rbdlsim/3rdparty/rbdl/src/Kinematics.cc

903 lines
27 KiB
C++
Raw Normal View History

2020-10-03 22:55:14 +02:00
/*
* RBDL - Rigid Body Dynamics Library
* Copyright (c) 2011-2018 Martin Felis <martin@fysx.org>
*
* Licensed under the zlib license. See LICENSE for more details.
*/
#include <iostream>
#include <limits>
#include <cstring>
#include <assert.h>
#include "rbdl/rbdl_mathutils.h"
#include "rbdl/Logging.h"
#include "rbdl/Model.h"
#include "rbdl/Kinematics.h"
namespace RigidBodyDynamics {
using namespace Math;
RBDL_DLLAPI void UpdateKinematics(
Model &model,
const VectorNd &Q,
const VectorNd &QDot,
const VectorNd &QDDot) {
LOG << "-------- " << __func__ << " --------" << std::endl;
unsigned int i;
model.a[0].setZero();
for (i = 1; i < model.mBodies.size(); i++) {
unsigned int q_index = model.mJoints[i].q_index;
unsigned int lambda = model.lambda[i];
jcalc (model, i, Q, QDot);
if (lambda != 0) {
model.X_base[i] = model.X_lambda[i] * model.X_base[lambda];
model.v[i] = model.X_lambda[i].apply(model.v[lambda]) + model.v_J[i];
} else {
model.X_base[i] = model.X_lambda[i];
model.v[i] = model.v_J[i];
}
model.c[i] = model.c_J[i] + crossm(model.v[i],model.v_J[i]);
model.a[i] = model.X_lambda[i].apply(model.a[lambda]) + model.c[i];
if(model.mJoints[i].mJointType != JointTypeCustom){
if (model.mJoints[i].mDoFCount == 1) {
model.a[i] = model.a[i] + model.S[i] * QDDot[q_index];
} else if (model.mJoints[i].mDoFCount == 3) {
Vector3d omegadot_temp (QDDot[q_index],
QDDot[q_index + 1],
QDDot[q_index + 2]);
model.a[i] = model.a[i] + model.multdof3_S[i] * omegadot_temp;
}
} else {
unsigned int custom_index = model.mJoints[i].custom_joint_index;
const CustomJoint* custom_joint = model.mCustomJoints[custom_index];
unsigned int joint_dof_count = custom_joint->mDoFCount;
model.a[i] = model.a[i]
+ ( model.mCustomJoints[custom_index]->S
* QDDot.block(q_index, 0, joint_dof_count, 1));
}
}
for (i = 1; i < model.mBodies.size(); i++) {
LOG << "a[" << i << "] = " << model.a[i].transpose() << std::endl;
}
}
RBDL_DLLAPI void UpdateKinematicsCustom(
Model &model,
const VectorNd *Q,
const VectorNd *QDot,
const VectorNd *QDDot) {
LOG << "-------- " << __func__ << " --------" << std::endl;
unsigned int i;
if (Q) {
for (i = 1; i < model.mBodies.size(); i++) {
unsigned int lambda = model.lambda[i];
VectorNd QDot_zero (VectorNd::Zero (model.q_size));
jcalc (model, i, (*Q), QDot_zero);
if (lambda != 0) {
model.X_base[i] = model.X_lambda[i] * model.X_base[lambda];
} else {
model.X_base[i] = model.X_lambda[i];
}
}
}
if (QDot) {
for (i = 1; i < model.mBodies.size(); i++) {
unsigned int lambda = model.lambda[i];
jcalc (model, i, *Q, *QDot);
if (lambda != 0) {
model.v[i] = model.X_lambda[i].apply(model.v[lambda]) + model.v_J[i];
model.c[i] = model.c_J[i] + crossm(model.v[i],model.v_J[i]);
} else {
model.v[i] = model.v_J[i];
model.c[i] = model.c_J[i] + crossm(model.v[i],model.v_J[i]);
}
// LOG << "v[" << i << "] = " << model.v[i].transpose() << std::endl;
}
}
// FIXME?: Changing QDot can alter body accelerations via c[] - update to QDot but not QDDot can result in incorrect a[]
