rbdlsim/3rdparty/rbdl/addons/geometry/SegmentedQuinticBezierToolk...

1286 lines
39 KiB
C++
Raw Permalink Normal View History

2020-10-03 22:55:14 +02:00
/* -------------------------------------------------------------------------- *
* OpenSim: SegmentedQuinticBezierToolkit.cpp *
* -------------------------------------------------------------------------- *
* The OpenSim API is a toolkit for musculoskeletal modeling and simulation. *
* See http://opensim.stanford.edu and the NOTICE file for more information. *
* OpenSim is developed at Stanford University and supported by the US *
* National Institutes of Health (U54 GM072970, R24 HD065690) and by DARPA *
* through the Warrior Web program. *
* *
* Copyright (c) 2005-2012 Stanford University and the Authors *
* Author(s): Matthew Millard *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/*
Update:
This is a port of the original code so that it will work with
the multibody code RBDL written by Martin Felis.
Author:
Matthew Millard
Date:
Nov 2015
*/
//=============================================================================
// INCLUDES
//=============================================================================
#include "SegmentedQuinticBezierToolkit.h"
#include <cstdio>
#include <iostream>
#include <fstream>
#include <cmath>
#include <sstream>
//#include <cassert>
using namespace RigidBodyDynamics::Addons::Geometry;
//=============================================================================
// STATICS
//=============================================================================
//using namespace SimTK;
//using namespace OpenSim;
using namespace std;
using namespace RigidBodyDynamics::Math;
static double UTOL_DESIRED = std::numeric_limits<double>::epsilon()*1e2;
static double UTOL_INITIALSOLN = std::numeric_limits<double>::epsilon()*1e11;
static int MAXITER_INITIALSOLN = 12;
static int NUM_SAMPLE_PTS = 100; //The number of knot points to use to sample
//each Bezier corner section
double SegmentedQuinticBezierToolkit::scaleCurviness(double curviness)
{
double c = 0.1 + 0.8*curviness;
return c;
}
/**
This function will print cvs file of the column vector col0 and the matrix data
@params col0: A vector that must have the same number of rows as the data matrix
This column vector is printed as the first column
@params data: A matrix of data
@params filename: The name of the file to print
*/
void SegmentedQuinticBezierToolkit::
printMatrixToFile( const VectorNd& col0,
const MatrixNd& data,
std::string& filename)
{
ofstream datafile;
datafile.open(filename.c_str());
for(int i = 0; i < data.rows(); i++){
datafile << col0[i] << ",";
for(int j = 0; j < data.cols(); j++){
if(j<data.cols()-1)
datafile << data(i,j) << ",";
else
datafile << data(i,j) << "\n";
}
}
datafile.close();
}
void SegmentedQuinticBezierToolkit::
printBezierSplineFitCurves( const Function_<double>& curveFit,
MatrixNd& ctrlPts,
VectorNd& xVal,
VectorNd& yVal,
std::string& filename)
{
std::string caller = "printBezierSplineFitCurves";
int nbezier = int(ctrlPts.cols()/2.0);
int rows = NUM_SAMPLE_PTS*nbezier - (nbezier-1);
VectorNd y1Val(rows);
VectorNd y2Val(rows);
VectorNd ySVal(rows);
VectorNd y1SVal(rows);
VectorNd y2SVal(rows);
MatrixNd printMatrix(rows,6);
VectorNd tmp(1);
std::vector<int> deriv1(1);
std::vector<int> deriv2(2);
deriv1[0] = 0;
deriv2[0] = 0;
deriv2[1] = 0;
double u = 0;
int oidx = 0;
int offset = 0;
for(int j=0; j < nbezier ; j++)
{
if(j > 0){
offset = 1;
}
for(int i=0; i<NUM_SAMPLE_PTS-offset; i++)
{
oidx = i + j*NUM_SAMPLE_PTS - offset*(j-1);
u = ( (double)(i+offset) )/( (double)(NUM_SAMPLE_PTS-1) );
y1Val[oidx] = calcQuinticBezierCurveDerivDYDX(u,
ctrlPts.col(2*j),ctrlPts.col(2*j+1),1);
y2Val[oidx] = calcQuinticBezierCurveDerivDYDX(u,
ctrlPts.col(2*j),ctrlPts.col(2*j+1),2);
tmp[0] = xVal[oidx];
ySVal[oidx] = curveFit.calcValue( tmp );
y1SVal[oidx] = curveFit.calcDerivative(deriv1,tmp);
y2SVal[oidx] = curveFit.calcDerivative(deriv2,tmp);
printMatrix(oidx,0) = yVal[oidx];
printMatrix(oidx,1) = y1Val[oidx];
printMatrix(oidx,2) = y2Val[oidx];
printMatrix(oidx,3) = ySVal[oidx];
printMatrix(oidx,4) =y1SVal[oidx];
printMatrix(oidx,5) =y2SVal[oidx];
}
}
printMatrixToFile(xVal,printMatrix,filename);
}
//=============================================================================
// Bezier Corner Element Fitting Function
//=============================================================================
/*Detailed Computational Costs
Divisions Multiplication Additions Assignments
1 13 9 23
*/
MatrixNd SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints(
double x0, double y0, double dydx0,
double x1, double y1, double dydx1, double curviness)
{
MatrixNd xyPts(6,2);
/*
SimTK_ERRCHK_ALWAYS( (curviness>=0 && curviness <= 1) ,
"SegmentedQuinticBezierToolkit::calcQuinticBezierCornerControlPoints",
"Error: double argument curviness must be between 0.0 and 1.0.");
*/
if( !(curviness>=0 && curviness <= 1) ){
cerr << "SegmentedQuinticBezierToolkit::"
<<"calcQuinticBezierCornerControlPoints"
<<"Error: double argument curviness must be between 0.0 and 1.0."
