uint32_t SPIN_COUNT = 100;
static const uint32_t SPIN_BACKOFF_MULTIPLIER = 10;
static const uint32_t MAX_NUM_INITIAL_PARTITIONS = 8;
// each software thread gets it's own copy of gtl_threadNum, so this is safe to use as a static variable
static THREAD_LOCAL uint32_t gtl_threadNum = 0;
namespace enki
{
struct SubTaskSet
{
ITaskSet* pTask;
TaskSetPartition partition;
};
// we derive class TaskPipe rather than typedef to get forward declaration working easily
class TaskPipe : public LockLessMultiReadPipe<PIPESIZE_LOG2,enki::SubTaskSet> {};
struct ThreadArgs
{
uint32_t threadNum;
TaskScheduler* pTaskScheduler;
};
}
namespace
{
SubTaskSet SplitTask( SubTaskSet& subTask_, uint32_t rangeToSplit_ )
{
SubTaskSet splitTask = subTask_;
uint32_t rangeLeft = subTask_.partition.end - subTask_.partition.start;
if( rangeToSplit_ > rangeLeft )
{
rangeToSplit_ = rangeLeft;
}
splitTask.partition.end = subTask_.partition.start + rangeToSplit_;
subTask_.partition.start = splitTask.partition.end;
return splitTask;
}
#if defined _WIN32
#if defined _M_IX86 || defined _M_X64
#pragma intrinsic(_mm_pause)
inline void Pause() { _mm_pause(); }
#endif
#elif defined __i386__ || defined __x86_64__
inline void Pause() { __asm__ __volatile__("pause;"); }
#else
inline void Pause() { ;} // may have NOP or yield equiv
#endif
}
static void SafeCallback(ProfilerCallbackFunc func_, uint32_t threadnum_)
{
if( func_ )
{
func_(threadnum_);
}
}
ProfilerCallbacks* TaskScheduler::GetProfilerCallbacks()
{
return &m_ProfilerCallbacks;
}
THREADFUNC_DECL TaskScheduler::TaskingThreadFunction( void* pArgs )
{
ThreadArgs args = *(ThreadArgs*)pArgs;
uint32_t threadNum = args.threadNum;
TaskScheduler* pTS = args.pTaskScheduler;
gtl_threadNum = threadNum;
SafeCallback( pTS->m_ProfilerCallbacks.threadStart, threadNum );
uint32_t spinCount = 0;
uint32_t hintPipeToCheck_io = threadNum + 1; // does not need to be clamped.
while( pTS->m_bRunning )
{
if(!pTS->TryRunTask( threadNum, hintPipeToCheck_io ) )
{
// no tasks, will spin then wait
++spinCount;
if( spinCount > SPIN_COUNT )
{
pTS->WaitForTasks( threadNum );
spinCount = 0;
}
else
{
uint32_t spinBackoffCount = spinCount * SPIN_BACKOFF_MULTIPLIER;
while( spinBackoffCount )
{
Pause();
--spinBackoffCount;
}
}
}
else
{
spinCount = 0;
}
}
AtomicAdd( &pTS->m_NumThreadsRunning, -1 );
SafeCallback( pTS->m_ProfilerCallbacks.threadStop, threadNum );
return 0;
}
void TaskScheduler::StartThreads()
{
if( m_bHaveThreads )
{
return;
}
m_bRunning = true;
SemaphoreCreate( m_NewTaskSemaphore );
// we create one less thread than m_NumThreads as the main thread counts as one
m_pThreadNumStore = new ThreadArgs[m_NumThreads];
m_pThreadIDs = new threadid_t[m_NumThreads];
m_pThreadNumStore[0].threadNum = 0;
m_pThreadNumStore[0].pTaskScheduler = this;
m_pThreadIDs[0] = 0;
m_NumThreadsWaiting = 0;
m_NumThreadsRunning = 1;// acount for main thread
for( uint32_t thread = 1; thread < m_NumThreads; ++thread )
{
m_pThreadNumStore[thread].threadNum = thread;