if (QDDot) {
for (i = 1; i < model.mBodies.size(); i++) {
unsigned int q_index = model.mJoints[i].q_index;
unsigned int lambda = model.lambda[i];
if (lambda != 0) {
model.a[i] = model.X_lambda[i].apply(model.a[lambda]) + model.c[i];
} else {
model.a[i] = model.c[i];
}
if( model.mJoints[i].mJointType != JointTypeCustom){
if (model.mJoints[i].mDoFCount == 1) {
model.a[i] = model.a[i] + model.S[i] * (*QDDot)[q_index];
} else if (model.mJoints[i].mDoFCount == 3) {
Vector3d omegadot_temp ((*QDDot)[q_index],
(*QDDot)[q_index + 1],
(*QDDot)[q_index + 2]);
model.a[i] = model.a[i]
+ model.multdof3_S[i] * omegadot_temp;
}
} else {
unsigned int k = model.mJoints[i].custom_joint_index;
const CustomJoint* custom_joint = model.mCustomJoints[k];
unsigned int joint_dof_count = custom_joint->mDoFCount;
model.a[i] = model.a[i]
+ ( (model.mCustomJoints[k]->S)
*(QDDot->block(q_index, 0, joint_dof_count, 1)));
}
}
}
}
RBDL_DLLAPI Vector3d CalcBodyToBaseCoordinates (
Model &model,
const VectorNd &Q,
unsigned int body_id,
const Vector3d &point_body_coordinates,
bool update_kinematics) {
// update the Kinematics if necessary
if (update_kinematics) {
UpdateKinematicsCustom (model, &Q, NULL, NULL);
}
if (body_id >= model.fixed_body_discriminator) {
unsigned int fbody_id = body_id - model.fixed_body_discriminator;
unsigned int parent_id = model.mFixedBodies[fbody_id].mMovableParent;
Matrix3d fixed_rotation =
model.mFixedBodies[fbody_id].mParentTransform.E.transpose();
Vector3d fixed_position = model.mFixedBodies[fbody_id].mParentTransform.r;
Matrix3d parent_body_rotation = model.X_base[parent_id].E.transpose();
Vector3d parent_body_position = model.X_base[parent_id].r;
return (parent_body_position
+ (parent_body_rotation
* (fixed_position + fixed_rotation * (point_body_coordinates))) );
}
Matrix3d body_rotation = model.X_base[body_id].E.transpose();
Vector3d body_position = model.X_base[body_id].r;
return body_position + body_rotation * point_body_coordinates;
}
RBDL_DLLAPI Vector3d CalcBaseToBodyCoordinates (
Model &model,
const VectorNd &Q,
unsigned int body_id,
const Vector3d &point_base_coordinates,
bool update_kinematics) {
if (update_kinematics) {
UpdateKinematicsCustom (model, &Q, NULL, NULL);
}
if (body_id >= model.fixed_body_discriminator) {
unsigned int fbody_id = body_id - model.fixed_body_discriminator;
unsigned int parent_id = model.mFixedBodies[fbody_id].mMovableParent;
Matrix3d fixed_rotation = model.mFixedBodies[fbody_id].mParentTransform.E;
Vector3d fixed_position = model.mFixedBodies[fbody_id].mParentTransform.r;
Matrix3d parent_body_rotation = model.X_base[parent_id].E;
Vector3d parent_body_position = model.X_base[parent_id].r;
return (fixed_rotation
* ( - fixed_position
- parent_body_rotation
* (parent_body_position - point_base_coordinates)));
}
Matrix3d body_rotation = model.X_base[body_id].E;
Vector3d body_position = model.X_base[body_id].r;
return body_rotation * (point_base_coordinates - body_position);
}
RBDL_DLLAPI Matrix3d CalcBodyWorldOrientation(
Model &model,
const VectorNd &Q,
const unsigned int body_id,
bool update_kinematics) {