<<"curviness : " << curviness << " "
<< endl;
assert (0);
abort();
}
//1. Calculate the location where the two lines intersect
// (x-x0)*dydx0 + y0 = (x-x1)*dydx1 + y1
// x*(dydx0-dydx1) = y1-y0-x1*dydx1+x0*dydx0
// x = (y1-y0-x1*dydx1+x0*dydx0)/(dydx0-dydx1);
double xC = 0.;
double yC = 0.;
double epsilon = std::numeric_limits<double>::epsilon();
double rootEPS = sqrt(epsilon);
if(abs(dydx0-dydx1) > rootEPS){
xC = (y1-y0-x1*dydx1+x0*dydx0)/(dydx0-dydx1);
}else{
xC = (x1+x0)/2.0;
}
yC = (xC-x1)*dydx1 + y1;
//Check to make sure that the inputs are consistent with a corner, and will
//not produce an 's' shaped section. To check this we compute the sides of
//a triangle that is formed by the two points that the user entered, and
//also the intersection of the 2 lines the user entered. If the distance
//between the two points the user entered is larger than the distance from
//either point to the intersection loctaion, this function will generate a
//'C' shaped curve. If this is not true, an 'S' shaped curve will result,
//and this function should not be used.
double xCx0 = (xC-x0);
double yCy0 = (yC-y0);
double xCx1 = (xC-x1);
double yCy1 = (yC-y1);
double x0x1 = (x1-x0);
double y0y1 = (y1-y0);
double a = xCx0*xCx0 + yCy0*yCy0;
double b = xCx1*xCx1 + yCy1*yCy1;
double c = x0x1*x0x1 + y0y1*y0y1;
//This error message needs to be better.
/*
SimTK_ERRCHK_ALWAYS( ((c > a) && (c > b)),
"SegmentedQuinticBezierToolkit::calcQuinticBezierCornerControlPoints",
"The intersection point for the two lines defined by the input"
"parameters must be consistent with a C shaped corner.");
*/
if( !((c > a) && (c > b)) ){
cerr << "SegmentedQuinticBezierToolkit"
<< "::calcQuinticBezierCornerControlPoints:"
<< "The line segments at the end of the curve sections "
<< "do not intersect within the domain "
<< "("<< x0 << "," << x1 << ") of the curve. "
<< "and so there is a chance that curve will not"
<< " be monotonic. There are 2 ways to fix this problem: "
<< endl
<< "1. Add an intermediate point,"
<< endl
<< " 2. Space the domain points more widely "
<< endl
<< "Details: "
<< endl << " a: " << a
<< endl << " b: " << b
<< endl << " c: " << c << endl;
assert (0);
abort();
}
/*
Value of the 2nd derivative at the end points.
This is not exposed to the user for now, as rarely is possible
or even easy to know what these values should be. Internally
I'm using this here because we get curves with nicer 1st
derivatives than if we take the easy option to get a second
derivative of zero (by setting the middle control points equal
to their neighbors.
*/
double d2ydx20 = 0;
double d2ydx21 = 0;
//Start point
xyPts(0,0) = x0;
xyPts(0,1) = y0;
//End point
xyPts(5,0) = x1;
xyPts(5,1) = y1;
/*
//Original code - leads to 2 localized corners
xyPts(1,0) = x0 + curviness*(xC-xyPts(0,0));
xyPts(1,1) = y0 + curviness*(yC-xyPts(0,1));
//xyPts(2,0) = xyPts(1,0);
//xyPts(2,1) = xyPts(1,1);
//Second two midpoints
xyPts(3,0) = xyPts(5,0) + curviness*(xC-xyPts(5,0));
xyPts(3,1) = xyPts(5,1) + curviness*(yC-xyPts(5,1));
xyPts(4,0) = xyPts(3,0);
xyPts(4,1) = xyPts(3,1);
*/
//Set the 1st and 4th control points (nearest to the end points)
//to get the correct first derivative
xyPts(1,0) = x0 + curviness*(xC-xyPts(0,0));
xyPts(1,1) = y0 + curviness*(yC-xyPts(0,1));
xyPts(4,0) = xyPts(5,0) + curviness*(xC-xyPts(5,0));
xyPts(4,1) = xyPts(5,1) + curviness*(yC-xyPts(5,1));
//Now go and update the middle points to get the desired 2nd
//derivative at the ends. Note that even if d2ydx2 = 0 the
//resulting curve using this method has a much smoother 1st
//derivative than if the middle control points are set to be
//equal to the 1st and 4th control points.