m_pThreadNumStore[thread].pTaskScheduler = this;
ThreadCreate( &m_pThreadIDs[thread], TaskingThreadFunction, &m_pThreadNumStore[thread] );
++m_NumThreadsRunning;
}
// ensure we have sufficient tasks to equally fill either all threads including main
// or just the threads we've launched, this is outside the firstinit as we want to be able
// to runtime change it
if( 1 == m_NumThreads )
{
m_NumPartitions = 1;
m_NumInitialPartitions = 1;
}
else
{
m_NumPartitions = m_NumThreads * (m_NumThreads - 1);
m_NumInitialPartitions = m_NumThreads - 1;
if( m_NumInitialPartitions > MAX_NUM_INITIAL_PARTITIONS )
{
m_NumInitialPartitions = MAX_NUM_INITIAL_PARTITIONS;
}
}
m_bHaveThreads = true;
}
void TaskScheduler::StopThreads( bool bWait_ )
{
if( m_bHaveThreads )
{
// wait for them threads quit before deleting data
m_bRunning = false;
while( bWait_ && m_NumThreadsRunning > 1 )
{
// keep firing event to ensure all threads pick up state of m_bRunning
SemaphoreSignal( m_NewTaskSemaphore, m_NumThreadsRunning );
}
for( uint32_t thread = 1; thread < m_NumThreads; ++thread )
{
ThreadTerminate( m_pThreadIDs[thread] );
}
m_NumThreads = 0;
delete[] m_pThreadNumStore;
delete[] m_pThreadIDs;
m_pThreadNumStore = 0;
m_pThreadIDs = 0;
SemaphoreClose( m_NewTaskSemaphore );
m_bHaveThreads = false;
m_NumThreadsWaiting = 0;
m_NumThreadsRunning = 0;
}
}
bool TaskScheduler::TryRunTask( uint32_t threadNum, uint32_t& hintPipeToCheck_io_ )
{
// check for tasks
SubTaskSet subTask;
bool bHaveTask = m_pPipesPerThread[ threadNum ].WriterTryReadFront( &subTask );
uint32_t threadToCheck = hintPipeToCheck_io_;
uint32_t checkCount = 0;
while( !bHaveTask && checkCount < m_NumThreads )
{
threadToCheck = ( hintPipeToCheck_io_ + checkCount ) % m_NumThreads;
if( threadToCheck != threadNum )
{
bHaveTask = m_pPipesPerThread[ threadToCheck ].ReaderTryReadBack( &subTask );
}
++checkCount;
}
if( bHaveTask )
{
// update hint, will preserve value unless actually got task from another thread.
hintPipeToCheck_io_ = threadToCheck;
uint32_t partitionSize = subTask.partition.end - subTask.partition.start;
if( subTask.pTask->m_RangeToRun < partitionSize )
{
SubTaskSet taskToRun = SplitTask( subTask, subTask.pTask->m_RangeToRun );
SplitAndAddTask( gtl_threadNum, subTask, subTask.pTask->m_RangeToRun, 0 );
taskToRun.pTask->ExecuteRange( taskToRun.partition, threadNum );
AtomicAdd( &taskToRun.pTask->m_RunningCount, -1 );
}
else
{
// the task has already been divided up by AddTaskSetToPipe, so just run it
subTask.pTask->ExecuteRange( subTask.partition, threadNum );
AtomicAdd( &subTask.pTask->m_RunningCount, -1 );
}
}
return bHaveTask;
}
void TaskScheduler::WaitForTasks( uint32_t threadNum )
{
// We incrememt the number of threads waiting here in order
// to ensure that the check for tasks occurs after the increment
// to prevent a task being added after a check, then the thread waiting.
// This will occasionally result in threads being mistakenly awoken,
// but they will then go back to sleep.
