261 lines
8.8 KiB
C++
261 lines
8.8 KiB
C++
/*
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright (c) 2011-2014, Willow Garage, Inc.
|
|
* Copyright (c) 2014-2016, Open Source Robotics Foundation
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
* * Neither the name of Open Source Robotics Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/** @author Martin Felis <martin.felis@iwr.uni-heidelberg.de> */
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "fcl/math/constants.h"
|
|
#include "fcl/narrowphase/collision.h"
|
|
#include "fcl/narrowphase/detail/gjk_solver_indep.h"
|
|
#include "fcl/narrowphase/detail/gjk_solver_libccd.h"
|
|
|
|
using namespace fcl;
|
|
|
|
template <typename S>
|
|
void test_Sphere_Capsule_Intersect_test_separated_z()
|
|
{
|
|
detail::GJKSolver_libccd<S> solver;
|
|
|
|
Sphere<S> sphere1 (50);
|
|
Transform3<S> sphere1_transform;
|
|
sphere1_transform.translation() = (Vector3<S> (0., 0., -50));
|
|
|
|
Capsule<S> capsule (50, 200.);
|
|
Transform3<S> capsule_transform(Translation3<S>(Vector3<S>(0., 0., 200)));
|
|
|
|
EXPECT_TRUE (!solver.shapeIntersect(sphere1, sphere1_transform, capsule, capsule_transform, nullptr));
|
|
}
|
|
|
|
GTEST_TEST(FCL_SPHERE_CAPSULE, Sphere_Capsule_Intersect_test_separated_z)
|
|
{
|
|
// test_Sphere_Capsule_Intersect_test_separated_z<float>();
|
|
test_Sphere_Capsule_Intersect_test_separated_z<double>();
|
|
}
|
|
|
|
template <typename S>
|
|
void test_Sphere_Capsule_Intersect_test_separated_z_negative()
|
|
{
|
|
detail::GJKSolver_libccd<S> solver;
|
|
|
|
Sphere<S> sphere1 (50);
|
|
Transform3<S> sphere1_transform;
|
|
sphere1_transform.translation() = (Vector3<S> (0., 0., 50));
|
|
|
|
Capsule<S> capsule (50, 200.);
|
|
Transform3<S> capsule_transform(Translation3<S>(Vector3<S>(0., 0., -200)));
|
|
|
|
EXPECT_TRUE (!solver.shapeIntersect(sphere1, sphere1_transform, capsule, capsule_transform, nullptr));
|
|
}
|
|
|
|
GTEST_TEST(FCL_SPHERE_CAPSULE, Sphere_Capsule_Intersect_test_separated_z_negative)
|
|
{
|
|
// test_Sphere_Capsule_Intersect_test_separated_z_negative<float>();
|
|
test_Sphere_Capsule_Intersect_test_separated_z_negative<double>();
|
|
}
|
|
|
|
template <typename S>
|
|
void test_Sphere_Capsule_Intersect_test_separated_x()
|
|
{
|
|
detail::GJKSolver_libccd<S> solver;
|
|
|
|
Sphere<S> sphere1 (50);
|
|
Transform3<S> sphere1_transform;
|
|
sphere1_transform.translation() = (Vector3<S> (0., 0., -50));
|
|
|
|
Capsule<S> capsule (50, 200.);
|
|
Transform3<S> capsule_transform(Translation3<S>(Vector3<S>(150., 0., 0.)));
|
|
|
|
EXPECT_TRUE (!solver.shapeIntersect(sphere1, sphere1_transform, capsule, capsule_transform, nullptr));
|
|
}
|
|
|
|
GTEST_TEST(FCL_SPHERE_CAPSULE, Sphere_Capsule_Intersect_test_separated_x)
|
|
{