double dxdu0 = 5.0*(xyPts(1,0) - xyPts(0,0));
xyPts(2,0) = xyPts(1,0) + 0.5*(xC-xyPts(1,0)) ;
double d2xdu20 = 20.0*(xyPts(2,0) - 2.0*xyPts(1,0) + xyPts(0,0));
double d2ydu20 = (dxdu0*dxdu0*(d2ydx20) + d2xdu20*(dydx0)) ;
xyPts(2,1) = d2ydu20*(1.0/20.0) + 2.0*xyPts(1,1) - xyPts(0,1) ;
double dxdu1 = 5.0*(xyPts(5,0) - xyPts(4,0));
xyPts(3,0) = xyPts(4,0) + 0.5*(xC-xyPts(4,0));
double d2xdu21 = 20.0*(xyPts(3,0) - 2.0*xyPts(4,0) + xyPts(5,0) );
double d2ydu21 = (dxdu1*dxdu1*(d2ydx21) + d2xdu21*(dydx1));
xyPts(3,1) = d2ydu21*(1.0/20.0) + 2.0*xyPts(4,1) - xyPts(5,1);
return xyPts;
}
//=============================================================================
// BASIC QUINTIC BEZIER EVALUATION FUNCTIONS
//=============================================================================
/*
Multiplications Additions Assignments
21 20 13
*/
double SegmentedQuinticBezierToolkit::
calcQuinticBezierCurveVal(double u1, const VectorNd& pts)
{
double val = -1;
/*
SimTK_ERRCHK1_ALWAYS( (u>=0 && u <= 1) ,
"SegmentedQuinticBezierToolkit::calcQuinticBezierCurveVal",
"Error: double argument u must be between 0.0 and 1.0"
"but %f was entered.",u);
*/
if(!(u1 >= 0 && u1 <= 1)){
cerr << "SegmentedQuinticBezierToolkit::calcQuinticBezierCurveVal"
<< "Error: double argument u must be between 0.0 and 1.0"
<< "but " << u1 <<" was entered.";
assert (0);
abort();
}
/*
SimTK_ERRCHK_ALWAYS( (pts.size() == 6) ,
"SegmentedQuinticBezierToolkit::calcQuinticBezierCurveVal",
"Error: vector argument pts must have a length of 6.");
*/
if(!(pts.size() == 6) ){
cerr << "SegmentedQuinticBezierToolkit::calcQuinticBezierCurveVal:"
<< "Error: vector argument pts must have a length of 6.";
assert (0);
abort();
}
double u2 = u1*u1;
double u3 = u2*u1;
double u4 = u3*u1;
double u5 = u4*u1;
//v0 = 1;
double v1 = (1-u1);
double v2 = v1*v1;
double v3 = v2*v1;
double v4 = v3*v1;
double v5 = v4*v1;
val = pts[0] *v5*1.0
+ pts[1]*u1*v4*5.0
+ pts[2]*u2*v3*10.0
+ pts[3]*u3*v2*10.0
+ pts[4]*u4*v1*5.0
+ pts[5]*u5 *1.0;
return val;
}
/*
Detailed Computational Costs
dy/dx Divisions Multiplications Additions Assignments
dy/du 20 19 11
dx/du 20 19 11
dy/dx 1
total 1 40 38 22
d2y/dx2 Divisions Multiplications Additions Assignments
dy/du 20 19 11
dx/du 20 19 11
d2y/du2 17 17 9
d2x/du2 17 17 9
d2y/dx2 2 4 1 3
total 2 78 73 23
d3y/dx3 Divisions Multiplications Additions Assignments
dy/du 20 19 11
dx/du 20 19 11
d2y/du2 17 17 9
d2x/du2 17 17 9
d3y/du3 14 14 6
d3x/du3 14 14 6
d3y/dx3 4 16 5 6
total 4 118 105 58
d4y/dx4 Divisions Multiplications Additions Assignments
dy/du 20 19 11
dx/du 20 19 11
d2y/du2 17 17 9
d2x/du2 17 17 9
d3y/du3 14 14 6
d3x/du3 14 14 6
d4y/du4 11 11 3
d4x/du4 11 11 3
d4y/dx4 5 44 15 13
total 5 168 137 71
d5y/dx5 Divisions Multiplications Additions Assignments
dy/du 20 19 11
dx/du 20 19 11
d2y/du2 17 17 9
d2x/du2 17 17 9
d3y/du3 14 14 6
d3x/du3 14 14 6
d4y/du4 11 11 3
d4x/du4 11 11 3
d5y/du5 6 6 1
d5x/du5 6 6 1
d5y/dx5 7 100 36 28
total 7 236 170 88
d6y/dx6
dy/du 20 19 11
dx/du 20 19 11
d2y/du2 17 17 9
d2x/du2 17 17 9
d3y/du3 14 14 6
d3x/du3 14 14 6
d4y/du4 11 11 3
d4x/du4 11 11 3
d5y/du5 6 6 1
d5x/du5 6 6 1
d6y/dx6 9 198 75 46
total 9 334 209 106
*/
double SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivDYDX(
double u,
const VectorNd& xpts,
const VectorNd& ypts,
int order)
{
double val = NAN;//SimTK::NaN;
//Bounds checking on the input
/*
SimTK_ERRCHK_ALWAYS( (u>=0 && u <= 1) ,
"SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivU",
"Error: double argument u must be between 0.0 and 1.0.");
SimTK_ERRCHK_ALWAYS( (xpts.size()==6) ,
"SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivU",
"Error: vector argument xpts \nmust have a length of 6.");
SimTK_ERRCHK_ALWAYS( (ypts.size()==6) ,
"SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivU",
"Error: vector argument ypts \nmust have a length of 6.");
SimTK_ERRCHK_ALWAYS( (order >= 1),
"SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivU",
"Error: order must be greater than.");
SimTK_ERRCHK_ALWAYS( (order <= 6),
"SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivU",
"Error: order must be less than, or equal to 6.");
*/
if( !(u>=0 && u <= 1) ){
cerr << "SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivU:"
<< "Error: double argument u must be between 0.0 and 1.0."
<< endl;
assert(0);
abort();
}
if( !(xpts.size()==6) ){
cerr << "SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivU:"
<< "Error: vector argument xpts must have a length of 6."
<< endl;
assert(0);
abort();
}
if( !(ypts.size()==6) ){
cerr << "SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivU:"
<< "Error: vector argument ypts must have a length of 6."
<< endl;
assert(0);
abort();
}
if( !(order >= 1) ){
cerr << "SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivU:"
<< "Error: order must be greater than."