// update the Kinematics if necessary
if (update_kinematics) {
UpdateKinematicsCustom (model, &Q, NULL, NULL);
}
if (body_id >= model.fixed_body_discriminator) {
unsigned int fbody_id = body_id - model.fixed_body_discriminator;
model.mFixedBodies[fbody_id].mBaseTransform =
model.mFixedBodies[fbody_id].mParentTransform
* model.X_base[model.mFixedBodies[fbody_id].mMovableParent];
return model.mFixedBodies[fbody_id].mBaseTransform.E;
}
return model.X_base[body_id].E;
}
RBDL_DLLAPI void CalcPointJacobian (
Model &model,
const VectorNd &Q,
unsigned int body_id,
const Vector3d &point_position,
MatrixNd &G,
bool update_kinematics) {
LOG << "-------- " << __func__ << " --------" << std::endl;
// update the Kinematics if necessary
if (update_kinematics) {
UpdateKinematicsCustom (model, &Q, NULL, NULL);
}
SpatialTransform point_trans =
SpatialTransform (Matrix3d::Identity(),
CalcBodyToBaseCoordinates ( model,
Q,
body_id,
point_position,
false));
assert (G.rows() == 3 && G.cols() == model.qdot_size );
unsigned int reference_body_id = body_id;
if (model.IsFixedBodyId(body_id)) {
unsigned int fbody_id = body_id - model.fixed_body_discriminator;
reference_body_id = model.mFixedBodies[fbody_id].mMovableParent;
}
unsigned int j = reference_body_id;
// e[j] is set to 1 if joint j contributes to the jacobian that we are
// computing. For all other joints the column will be zero.
while (j != 0) {
unsigned int q_index = model.mJoints[j].q_index;
if(model.mJoints[j].mJointType != JointTypeCustom){
if (model.mJoints[j].mDoFCount == 1) {
G.block(0,q_index, 3, 1) =
point_trans.apply(
model.X_base[j].inverse().apply(
model.S[j])).block(3,0,3,1);
} else if (model.mJoints[j].mDoFCount == 3) {
G.block(0, q_index, 3, 3) =
((point_trans
* model.X_base[j].inverse()).toMatrix()
* model.multdof3_S[j]).block(3,0,3,3);
}
} else {
unsigned int k = model.mJoints[j].custom_joint_index;
G.block(0, q_index, 3, model.mCustomJoints[k]->mDoFCount) =
((point_trans
* model.X_base[j].inverse()).toMatrix()
* model.mCustomJoints[k]->S).block(
3,0,3,model.mCustomJoints[k]->mDoFCount);
}
j = model.lambda[j];
}
}
RBDL_DLLAPI void CalcPointJacobian6D (
Model &model,
const VectorNd &Q,
unsigned int body_id,
const Vector3d &point_position,
MatrixNd &G,
bool update_kinematics) {
LOG << "-------- " << __func__ << " --------" << std::endl;
// update the Kinematics if necessary
if (update_kinematics) {
UpdateKinematicsCustom (model, &Q, NULL, NULL);
}
SpatialTransform point_trans =
SpatialTransform (Matrix3d::Identity(),
CalcBodyToBaseCoordinates (model,
Q,
body_id,
point_position,
false));
assert (G.rows() == 6 && G.cols() == model.qdot_size );
unsigned int reference_body_id = body_id;
if (model.IsFixedBodyId(body_id)) {
unsigned int fbody_id = body_id - model.fixed_body_discriminator;
reference_body_id = model.mFixedBodies[fbody_id].mMovableParent;
}
unsigned int j = reference_body_id;
while (j != 0) {
unsigned int q_index = model.mJoints[j].q_index;
if(model.mJoints[j].mJointType != JointTypeCustom){
if (model.mJoints[j].mDoFCount == 1) {
G.block(0,q_index, 6, 1)
= point_trans.apply(
