rbdlsim/3rdparty/tracy/examples/ToyPathTracer/Source/enkiTS/TaskScheduler.h

177 lines
6.6 KiB
C++

// Copyright (c) 2013 Doug Binks
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgement in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
#pragma once
#include <stdint.h>
#include "Threads.h"
namespace enki
{
struct TaskSetPartition
{
uint32_t start;
uint32_t end;
};
class TaskScheduler;
class TaskPipe;
struct ThreadArgs;
struct SubTaskSet;
// Subclass ITaskSet to create tasks.
// TaskSets can be re-used, but check
class ITaskSet
{
public:
ITaskSet()
: m_SetSize(1)
, m_MinRange(1)
, m_RunningCount(0)
, m_RangeToRun(1)
{}
ITaskSet( uint32_t setSize_ )
: m_SetSize( setSize_ )
, m_MinRange(1)
, m_RunningCount(0)
, m_RangeToRun(1)
{}
ITaskSet( uint32_t setSize_, uint32_t minRange_ )
: m_SetSize( setSize_ )
, m_MinRange( minRange_ )
, m_RunningCount(0)
, m_RangeToRun(minRange_)
{}
// Execute range should be overloaded to process tasks. It will be called with a
// range_ where range.start >= 0; range.start < range.end; and range.end < m_SetSize;
// The range values should be mapped so that linearly processing them in order is cache friendly
// i.e. neighbouring values should be close together.
// threadnum should not be used for changing processing of data, it's intended purpose
// is to allow per-thread data buckets for output.
virtual void ExecuteRange( TaskSetPartition range, uint32_t threadnum ) = 0;
// Size of set - usually the number of data items to be processed, see ExecuteRange. Defaults to 1
uint32_t m_SetSize;
// Minimum size of of TaskSetPartition range when splitting a task set into partitions.
// This should be set to a value which results in computation effort of at least 10k
// clock cycles to minimize tast scheduler overhead.
// NOTE: The last partition will be smaller than m_MinRange if m_SetSize is not a multiple
// of m_MinRange.
// Also known as grain size in literature.
uint32_t m_MinRange;
bool GetIsComplete()
{
return 0 == m_RunningCount;
}
private:
friend class TaskScheduler;
volatile int32_t m_RunningCount;
uint32_t m_RangeToRun;
};
// TaskScheduler implements several callbacks intended for profilers
typedef void (*ProfilerCallbackFunc)( uint32_t threadnum_ );
struct ProfilerCallbacks
{
ProfilerCallbackFunc threadStart;
ProfilerCallbackFunc threadStop;
ProfilerCallbackFunc waitStart;
ProfilerCallbackFunc waitStop;
};
class TaskScheduler
{
public:
TaskScheduler();
~TaskScheduler();
// Call either Initialize() or Initialize( numThreads_ ) before adding tasks.
// Initialize() will create GetNumHardwareThreads()-1 threads, which is
// sufficient to fill the system when including the main thread.
// Initialize can be called multiple times - it will wait for completion
// before re-initializing.
void Initialize();
// Initialize( numThreads_ ) - numThreads_ (must be > 0)
// will create numThreads_-1 threads, as thread 0 is
// the thread on which the initialize was called.
void Initialize( uint32_t numThreads_ );
// Adds the TaskSet to pipe and returns if the pipe is not full.
// If the pipe is full, pTaskSet is run.
// should only be called from main thread, or within a task
void AddTaskSetToPipe( ITaskSet* pTaskSet );
// Runs the TaskSets in pipe until true == pTaskSet->GetIsComplete();
// should only be called from thread which created the taskscheduler , or within a task
// if called with 0 it will try to run tasks, and return if none available.
void WaitforTaskSet( const ITaskSet* pTaskSet );
// Waits for all task sets to complete - not guaranteed to work unless we know we
// are in a situation where tasks aren't being continuosly added.
void WaitforAll();
// Waits for all task sets to complete and shutdown threads - not guaranteed to work unless we know we
// are in a situation where tasks aren't being continuosly added.
void WaitforAllAndShutdown();
// Returns the number of threads created for running tasks + 1
// to account for the main thread.
uint32_t GetNumTaskThreads() const;
// Returns the ProfilerCallbacks structure so that it can be modified to
// set the callbacks.
ProfilerCallbacks* GetProfilerCallbacks();
private:
static THREADFUNC_DECL TaskingThreadFunction( void* pArgs );
void WaitForTasks( uint32_t threadNum );
bool TryRunTask( uint32_t threadNum, uint32_t& hintPipeToCheck_io_ );
void StartThreads();
void StopThreads( bool bWait_ );
void SplitAndAddTask( uint32_t threadNum_, SubTaskSet subTask_,
uint32_t rangeToSplit_, int32_t runningCountOffset_ );
void WakeThreads();
TaskPipe* m_pPipesPerThread;
uint32_t m_NumThreads;
ThreadArgs* m_pThreadNumStore;
threadid_t* m_pThreadIDs;
volatile bool m_bRunning;
volatile int32_t m_NumThreadsRunning;
volatile int32_t m_NumThreadsWaiting;
uint32_t m_NumPartitions;
uint32_t m_NumInitialPartitions;
semaphoreid_t m_NewTaskSemaphore;
bool m_bHaveThreads;
ProfilerCallbacks m_ProfilerCallbacks;
TaskScheduler( const TaskScheduler& nocopy );
TaskScheduler& operator=( const TaskScheduler& nocopy );
};
}