<< endl;
assert(0);
abort();
}
if( !(order <= 6) ){
cerr << "SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivU:"
<< "Error: order must be less than, or equal to 6."
<< endl;
assert(0);
abort();
}
//std::string localCaller = caller;
//localCaller.append(".calcQuinticBezierCurveDerivDYDX");
//Compute the derivative d^n y/ dx^n
switch(order){
case 1: //Calculate dy/dx
{
double dxdu =calcQuinticBezierCurveDerivU(u,xpts,1);
double dydu =calcQuinticBezierCurveDerivU(u,ypts,1);
double dydx = dydu/dxdu;
val = dydx;
//Question:
//how is a divide by zero treated? Is SimTK::INF returned?
}
break;
case 2: //Calculate d^2y/dx^2
{
double dxdu =calcQuinticBezierCurveDerivU(u,xpts,1);
double dydu =calcQuinticBezierCurveDerivU(u,ypts,1);
double d2xdu2=calcQuinticBezierCurveDerivU(u,xpts,2);
double d2ydu2=calcQuinticBezierCurveDerivU(u,ypts,2);
//Optimized code from Maple -
//see MuscleCurveCodeOpt_20120210 for details
double t1 = 0.1e1 / dxdu;
double t3 = dxdu*dxdu;//dxdu ^ 2;
double d2ydx2 = (d2ydu2 * t1 - dydu / t3 * d2xdu2) * t1;
val = d2ydx2;
}
break;
case 3: //Calculate d^3y/dx^3
{
double dxdu =calcQuinticBezierCurveDerivU(u,xpts,1);
double dydu =calcQuinticBezierCurveDerivU(u,ypts,1);
double d2xdu2=calcQuinticBezierCurveDerivU(u,xpts,2);
double d2ydu2=calcQuinticBezierCurveDerivU(u,ypts,2);
double d3xdu3=calcQuinticBezierCurveDerivU(u,xpts,3);
double d3ydu3=calcQuinticBezierCurveDerivU(u,ypts,3);
double t1 = 1 / dxdu;
double t3 = dxdu*dxdu;//(dxdu ^ 2);
double t4 = 1 / t3;
double t11 = d2xdu2*d2xdu2;//(d2xdu2 ^ 2);
double t14 = (dydu * t4);
double d3ydx3 = ((d3ydu3 * t1 - 2 * d2ydu2 * t4 * d2xdu2
+ 2 * dydu / t3 / dxdu * t11 - t14 * d3xdu3) * t1
- (d2ydu2 * t1 - t14 * d2xdu2) * t4 * d2xdu2) * t1;
val = d3ydx3;
}
break;
case 4: //Calculate d^4y/dx^4
{
double dxdu =calcQuinticBezierCurveDerivU(u,xpts,1);
double dydu =calcQuinticBezierCurveDerivU(u,ypts,1);
double d2xdu2=calcQuinticBezierCurveDerivU(u,xpts,2);
double d2ydu2=calcQuinticBezierCurveDerivU(u,ypts,2);
double d3xdu3=calcQuinticBezierCurveDerivU(u,xpts,3);
double d3ydu3=calcQuinticBezierCurveDerivU(u,ypts,3);
double d4xdu4=calcQuinticBezierCurveDerivU(u,xpts,4);
double d4ydu4=calcQuinticBezierCurveDerivU(u,ypts,4);
double t1 = 1 / dxdu;
double t3 = dxdu*dxdu;//dxdu ^ 2;
double t4 = 1 / t3;
double t9 = (0.1e1 / t3 / dxdu);
double t11 = d2xdu2*d2xdu2;//(d2xdu2 ^ 2);
double t14 = (d2ydu2 * t4);
double t17 = t3*t3;//(t3 ^ 2);
double t23 = (dydu * t9);
double t27 = (dydu * t4);
double t37 = d3ydu3 * t1 - 2 * t14 * d2xdu2 + 2 * t23 * t11
- t27 * d3xdu3;
double t43 = d2ydu2 * t1 - t27 * d2xdu2;
double t47 = t43 * t4;
double d4ydx4 = (((d4ydu4 * t1 - 3 * d3ydu3 * t4 * d2xdu2
+ 6 * d2ydu2 * t9 * t11 - 3 * t14 * d3xdu3
- 6 * dydu / t17 * t11 * d2xdu2
+ 6 * t23 * d2xdu2 * d3xdu3
- t27 * d4xdu4) * t1 - 2 * t37 * t4 * d2xdu2
+ 2 * t43 * t9 * t11 - t47 * d3xdu3) * t1
- (t37 * t1 - t47 * d2xdu2) * t4 * d2xdu2) * t1;
val = d4ydx4;
}
break;
case 5:
{
double dxdu =calcQuinticBezierCurveDerivU(u,xpts,1);
double dydu =calcQuinticBezierCurveDerivU(u,ypts,1);
double d2xdu2=calcQuinticBezierCurveDerivU(u,xpts,2);
double d2ydu2=calcQuinticBezierCurveDerivU(u,ypts,2);
double d3xdu3=calcQuinticBezierCurveDerivU(u,xpts,3);