model.X_base[j].inverse().apply(
model.S[j])).block(0,0,6,1);
} else if (model.mJoints[j].mDoFCount == 3) {
G.block(0, q_index, 6, 3)
= ((point_trans
* model.X_base[j].inverse()).toMatrix()
* model.multdof3_S[j]).block(0,0,6,3);
}
} else {
unsigned int k = model.mJoints[j].custom_joint_index;
G.block(0, q_index, 6, model.mCustomJoints[k]->mDoFCount)
= ((point_trans
* model.X_base[j].inverse()).toMatrix()
* model.mCustomJoints[k]->S).block(
0,0,6,model.mCustomJoints[k]->mDoFCount);
}
j = model.lambda[j];
}
}
RBDL_DLLAPI void CalcBodySpatialJacobian (
Model &model,
const VectorNd &Q,
unsigned int body_id,
MatrixNd &G,
bool update_kinematics) {
LOG << "-------- " << __func__ << " --------" << std::endl;
// update the Kinematics if necessary
if (update_kinematics) {
UpdateKinematicsCustom (model, &Q, NULL, NULL);
}
assert (G.rows() == 6 && G.cols() == model.qdot_size );
unsigned int reference_body_id = body_id;
SpatialTransform base_to_body;
if (model.IsFixedBodyId(body_id)) {
unsigned int fbody_id = body_id
- model.fixed_body_discriminator;
reference_body_id = model
.mFixedBodies[fbody_id]
.mMovableParent;
base_to_body = model.mFixedBodies[fbody_id]
.mParentTransform
* model.X_base[reference_body_id];
} else {
base_to_body = model.X_base[reference_body_id];
}
unsigned int j = reference_body_id;
while (j != 0) {
unsigned int q_index = model.mJoints[j].q_index;
if(model.mJoints[j].mJointType != JointTypeCustom){
if (model.mJoints[j].mDoFCount == 1) {
G.block(0,q_index,6,1) =
base_to_body.apply(
model.X_base[j]
.inverse()
.apply(model.S[j])
);
} else if (model.mJoints[j].mDoFCount == 3) {
G.block(0,q_index,6,3) =
(base_to_body * model.X_base[j].inverse()
).toMatrix() * model.multdof3_S[j];
}
}else if(model.mJoints[j].mJointType == JointTypeCustom) {
unsigned int k = model.mJoints[j].custom_joint_index;
G.block(0,q_index,6,model.mCustomJoints[k]->mDoFCount ) =
(base_to_body * model.X_base[j].inverse()
).toMatrix() * model.mCustomJoints[k]->S;
}
j = model.lambda[j];
}
}
RBDL_DLLAPI Vector3d CalcPointVelocity (
Model &model,
const VectorNd &Q,
const VectorNd &QDot,
unsigned int body_id,
const Vector3d &point_position,
bool update_kinematics) {
LOG << "-------- " << __func__ << " --------" << std::endl;
assert (model.IsBodyId(body_id) || body_id == 0);
assert (model.q_size == Q.size());
assert (model.qdot_size == QDot.size());
// Reset the velocity of the root body
model.v[0].setZero();
// update the Kinematics with zero acceleration
if (update_kinematics) {
UpdateKinematicsCustom (model, &Q, &QDot, NULL);
}
unsigned int reference_body_id = body_id;
Vector3d reference_point = point_position;
if (model.IsFixedBodyId(body_id)) {
unsigned int fbody_id = body_id - model.fixed_body_discriminator;
reference_body_id = model.mFixedBodies[fbody_id].mMovableParent;
Vector3d base_coords =
CalcBodyToBaseCoordinates(model, Q, body_id, point_position, false);
reference_point =
CalcBaseToBodyCoordinates(model, Q, reference_body_id, base_coords,false);
}
SpatialVector point_spatial_velocity =
SpatialTransform (
CalcBodyWorldOrientation (model, Q, reference_body_id, false).transpose(),