AtomicAdd( &m_NumThreadsWaiting, 1 );
bool bHaveTasks = false;
for( uint32_t thread = 0; thread < m_NumThreads; ++thread )
{
if( !m_pPipesPerThread[ thread ].IsPipeEmpty() )
{
bHaveTasks = true;
break;
}
}
if( !bHaveTasks )
{
SafeCallback( m_ProfilerCallbacks.waitStart, threadNum );
SemaphoreWait( m_NewTaskSemaphore );
SafeCallback( m_ProfilerCallbacks.waitStop, threadNum );
}
int32_t prev = AtomicAdd( &m_NumThreadsWaiting, -1 );
assert( prev != 0 );
}
void TaskScheduler::WakeThreads()
{
SemaphoreSignal( m_NewTaskSemaphore, m_NumThreadsWaiting );
}
void TaskScheduler::SplitAndAddTask( uint32_t threadNum_, SubTaskSet subTask_,
uint32_t rangeToSplit_, int32_t runningCountOffset_ )
{
int32_t numAdded = 0;
while( subTask_.partition.start != subTask_.partition.end )
{
SubTaskSet taskToAdd = SplitTask( subTask_, rangeToSplit_ );
// add the partition to the pipe
++numAdded;
if( !m_pPipesPerThread[ gtl_threadNum ].WriterTryWriteFront( taskToAdd ) )
{
if( numAdded > 1 )
{
WakeThreads();
}
// alter range to run the appropriate fraction
if( taskToAdd.pTask->m_RangeToRun < rangeToSplit_ )
{
taskToAdd.partition.end = taskToAdd.partition.start + taskToAdd.pTask->m_RangeToRun;
subTask_.partition.start = taskToAdd.partition.end;
}
taskToAdd.pTask->ExecuteRange( taskToAdd.partition, threadNum_ );
--numAdded;
}
}
// increment running count by number added
AtomicAdd( &subTask_.pTask->m_RunningCount, numAdded + runningCountOffset_ );
WakeThreads();
}
void TaskScheduler::AddTaskSetToPipe( ITaskSet* pTaskSet )
{
// set running count to -1 to guarantee it won't be found complete until all subtasks added
pTaskSet->m_RunningCount = -1;
// divide task up and add to pipe
pTaskSet->m_RangeToRun = pTaskSet->m_SetSize / m_NumPartitions;
if( pTaskSet->m_RangeToRun < pTaskSet->m_MinRange ) { pTaskSet->m_RangeToRun = pTaskSet->m_MinRange; }
uint32_t rangeToSplit = pTaskSet->m_SetSize / m_NumInitialPartitions;
if( rangeToSplit < pTaskSet->m_MinRange ) { rangeToSplit = pTaskSet->m_MinRange; }
SubTaskSet subTask;
subTask.pTask = pTaskSet;
subTask.partition.start = 0;
subTask.partition.end = pTaskSet->m_SetSize;
SplitAndAddTask( gtl_threadNum, subTask, rangeToSplit, 1 );
}
void TaskScheduler::WaitforTaskSet( const ITaskSet* pTaskSet )
{
uint32_t hintPipeToCheck_io = gtl_threadNum + 1; // does not need to be clamped.
if( pTaskSet )
{
while( pTaskSet->m_RunningCount )
{
TryRunTask( gtl_threadNum, hintPipeToCheck_io );
// should add a spin then wait for task completion event.
}
}
else
{
TryRunTask( gtl_threadNum, hintPipeToCheck_io );
}
}
void TaskScheduler::WaitforAll()
{
bool bHaveTasks = true;
uint32_t hintPipeToCheck_io = gtl_threadNum + 1; // does not need to be clamped.
int32_t threadsRunning = m_NumThreadsRunning - 1;
while( bHaveTasks || m_NumThreadsWaiting < threadsRunning )
{
TryRunTask( gtl_threadNum, hintPipeToCheck_io );
bHaveTasks = false;
for( uint32_t thread = 0; thread < m_NumThreads; ++thread )
{
if( !m_pPipesPerThread[ thread ].IsPipeEmpty() )
{
bHaveTasks = true;
break;
}
}
}
}
void TaskScheduler::WaitforAllAndShutdown()
{
WaitforAll();
StopThreads(true);
delete[] m_pPipesPerThread;
m_pPipesPerThread = 0;
}
uint32_t TaskScheduler::GetNumTaskThreads() const
{
return m_NumThreads;
}
TaskScheduler::TaskScheduler()
: m_pPipesPerThread(NULL)
, m_NumThreads(0)
, m_pThreadNumStore(NULL)
, m_pThreadIDs(NULL)
, m_bRunning(false)
, m_NumThreadsRunning(0)
, m_NumThreadsWaiting(0)
, m_NumPartitions(0)
, m_bHaveThreads(false)
{
memset(&m_ProfilerCallbacks, 0, sizeof(m_ProfilerCallbacks));
}
TaskScheduler::~TaskScheduler()
{
StopThreads( true ); // Stops threads, waiting for them.
delete[] m_pPipesPerThread;
m_pPipesPerThread = 0;
}
void TaskScheduler::Initialize( uint32_t numThreads_ )
{
assert( numThreads_ );
StopThreads( true ); // Stops threads, waiting for them.
delete[] m_pPipesPerThread;
m_NumThreads = numThreads_;
m_pPipesPerThread = new TaskPipe[ m_NumThreads ];
StartThreads();
}
void TaskScheduler::Initialize()
{
Initialize( GetNumHardwareThreads() );
}