double d3ydu3=calcQuinticBezierCurveDerivU(u,ypts,3);
double d4xdu4=calcQuinticBezierCurveDerivU(u,xpts,4);
double d4ydu4=calcQuinticBezierCurveDerivU(u,ypts,4);
double d5xdu5=calcQuinticBezierCurveDerivU(u,xpts,5);
double d5ydu5=calcQuinticBezierCurveDerivU(u,ypts,5);
double t1 = 1 / dxdu;
double t3 = dxdu*dxdu;//dxdu ^ 2;
double t4 = 1 / t3;
double t9 = (0.1e1 / t3 / dxdu);
double t11 = d2xdu2*d2xdu2;//(d2xdu2 ^ 2);
double t14 = (d3ydu3 * t4);
double t17 = t3*t3;//(t3 ^ 2);
double t18 = 1 / t17;
double t20 = (t11 * d2xdu2);
double t23 = (d2ydu2 * t9);
double t24 = (d2xdu2 * d3xdu3);
double t27 = (d2ydu2 * t4);
double t33 = t11*t11;//(t11 ^ 2);
double t36 = (dydu * t18);
double t40 = (dydu * t9);
double t41 = d3xdu3*d3xdu3;//(d3xdu3 ^ 2);
double t47 = (dydu * t4);
double t49 = d5ydu5 * t1 - 4 * d4ydu4 * t4 * d2xdu2
+ 12 * d3ydu3 * t9 * t11 - 6 * t14 * d3xdu3
- 24 * d2ydu2 * t18 * t20 + 24 * t23 * t24
- 4 * t27 * d4xdu4 + 24 * dydu / t17 / dxdu * t33
- 36 * t36 * t11 * d3xdu3 + 6 * t40 * t41
+ 8 * t40 * d2xdu2 * d4xdu4 - t47 * d5xdu5;
double t63 = d4ydu4 * t1 - 3 * t14 * d2xdu2 + 6 * t23 * t11
- 3 * t27 * d3xdu3 - 6 * t36 * t20
+ 6 * t40 * t24 - t47 * d4xdu4;
double t73 = d3ydu3 * t1 - 2 * t27 * d2xdu2 + 2 * t40 * t11
- t47 * d3xdu3;
double t77 = t73 * t4;
double t82 = d2ydu2 * t1 - t47 * d2xdu2;
double t86 = t82 * t9;
double t89 = t82 * t4;
double t99 = t63 * t1 - 2 * t77 * d2xdu2 + 2 * t86 * t11
- t89 * d3xdu3;
double t105 = t73 * t1 - t89 * d2xdu2;
double t109 = t105 * t4;
double d5ydx5 = (((t49 * t1 - 3 * t63 * t4 * d2xdu2
+ 6 * t73 * t9 * t11 - 3 * t77 * d3xdu3
- 6 * t82 * t18 * t20
+ 6 * t86 * t24 - t89 * d4xdu4) * t1
- 2 * t99 * t4 * d2xdu2
+ 2 * t105 * t9 * t11 - t109 * d3xdu3) * t1
- (t99 * t1 - t109 * d2xdu2) * t4 * d2xdu2) * t1;
val = d5ydx5;
}
break;
case 6:
{
double dxdu =calcQuinticBezierCurveDerivU(u,xpts,1);
double dydu =calcQuinticBezierCurveDerivU(u,ypts,1);
double d2xdu2=calcQuinticBezierCurveDerivU(u,xpts,2);
double d2ydu2=calcQuinticBezierCurveDerivU(u,ypts,2);
double d3xdu3=calcQuinticBezierCurveDerivU(u,xpts,3);
double d3ydu3=calcQuinticBezierCurveDerivU(u,ypts,3);
double d4xdu4=calcQuinticBezierCurveDerivU(u,xpts,4);
double d4ydu4=calcQuinticBezierCurveDerivU(u,ypts,4);
double d5xdu5=calcQuinticBezierCurveDerivU(u,xpts,5);
double d5ydu5=calcQuinticBezierCurveDerivU(u,ypts,5);
double d6xdu6=calcQuinticBezierCurveDerivU(u,xpts,6);
double d6ydu6=calcQuinticBezierCurveDerivU(u,ypts,6);
double t1 = dxdu*dxdu;//(dxdu ^ 2);
double t3 = (0.1e1 / t1 / dxdu);
double t5 = d2xdu2*d2xdu2;//(d2xdu2 ^ 2);
double t8 = t1*t1;//(t1 ^ 2);
double t9 = 1 / t8;
double t11 = (t5 * d2xdu2);
double t14 = (d3ydu3 * t3);
double t15 = (d2xdu2 * d3xdu3);
double t19 = (0.1e1 / t8 / dxdu);
double t21 = t5*t5;//(t5 ^ 2);
double t24 = (d2ydu2 * t9);
double t25 = (t5 * d3xdu3);
double t28 = (d2ydu2 * t3);
double t29 = d3xdu3*d3xdu3;//(d3xdu3 ^ 2);
double t32 = (d2xdu2 * d4xdu4);
double t41 = (dydu * t19);
double t45 = (dydu * t9);
double t49 = (dydu * t3);
double t56 = 1 / dxdu;
double t61 = 1 / t1;
double t62 = (dydu * t61);
double t67 = (d4ydu4 * t61);
double t70 = (d2ydu2 * t61);
double t73 = (d3ydu3 * t61);