reference_point).apply(model.v[reference_body_id]);
return Vector3d (
point_spatial_velocity[3],
point_spatial_velocity[4],
point_spatial_velocity[5]
);
}
RBDL_DLLAPI Math::SpatialVector CalcPointVelocity6D(
Model &model,
const Math::VectorNd &Q,
const Math::VectorNd &QDot,
unsigned int body_id,
const Math::Vector3d &point_position,
bool update_kinematics) {
LOG << "-------- " << __func__ << " --------" << std::endl;
assert (model.IsBodyId(body_id) || body_id == 0);
assert (model.q_size == Q.size());
assert (model.qdot_size == QDot.size());
// Reset the velocity of the root body
model.v[0].setZero();
// update the Kinematics with zero acceleration
if (update_kinematics) {
UpdateKinematicsCustom (model, &Q, &QDot, NULL);
}
unsigned int reference_body_id = body_id;
Vector3d reference_point = point_position;
if (model.IsFixedBodyId(body_id)) {
unsigned int fbody_id = body_id - model.fixed_body_discriminator;
reference_body_id = model.mFixedBodies[fbody_id].mMovableParent;
Vector3d base_coords =
CalcBodyToBaseCoordinates(model, Q, body_id, point_position, false);
reference_point =
CalcBaseToBodyCoordinates(model, Q, reference_body_id, base_coords,false);
}
return SpatialTransform (
CalcBodyWorldOrientation (model, Q, reference_body_id, false).transpose(),
reference_point).apply(model.v[reference_body_id]);
}
RBDL_DLLAPI Vector3d CalcPointAcceleration (
Model &model,
const VectorNd &Q,
const VectorNd &QDot,
const VectorNd &QDDot,
unsigned int body_id,
const Vector3d &point_position,
bool update_kinematics) {
LOG << "-------- " << __func__ << " --------" << std::endl;
// Reset the velocity of the root body
model.v[0].setZero();
model.a[0].setZero();
if (update_kinematics)
UpdateKinematics (model, Q, QDot, QDDot);
LOG << std::endl;
unsigned int reference_body_id = body_id;
Vector3d reference_point = point_position;
if (model.IsFixedBodyId(body_id)) {
unsigned int fbody_id = body_id - model.fixed_body_discriminator;
reference_body_id = model.mFixedBodies[fbody_id].mMovableParent;
Vector3d base_coords =
CalcBodyToBaseCoordinates (model, Q, body_id, point_position, false);
reference_point =
CalcBaseToBodyCoordinates (model, Q, reference_body_id,base_coords,false);
}
SpatialTransform p_X_i (
CalcBodyWorldOrientation (model, Q, reference_body_id, false).transpose(),
reference_point);
SpatialVector p_v_i = p_X_i.apply(model.v[reference_body_id]);
Vector3d a_dash = Vector3d (p_v_i[0], p_v_i[1], p_v_i[2]
).cross(Vector3d (p_v_i[3], p_v_i[4], p_v_i[5]));
SpatialVector p_a_i = p_X_i.apply(model.a[reference_body_id]);
return Vector3d (
p_a_i[3] + a_dash[0],
p_a_i[4] + a_dash[1],
p_a_i[5] + a_dash[2]
);
}
RBDL_DLLAPI SpatialVector CalcPointAcceleration6D(
Model &model,
const VectorNd &Q,
const VectorNd &QDot,
const VectorNd &QDDot,
unsigned int body_id,
const Vector3d &point_position,
bool update_kinematics) {
LOG << "-------- " << __func__ << " --------" << std::endl;
// Reset the velocity of the root body
model.v[0].setZero();
model.a[0].setZero();
if (update_kinematics)
UpdateKinematics (model, Q, QDot, QDDot);