|
|
// test_Sphere_Capsule_Intersect_test_separated_x<float>();
|
|
test_Sphere_Capsule_Intersect_test_separated_x<double>();
|
|
}
|
|
|
|
template <typename S>
|
|
void test_Sphere_Capsule_Intersect_test_separated_capsule_rotated()
|
|
{
|
|
detail::GJKSolver_libccd<S> solver;
|
|
|
|
Sphere<S> sphere1 (50);
|
|
Transform3<S> sphere1_transform;
|
|
sphere1_transform.translation() = (Vector3<S> (0., 0., -50));
|
|
|
|
Capsule<S> capsule (50, 200.);
|
|
Matrix3<S> rotation(
|
|
AngleAxis<S>(constants<S>::pi() * 0.5, Vector3<S>::UnitX())
|
|
* AngleAxis<S>(0.0, Vector3<S>::UnitY())
|
|
* AngleAxis<S>(0.0, Vector3<S>::UnitZ()));
|
|
|
|
Transform3<S> capsule_transform = Transform3<S>::Identity();
|
|
capsule_transform.linear() = rotation;
|
|
capsule_transform.translation() = Vector3<S>(150., 0., 0.);
|
|
|
|
EXPECT_TRUE (!solver.shapeIntersect(sphere1, sphere1_transform, capsule, capsule_transform, nullptr));
|
|
}
|
|
|
|
GTEST_TEST(FCL_SPHERE_CAPSULE, Sphere_Capsule_Intersect_test_separated_capsule_rotated)
|
|
{
|
|
// test_Sphere_Capsule_Intersect_test_separated_capsule_rotated<float>();
|
|
test_Sphere_Capsule_Intersect_test_separated_capsule_rotated<double>();
|
|
}
|
|
|
|
template <typename S>
|
|
void test_Sphere_Capsule_Intersect_test_penetration_z()
|
|
{
|
|
detail::GJKSolver_libccd<S> solver;
|
|
|
|
Sphere<S> sphere1 (50);
|
|
Transform3<S> sphere1_transform(Translation3<S>(Vector3<S>(0., 0., -50)));
|
|
|
|
Capsule<S> capsule (50, 200.);
|
|
Transform3<S> capsule_transform(Translation3<S>(Vector3<S>(0., 0., 125)));
|
|
|
|
std::vector<ContactPoint<S>> contacts;
|
|
|
|
bool is_intersecting = solver.shapeIntersect(sphere1, sphere1_transform, capsule, capsule_transform, &contacts);
|
|
|
|
S penetration = contacts[0].penetration_depth;
|
|
Vector3<S> contact_point = contacts[0].pos;
|
|
Vector3<S> normal = contacts[0].normal;
|
|
|
|
EXPECT_TRUE (is_intersecting);
|
|
EXPECT_TRUE (penetration == 25.);
|
|
EXPECT_TRUE (Vector3<S> (0., 0., 1.).isApprox(normal));
|
|
EXPECT_TRUE (Vector3<S> (0., 0., 0.).isApprox(contact_point));
|
|
}
|
|
|
|
GTEST_TEST(FCL_SPHERE_CAPSULE, Sphere_Capsule_Intersect_test_penetration_z)
|
|
{
|
|
// test_Sphere_Capsule_Intersect_test_penetration_z<float>();
|
|
test_Sphere_Capsule_Intersect_test_penetration_z<double>();
|
|
}
|
|
|
|
template <typename S>
|
|
void test_Sphere_Capsule_Intersect_test_penetration_z_rotated()
|
|
{
|
|
detail::GJKSolver_libccd<S> solver;
|
|
|
|
Sphere<S> sphere1 (50);
|
|
Transform3<S> sphere1_transform = Transform3<S>::Identity();
|
|
|
|
Capsule<S> capsule (50, 200.);
|
|
Matrix3<S> rotation(
|
|
AngleAxis<S>(constants<S>::pi() * 0.5, Vector3<S>::UnitX())
|
|
* AngleAxis<S>(0.0, Vector3<S>::UnitY())
|
|
* AngleAxis<S>(0.0, Vector3<S>::UnitZ()));