double t76 = 20 * d4ydu4 * t3 * t5 - 60 * d3ydu3 * t9 * t11
+ 60 * t14 * t15 + 120 * d2ydu2 * t19 * t21
- 180 * t24 * t25
+ 30 * t28 * t29 + 40 * t28 * t32
- 120 * dydu / t8 / t1 * t21 * d2xdu2
+ 240 * t41 *t11*d3xdu3
- 60 * t45 * t5 * d4xdu4 + 20 * t49 * d3xdu3 * d4xdu4
+ 10 * t49 * d2xdu2 * d5xdu5 + d6ydu6 * t56
- 90 * t45 * d2xdu2 * t29 - t62 * d6xdu6
- 5 * d5ydu5 * t61 * d2xdu2 - 10 * t67 * d3xdu3
- 5 * t70 * d5xdu5 - 10 * t73 * d4xdu4;
double t100 = d5ydu5 * t56 - 4 * t67 * d2xdu2 + 12 * t14 * t5
- 6 * t73 * d3xdu3 - 24 * t24 * t11 + 24 * t28 * t15
- 4 * t70 * d4xdu4 + 24 * t41 * t21 - 36 * t45 * t25
+ 6 * t49 * t29 + 8 * t49 * t32 - t62 * d5xdu5;
double t116 = d4ydu4 * t56 - 3 * t73 * d2xdu2 + 6 * t28 * t5
- 3 * t70 * d3xdu3 - 6 * t45 * t11 + 6 * t49 * t15
- t62 * d4xdu4;
double t120 = t116 * t61;
double t129 = d3ydu3 * t56 - 2 * t70 * d2xdu2 + 2 * t49 * t5
- t62 * d3xdu3;
double t133 = t129 * t3;
double t136 = t129 * t61;
double t141 = d2ydu2 * t56 - t62 * d2xdu2;
double t145 = t141 * t9;
double t148 = t141 * t3;
double t153 = t141 * t61;
double t155 = t76 * t56 - 4 * t100 * t61 * d2xdu2
+ 12 * t116 * t3 * t5 - 6 * t120 * d3xdu3
- 24 * t129 * t9 * t11 + 24 * t133 * t15
- 4 * t136 * d4xdu4
+ 24 * t141 * t19 * t21 - 36 * t145 * t25 + 6 * t148 * t29
+ 8 * t148 * t32 - t153 * d5xdu5;
double t169 = t100 * t56 - 3 * t120 * d2xdu2 + 6 * t133 * t5
- 3 * t136 * d3xdu3 - 6 * t145 * t11 + 6 * t148 * t15
- t153 * d4xdu4;
double t179 = t116 * t56 - 2 * t136 * d2xdu2 + 2 * t148 * t5
- t153 * d3xdu3;
double t183 = t179 * t61;
double t188 = t129 * t56 - t153 * d2xdu2;
double t192 = t188 * t3;
double t195 = t188 * t61;
double t205 = t169 * t56 - 2 * t183 * d2xdu2 + 2 * t192 * t5
- t195 * d3xdu3;
double t211 = t179 * t56 - t195 * d2xdu2;
double t215 = t211 * t61;
double d6ydx6 = (((t155 * t56 - 3 * t169 * t61 * d2xdu2
+ 6 * t179 * t3 * t5 - 3 * t183 * d3xdu3
- 6 * t188 * t9 *t11
+ 6 * t192 * t15 - t195 * d4xdu4) * t56
- 2 * t205 * t61 * d2xdu2
+ 2 * t211*t3*t5-t215*d3xdu3)*t56
- (t205 * t56 - t215 * d2xdu2) * t61 * d2xdu2) * t56;
val = d6ydx6;
}
break;
default:
val = NAN; //SimTK::NaN;
}
return val;
}
/* Computational Cost Details
Divisions Multiplications Additions Assignments
dx/du 20 19 11
d2x/du2 17 17 9
d3y/du3 14 14 6
*/
double SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivU(
double u,
const VectorNd& pts,
int order)
{
double val = -1;
/*
SimTK_ERRCHK_ALWAYS( (u>=0 && u <= 1) ,
"SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivU",
"Error: double argument u must be between 0.0 and 1.0.");
SimTK_ERRCHK_ALWAYS( (pts.size()==6) ,
"SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivU",
"Error: vector argument pts \nmust have a length of 6.");
SimTK_ERRCHK_ALWAYS( (order >= 1),
"SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivU",
"Error: order must be greater than, or equal to 1");
*/
if( !(u>=0 && u <= 1) ){
cerr << "SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivU:"
<< "Error: double argument u must be between 0.0 and 1.0."
<< endl;
assert(0);
abort();
}
if( !(pts.size()==6) ){
cerr << "SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivU:"
<< "Error: vector argument pts must have a length of 6."