LOG << std::endl;
unsigned int reference_body_id = body_id;
Vector3d reference_point = point_position;
if (model.IsFixedBodyId(body_id)) {
unsigned int fbody_id = body_id - model.fixed_body_discriminator;
reference_body_id = model.mFixedBodies[fbody_id].mMovableParent;
Vector3d base_coords =
CalcBodyToBaseCoordinates (model, Q, body_id, point_position, false);
reference_point =
CalcBaseToBodyCoordinates (model, Q, reference_body_id,base_coords,false);
}
SpatialTransform p_X_i (
CalcBodyWorldOrientation (model, Q, reference_body_id, false).transpose(),
reference_point);
SpatialVector p_v_i = p_X_i.apply(model.v[reference_body_id]);
Vector3d a_dash = Vector3d (p_v_i[0], p_v_i[1], p_v_i[2]
).cross(Vector3d (p_v_i[3], p_v_i[4], p_v_i[5]));
return (p_X_i.apply(model.a[reference_body_id])
+ SpatialVector (0, 0, 0, a_dash[0], a_dash[1], a_dash[2]));
}
RBDL_DLLAPI bool InverseKinematics (
Model &model,
const VectorNd &Qinit,
const std::vector<unsigned int>& body_id,
const std::vector<Vector3d>& body_point,
const std::vector<Vector3d>& target_pos,
VectorNd &Qres,
double step_tol,
double lambda,
unsigned int max_iter) {
assert (Qinit.size() == model.q_size);
assert (body_id.size() == body_point.size());
assert (body_id.size() == target_pos.size());
MatrixNd J = MatrixNd::Zero(3 * body_id.size(), model.qdot_size);
VectorNd e = VectorNd::Zero(3 * body_id.size());
Qres = Qinit;
for (unsigned int ik_iter = 0; ik_iter < max_iter; ik_iter++) {
UpdateKinematicsCustom (model, &Qres, NULL, NULL);
for (unsigned int k = 0; k < body_id.size(); k++) {
MatrixNd G (MatrixNd::Zero(3, model.qdot_size));
CalcPointJacobian (model, Qres, body_id[k], body_point[k], G, false);
Vector3d point_base =
CalcBodyToBaseCoordinates (model, Qres, body_id[k], body_point[k], false);
LOG << "current_pos = " << point_base.transpose() << std::endl;
for (unsigned int i = 0; i < 3; i++) {
for (unsigned int j = 0; j < model.qdot_size; j++) {
unsigned int row = k * 3 + i;
LOG << "i = " << i << " j = " << j << " k = " << k << " row = "
<< row << " col = " << j << std::endl;
J(row, j) = G (i,j);
}
e[k * 3 + i] = target_pos[k][i] - point_base[i];
}
}
LOG << "J = " << J << std::endl;
LOG << "e = " << e.transpose() << std::endl;
// abort if we are getting "close"
if (e.norm() < step_tol) {
LOG << "Reached target close enough after " << ik_iter << " steps" << std::endl;
return true;
}
MatrixNd JJTe_lambda2_I =
J * J.transpose()
+ lambda*lambda * MatrixNd::Identity(e.size(), e.size());
VectorNd z (body_id.size() * 3);
z = JJTe_lambda2_I.colPivHouseholderQr().solve (e);
LOG << "z = " << z << std::endl;
VectorNd delta_theta = J.transpose() * z;
LOG << "change = " << delta_theta << std::endl;
Qres = Qres + delta_theta;
LOG << "Qres = " << Qres.transpose() << std::endl;
if (delta_theta.norm() < step_tol) {
LOG << "reached convergence after " << ik_iter << " steps" << std::endl;
return true;
}
VectorNd test_1 (z.size());
VectorNd test_res (z.size());
test_1.setZero();
for (unsigned int i = 0; i < z.size(); i++) {
test_1[i] = 1.;
VectorNd test_delta = J.transpose() * test_1;
test_res[i] = test_delta.squaredNorm();