|
|
Transform3<S> capsule_transform = Transform3<S>::Identity();
|
|
capsule_transform.linear() = rotation;
|
|
capsule_transform.translation() = Vector3<S> (0., 50., 75);
|
|
|
|
std::vector<ContactPoint<S>> contacts;
|
|
|
|
bool is_intersecting = solver.shapeIntersect(sphere1, sphere1_transform, capsule, capsule_transform, &contacts);
|
|
|
|
S penetration = contacts[0].penetration_depth;
|
|
Vector3<S> contact_point = contacts[0].pos;
|
|
Vector3<S> normal = contacts[0].normal;
|
|
|
|
EXPECT_TRUE (is_intersecting);
|
|
EXPECT_NEAR (25, penetration, solver.collision_tolerance);
|
|
EXPECT_TRUE (Vector3<S> (0., 0., 1.).isApprox(normal));
|
|
EXPECT_TRUE (Vector3<S> (0., 0., 50.).isApprox(contact_point, solver.collision_tolerance));
|
|
}
|
|
|
|
GTEST_TEST(FCL_SPHERE_CAPSULE, Sphere_Capsule_Intersect_test_penetration_z_rotated)
|
|
{
|
|
// test_Sphere_Capsule_Intersect_test_penetration_z_rotated<float>();
|
|
test_Sphere_Capsule_Intersect_test_penetration_z_rotated<double>();
|
|
}
|
|
|
|
template <typename S>
|
|
void test_Sphere_Capsule_Distance_test_collision()
|
|
{
|
|
detail::GJKSolver_libccd<S> solver;
|
|
|
|
Sphere<S> sphere1 (50);
|
|
Transform3<S> sphere1_transform(Translation3<S>(Vector3<S>(0., 0., -50)));
|
|
|
|
Capsule<S> capsule (50, 200.);
|
|
Transform3<S> capsule_transform(Translation3<S>(Vector3<S>(0., 0., 100)));
|
|
|
|
S distance;
|
|
|
|
EXPECT_TRUE (!solver.shapeDistance(sphere1, sphere1_transform, capsule, capsule_transform, &distance));
|
|
|
|
}
|
|
|
|
GTEST_TEST(FCL_SPHERE_CAPSULE, Sphere_Capsule_Distance_test_collision)
|
|
{
|
|
// test_Sphere_Capsule_Distance_test_collision<float>();
|
|
test_Sphere_Capsule_Distance_test_collision<double>();
|
|
}
|
|
|
|
template <typename S>
|
|
void test_Sphere_Capsule_Distance_test_separated()
|
|
{
|
|
detail::GJKSolver_libccd<S> solver;
|
|
|
|
Sphere<S> sphere1 (50);
|
|
Transform3<S> sphere1_transform(Translation3<S>(Vector3<S>(0., 0., -50)));
|
|
|
|
Capsule<S> capsule (50, 200.);
|
|
Transform3<S> capsule_transform(Translation3<S>(Vector3<S>(0., 0., 175)));
|
|
|
|
S distance = 0.;
|
|
Vector3<S> p1;
|
|
Vector3<S> p2;
|
|
bool is_separated = solver.shapeDistance(sphere1, sphere1_transform, capsule, capsule_transform, &distance);
|
|
|
|
EXPECT_TRUE (is_separated);
|
|
EXPECT_TRUE (distance == 25.);
|
|
}
|
|
|
|
GTEST_TEST(FCL_SPHERE_CAPSULE, Sphere_Capsule_Distance_test_separated)
|
|
{
|
|
// test_Sphere_Capsule_Distance_test_separated<float>();
|
|
test_Sphere_Capsule_Distance_test_separated<double>();
|
|
}
|
|
|
|
//==============================================================================
|
|
int main(int argc, char* argv[])
|
|
{
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
return RUN_ALL_TESTS();
|
|
}
|