<< endl;
assert(0);
abort();
}
if( !(order >= 1) ){
cerr << "SegmentedQuinticBezierToolkit::calcQuinticBezierCurveDerivU:"
<< "Error: order must be greater than, or equal to 1"
<< endl;
assert(0);
abort();
}
//Compute the Bezier point
double p0 = pts[0];
double p1 = pts[1];
double p2 = pts[2];
double p3 = pts[3];
double p4 = pts[4];
double p5 = pts[5];
switch(order){
case 1:
{
double t1 = u*u;//u ^ 2;
double t2 = t1*t1;//t1 ^ 2;
double t4 = t1 * u;
double t5 = t4 * 0.20e2;
double t6 = t1 * 0.30e2;
double t7 = u * 0.20e2;
double t10 = t2 * 0.25e2;
double t11 = t4 * 0.80e2;
double t12 = t1 * 0.90e2;
double t16 = t2 * 0.50e2;
val = p0 * (t2 * (-0.5e1) + t5 - t6 + t7 - 0.5e1)
+ p1 * (t10 - t11 + t12 + u * (-0.40e2) + 0.5e1)
+ p2 * (-t16 + t4 * 0.120e3 - t12 + t7)
+ p3 * (t16 - t11 + t6)
+ p4 * (-t10 + t5)
+ p5 * t2 * 0.5e1;
}
break;
case 2:
{
double t1 = u*u;//u ^ 2;
double t2 = t1 * u;
double t4 = t1 * 0.60e2;
double t5 = u * 0.60e2;
double t8 = t2 * 0.100e3;
double t9 = t1 * 0.240e3;
double t10 = u * 0.180e3;
double t13 = t2 * 0.200e3;
val = p0 * (t2 * (-0.20e2) + t4 - t5 + 0.20e2)
+ p1 * (t8 - t9 + t10 - 0.40e2)
+ p2 * (-t13 + t1 * 0.360e3 - t10 + 0.20e2)
+ p3 * (t13 - t9 + t5)
+ p4 * (-t8 + t4)
+ p5 * t2 * 0.20e2;
}
break;
case 3:
{
double t1 = u*u;//u ^ 2;
double t3 = u * 0.120e3;
double t6 = t1 * 0.300e3;
double t7 = u * 0.480e3;
double t10 = t1 * 0.600e3;
val = p0 * (t1 * (-0.60e2) + t3 - 0.60e2)
+ p1 * (t6 - t7 + 0.180e3)
+ p2 * (-t10 + u * 0.720e3 - 0.180e3)
+ p3 * (t10 - t7 + 0.60e2)
+ p4 * (-t6 + t3)
+ p5 * t1 * 0.60e2;
}
break;
case 4:
{
double t4 = u * 0.600e3;
double t7 = u * 0.1200e4;
val = p0 * (u * (-0.120e3) + 0.120e3)
+ p1 * (t4 - 0.480e3)
+ p2 * (-t7 + 0.720e3)
+ p3 * (t7 - 0.480e3)
+ p4 * (-t4 + 0.120e3)
+ p5 * u * 0.120e3;
}
break;
case 5:
{
val = p0 * (-0.120e3)
+ p1 * 0.600e3
+ p2 * (-0.1200e4)
+ p3 * 0.1200e4
+ p4 * (-0.600e3)
+ p5 * 0.120e3;
}
break;
default:
val=0;
}
return val;
}
double SegmentedQuinticBezierToolkit::clampU(double u){
double uC = u;
if(u<0.0){
uC=0;
}
if(u>1.0){
uC=1;
}
return uC;
}
/*Detailed Computational Costs
Comparisons Div Mult Additions Assignments
Geuss calculation 1 1 1
Newton Iter
f 21 20 13
df 20 19 11
update 4 1 3 6
total 4 1 41 42 30
\endverbatim
To evaluate u to SimTK::Eps*100 this typically involves 2 Newton
iterations, yielding a total cost of
\verbatim
Comparisons Div Mult Additions Assignments
eval U 7+8=15 2 82 42 60
*/
double SegmentedQuinticBezierToolkit::calcU(double ax,
const VectorNd& bezierPtsX,
double tol,
int maxIter)
{
//Check to make sure that ax is in the curve domain
double minX = std::numeric_limits<double>::max();
double maxX = -minX;
for(int i=0; i<bezierPtsX.rows(); i++){
if(bezierPtsX[i] > maxX)
maxX = bezierPtsX[i];
if(bezierPtsX[i] < minX)
minX = bezierPtsX[i];
}
/*
SimTK_ERRCHK_ALWAYS( ax >= minX && ax <= maxX,
"SegmentedQuinticBezierToolkit::calcU",
"Error: input ax was not in the domain of the Bezier curve specified \n"
"by the control points in bezierPtsX.");
*/
if( !(ax >= minX && ax <= maxX) ){
cerr << "SegmentedQuinticBezierToolkit::calcU:"
<< "Error: input ax was not in the domain of the "
<< "Bezier curve specified by the control points in bezierPtsX."
<< endl;
assert(0);
abort();
}
double u = ax/(maxX-minX);
double f = 0;
u = clampU(u);
f = calcQuinticBezierCurveVal(u,bezierPtsX)-ax;
//Use the bisection method to get a good initial
//start for the Newton method. This is necessary
//as these curves, though C2, can be so nonlinear
//that the Newton method oscillates unless it is
//close to the initial solution.
if(abs(f) > tol){
double uL = 0;
double uR = 1;
double fL = calcQuinticBezierCurveVal(uL,bezierPtsX)-ax;
double fR = calcQuinticBezierCurveVal(uR,bezierPtsX)-ax;
int iterBisection = 0;
while(iterBisection < MAXITER_INITIALSOLN
&& min(abs(fL),abs(fR)) > UTOL_INITIALSOLN ){
u = 0.5*(uL+uR);
f = calcQuinticBezierCurveVal(u,bezierPtsX)-ax;
if(signbit(f) == signbit(fL)){
fL = f;
uL = u;
}else{
fR = f;
uR = u;
}
iterBisection++;
}
if(abs(fL) < abs(fR)){
u = uL;
f = fL;
}else{
u = uR;
f = fR;
}
}
double df = 0;
double du = 0;
int iter = 0;
bool pathologic = false;
double fprev = f;
double stepLength = 1.0;
double perturbation01 = 0.0;
//Take Newton steps to the desired tolerance
while((abs(f) > min(tol,UTOL_DESIRED))
&& (iter < maxIter)
&& (pathologic == false) ){
//Take a Newton step
df = calcQuinticBezierCurveDerivU(u,bezierPtsX,1);
if(abs(df) > 0){
du = -f/df;
u = u + stepLength*du;
u = clampU(u);
fprev = f;
f = calcQuinticBezierCurveVal(u,bezierPtsX)-ax;
}else{
//This should never happen. If we are unluky enough to get here
//purturb the current solution and continue until we run out of
//iterations.