test_1[i] = 0.;
}
LOG << "test_res = " << test_res.transpose() << std::endl;
}
return false;
}
RBDL_DLLAPI
Vector3d CalcAngularVelocityfromMatrix (
const Matrix3d &RotMat
) {
double tol = 1e-12;
Vector3d l = Vector3d (RotMat(2,1) - RotMat(1,2), RotMat(0,2) - RotMat(2,0), RotMat(1,0) - RotMat(0,1));
if(l.norm() > tol){
double preFactor = atan2(l.norm(),(RotMat.trace() - 1.0))/l.norm();
return preFactor*l;
}
else if((RotMat(0,0)>0 && RotMat(1,1)>0 && RotMat(2,2) > 0) || l.norm() < tol){
return Vector3dZero;
}
else{
double PI = atan(1)*4.0;
return Vector3d (PI/2*(RotMat(0,0) + 1.0),PI/2*(RotMat(1,1) + 1.0),PI/2*(RotMat(2,2) + 1.0));
}
}
RBDL_DLLAPI
InverseKinematicsConstraintSet::InverseKinematicsConstraintSet() {
lambda = 1e-9;
num_steps = 0;
max_steps = 300;
step_tol = 1e-12;
constraint_tol = 1e-12;
num_constraints = 0;
}
RBDL_DLLAPI
unsigned int InverseKinematicsConstraintSet::AddPointConstraint(
unsigned int body_id,
const Vector3d& body_point,
const Vector3d& target_pos
) {
constraint_type.push_back (ConstraintTypePosition);
body_ids.push_back(body_id);
body_points.push_back(body_point);
target_positions.push_back(target_pos);
target_orientations.push_back(Matrix3d::Zero(3,3));
constraint_row_index.push_back(num_constraints);
num_constraints = num_constraints + 3;
return constraint_type.size() - 1;
}
RBDL_DLLAPI
unsigned int InverseKinematicsConstraintSet::AddOrientationConstraint(
unsigned int body_id,
const Matrix3d& target_orientation
) {
constraint_type.push_back (ConstraintTypeOrientation);
body_ids.push_back(body_id);
body_points.push_back(Vector3d::Zero());
target_positions.push_back(Vector3d::Zero());
target_orientations.push_back(target_orientation);
constraint_row_index.push_back(num_constraints);
num_constraints = num_constraints + 3;
return constraint_type.size() - 1;
}
RBDL_DLLAPI
unsigned int InverseKinematicsConstraintSet::AddFullConstraint(
unsigned int body_id,
const Vector3d& body_point,
const Vector3d& target_pos,
const Matrix3d& target_orientation
) {
constraint_type.push_back (ConstraintTypeFull);
body_ids.push_back(body_id);
body_points.push_back(body_point);
target_positions.push_back(target_pos);
target_orientations.push_back(target_orientation);
constraint_row_index.push_back(num_constraints);
num_constraints = num_constraints + 6;
return constraint_type.size() - 1;
}
RBDL_DLLAPI
unsigned int InverseKinematicsConstraintSet::ClearConstraints()
{
for (unsigned int i =0; i < constraint_type.size(); i++){
constraint_type.pop_back();
body_ids.pop_back();
body_points.pop_back();
target_positions.pop_back();
target_orientations.pop_back();
num_constraints = 0;
}
return constraint_type.size();
}
RBDL_DLLAPI
bool InverseKinematics (
Model &model,
const Math::VectorNd &Qinit,
InverseKinematicsConstraintSet &CS,
Math::VectorNd &Qres
) {
assert (Qinit.size() == model.q_size);
assert (Qres.size() == Qinit.size());
CS.J = MatrixNd::Zero(CS.num_constraints, model.qdot_size);
CS.e = VectorNd::Zero(CS.num_constraints);
Qres = Qinit;
for (CS.num_steps = 0; CS.num_steps < CS.max_steps; CS.num_steps++) {