perturbation01 = double(rand()%100)/100.0;
u = u + perturbation01*0.1;
u = clampU(u);
}
iter++;
}
//Check for convergence
if( abs(f) > tol ){
std::stringstream errMsg;
errMsg.precision(17);
errMsg << "SegmentedQuinticBezierToolkit::calcU:" << endl
<< "Error: desired tolerance of " << tol << endl
<< " on U not met by the Newton iteration." << endl
<< " A tolerance of " << f << " was reached." << endl
<< " Curve range x(u): " << minX << "-" << maxX << endl
<< " Desired x: " << ax << " closest u " << u << endl
<< " Bezier points " << endl << bezierPtsX << endl;
cerr << errMsg.str();
assert(0);
abort();
}
return u;
}
/*
Cost: n comparisons, for a quintic Bezier curve with n-spline sections
Comp Div Mult Add Assignments
Cost 3*n+2 1*n 3
*/
int SegmentedQuinticBezierToolkit::calcIndex(double x,
const MatrixNd& bezierPtsX)
{
int idx = 0;
bool flag_found = false;
for(int i=0; i<bezierPtsX.cols(); i++){
if( x >= bezierPtsX(0,i) && x < bezierPtsX(5,i) ){
idx = i;
i = bezierPtsX.cols();
flag_found = true;
}
}
//Check if the value x is identically the last point
if(flag_found == false && x == bezierPtsX(5,bezierPtsX.cols()-1)){
idx = bezierPtsX.cols()-1;
flag_found = true;
}
/*
SimTK_ERRCHK_ALWAYS( (flag_found == true),
"SegmentedQuinticBezierToolkit::calcIndex",
"Error: A value of x was used that is not within the Bezier curve set.");
*/
if( !(flag_found == true)){
cerr << "SegmentedQuinticBezierToolkit::calcIndex"
<< "Error: A value of x was used that is not"
<< " within the Bezier curve set." << endl;
assert(0);
abort();
}
return idx;
}
int SegmentedQuinticBezierToolkit::calcIndex(double x,
const std::vector<VectorNd>& bezierPtsX)
{
int idx = 0;
bool flag_found = false;
int n = bezierPtsX.size();
for(int i=0; i<n; i++){
if( x >= bezierPtsX[i][0] && x < bezierPtsX[i][5] ){
idx = i;
flag_found = true;
break;
}
}
//Check if the value x is identically the last point
if(!flag_found && x == bezierPtsX[n-1][5]){
idx = n-1;
flag_found = true;
}
if(!(flag_found == true)){
cerr << "SegmentedQuinticBezierToolkit::calcIndex "
<< "Error: A value of x was used that is not "
<< "within the Bezier curve set."
<< endl;
assert(0);
abort();
}
return idx;
}
/*
Comp Div Mult Additions Assignments
calcIdx 3*3+2=11 1*3=3 3
calcU 15 2 82 42 60
calcQuinticBezierCurveVal
21 20 13
Total 26 2 103 65 76
\endverbatim
Ignoring the costs associated with the integrator itself, and assuming
that the integrator evaluates the function 6 times per integrated point,
the cost of evaluating the integral at each point in vX is:
\verbatim
Comp Div Mult Additions Assignments
RK45 on 1pt 6*(26 2 103 65 76)
Total 156 12 618 390 456
\endverbatim
Typically the integral is evaluated 100 times per section in order to
build an accurate spline-fit of the integrated function. Once again,
ignoring the overhead of the integrator, the function evaluations alone
for the current example would be
\verbatim
RK45 on 100pts per section, over 3 sections
Comp Div Mult Additions Assignments
3*100*(156 12 618 390 456
Total 46,800 3600 185,400 117,000 136,000
*/
/*
MatrixNd SegmentedQuinticBezierToolkit::calcNumIntBezierYfcnX(
const VectorNd& vX,
double ic0, double intAcc,
double uTol, int uMaxIter,
const MatrixNd& mX, const MatrixNd& mY,
const SimTK::Array_<SimTK::Spline>& aSplineUX,
bool flag_intLeftToRight,
const std::string& caller)
{
MatrixNd intXY(vX.size(),2);
BezierData bdata;
bdata._mX = mX;
bdata._mY = mY;
bdata._initalValue = ic0;
bdata._aArraySplineUX = aSplineUX;
bdata._uMaxIter = uMaxIter;
bdata._uTol = uTol;
bdata._flag_intLeftToRight = flag_intLeftToRight;
bdata._name = caller;
//These aren't really times, but I'm perpetuating the SimTK language
//so that I don't make a mistake
double startTime = vX(0);
double endTime = vX(vX.size()-1);
if(flag_intLeftToRight){
bdata._startValue = startTime;
}else{
bdata._startValue = endTime;
}
MySystem sys(bdata);
State initState = sys.realizeTopology();
initState.setTime(startTime);
RungeKuttaMersonIntegrator integ(sys);
integ.setAccuracy(intAcc);
integ.setFinalTime(endTime);
integ.setReturnEveryInternalStep(false);
integ.initialize(initState);
int idx = 0;
double nextTimeInterval = 0;
Integrator::SuccessfulStepStatus status;
while (idx < vX.nelt()) {
if(idx < vX.nelt()){
if(flag_intLeftToRight){
nextTimeInterval = vX(idx);
}else{
nextTimeInterval = endTime-vX(vX.size()-idx-1);
}
}
status=integ.stepTo(nextTimeInterval);
// Use this for variable step output.
//status = integ.stepTo(Infinity);
if (status == Integrator::EndOfSimulation)
break;
const State& state = integ.getState();
if(flag_intLeftToRight){
intXY(idx,0) = nextTimeInterval;
intXY(idx,1) = (double)state.getZ()[0];
}else{
intXY(vX.size()-idx-1,0) = vX(vX.size()-idx-1);
intXY(vX.size()-idx-1,1) = (double)state.getZ()[0];
}
idx++;
}
//intXY.resizeKeep(idx,2);
return intXY;
}
*/