UpdateKinematicsCustom (model, &Qres, NULL, NULL);
for (unsigned int k = 0; k < CS.body_ids.size(); k++) {
CS.G = MatrixNd::Zero(6, model.qdot_size);
CalcPointJacobian6D (model, Qres, CS.body_ids[k], CS.body_points[k], CS.G, false);
Vector3d point_base = CalcBodyToBaseCoordinates (model, Qres, CS.body_ids[k], CS.body_points[k], false);
Matrix3d R = CalcBodyWorldOrientation(model, Qres, CS.body_ids[k], false);
Vector3d angular_velocity = R.transpose()*CalcAngularVelocityfromMatrix(R*CS.target_orientations[k].transpose());
//assign offsets and Jacobians
if (CS.constraint_type[k] == InverseKinematicsConstraintSet::ConstraintTypeFull){
for (unsigned int i = 0; i < 3; i++){
unsigned int row = CS.constraint_row_index[k] + i;
CS.e[row + 3] = CS.target_positions[k][i] - point_base[i];
CS.e[row] = angular_velocity[i];
for (unsigned int j = 0; j < model.qdot_size; j++) {
CS.J(row + 3, j) = CS.G (i + 3,j);
CS.J(row, j) = CS.G (i,j);
}
}
}
else if (CS.constraint_type[k] == InverseKinematicsConstraintSet::ConstraintTypeOrientation){
for (unsigned int i = 0; i < 3; i++){
unsigned int row = CS.constraint_row_index[k] + i;
CS.e[row] = angular_velocity[i];
for (unsigned int j = 0; j < model.qdot_size; j++) {
CS.J(row, j) = CS.G (i,j);
}
}
}
else if (CS.constraint_type[k] == InverseKinematicsConstraintSet::ConstraintTypePosition){
for (unsigned int i = 0; i < 3; i++){
unsigned int row = CS.constraint_row_index[k] + i;
CS.e[row] = CS.target_positions[k][i] - point_base[i];
for (unsigned int j = 0; j < model.qdot_size; j++) {
CS.J(row, j) = CS.G (i + 3,j);
}
}
}
else {
assert (false && !"Invalid inverse kinematics constraint");
}
}
LOG << "J = " << CS.J << std::endl;
LOG << "e = " << CS.e.transpose() << std::endl;
CS.error_norm = CS.e.norm();
// abort if we are getting "close"
if (CS.error_norm < CS.step_tol) {
LOG << "Reached target close enough after " << CS.num_steps << " steps" << std::endl;
return true;
}
// // "task space" from puppeteer
// MatrixNd Ek = MatrixNd::Zero (CS.e.size(), CS.e.size());
//
// for (size_t ei = 0; ei < CS.e.size(); ei ++) {
// // Ek(ei,ei) = CS.error_norm * CS.error_norm * 0.5 + CS.lambda;
// Ek(ei,ei) = CS.e[ei]*CS.e[ei] * 0.5 + CS.lambda;
// }
//
// MatrixNd JJT_Ek_wnI = CS.J * CS.J.transpose() + Ek;
//
// VectorNd delta_theta = CS.J.transpose() * JJT_Ek_wnI.colPivHouseholderQr().solve (CS.e);
//
// LOG << "change = " << delta_theta << std::endl;
// "joint space" from puppeteer
double Ek = 0.;
for (unsigned int ei = 0; ei < CS.e.size(); ei ++) {
Ek += CS.e[ei] * CS.e[ei] * 0.5;
}
VectorNd ek = CS.J.transpose() * CS.e;
MatrixNd Wn = MatrixNd::Zero (Qres.size(), Qres.size());
assert (ek.size() == Qres.size());
for (unsigned int wi = 0; wi < Qres.size(); wi++) {
Wn(wi, wi) = ek[wi] * ek[wi] * 0.5 + CS.lambda;
// Wn(wi, wi) = Ek + 1.0e-3;
}
MatrixNd A = CS.J.transpose() * CS.J + Wn;
VectorNd delta_theta = A.colPivHouseholderQr().solve(CS.J.transpose() * CS.e);
Qres = Qres + delta_theta;
if (delta_theta.norm() < CS.step_tol) {
LOG << "reached convergence after " << CS.num_steps << " steps" << std::endl;
return true;
}
}
return false;
}
}