protot/3rdparty/fcl/test/test_fcl_sphere_capsule.cpp

261 lines
8.8 KiB
C++
Raw Normal View History

2018-12-23 11:20:54 +01:00
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2011-2014, Willow Garage, Inc.
* Copyright (c) 2014-2016, Open Source Robotics Foundation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Open Source Robotics Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** @author Martin Felis <martin.felis@iwr.uni-heidelberg.de> */
#include <gtest/gtest.h>
#include "fcl/math/constants.h"
#include "fcl/narrowphase/collision.h"
#include "fcl/narrowphase/detail/gjk_solver_indep.h"
#include "fcl/narrowphase/detail/gjk_solver_libccd.h"
using namespace fcl;
template <typename S>
void test_Sphere_Capsule_Intersect_test_separated_z()
{
detail::GJKSolver_libccd<S> solver;
Sphere<S> sphere1 (50);
Transform3<S> sphere1_transform;
sphere1_transform.translation() = (Vector3<S> (0., 0., -50));
Capsule<S> capsule (50, 200.);
Transform3<S> capsule_transform(Translation3<S>(Vector3<S>(0., 0., 200)));
EXPECT_TRUE (!solver.shapeIntersect(sphere1, sphere1_transform, capsule, capsule_transform, nullptr));
}
GTEST_TEST(FCL_SPHERE_CAPSULE, Sphere_Capsule_Intersect_test_separated_z)
{
// test_Sphere_Capsule_Intersect_test_separated_z<float>();
test_Sphere_Capsule_Intersect_test_separated_z<double>();
}
template <typename S>
void test_Sphere_Capsule_Intersect_test_separated_z_negative()
{
detail::GJKSolver_libccd<S> solver;
Sphere<S> sphere1 (50);
Transform3<S> sphere1_transform;
sphere1_transform.translation() = (Vector3<S> (0., 0., 50));
Capsule<S> capsule (50, 200.);
Transform3<S> capsule_transform(Translation3<S>(Vector3<S>(0., 0., -200)));
EXPECT_TRUE (!solver.shapeIntersect(sphere1, sphere1_transform, capsule, capsule_transform, nullptr));
}
GTEST_TEST(FCL_SPHERE_CAPSULE, Sphere_Capsule_Intersect_test_separated_z_negative)
{
// test_Sphere_Capsule_Intersect_test_separated_z_negative<float>();
test_Sphere_Capsule_Intersect_test_separated_z_negative<double>();
}
template <typename S>
void test_Sphere_Capsule_Intersect_test_separated_x()
{
detail::GJKSolver_libccd<S> solver;
Sphere<S> sphere1 (50);
Transform3<S> sphere1_transform;
sphere1_transform.translation() = (Vector3<S> (0., 0., -50));
Capsule<S> capsule (50, 200.);
Transform3<S> capsule_transform(Translation3<S>(Vector3<S>(150., 0., 0.)));
EXPECT_TRUE (!solver.shapeIntersect(sphere1, sphere1_transform, capsule, capsule_transform, nullptr));
}
GTEST_TEST(FCL_SPHERE_CAPSULE, Sphere_Capsule_Intersect_test_separated_x)
{
// test_Sphere_Capsule_Intersect_test_separated_x<float>();
test_Sphere_Capsule_Intersect_test_separated_x<double>();
}
template <typename S>
void test_Sphere_Capsule_Intersect_test_separated_capsule_rotated()
{
detail::GJKSolver_libccd<S> solver;
Sphere<S> sphere1 (50);
Transform3<S> sphere1_transform;
sphere1_transform.translation() = (Vector3<S> (0., 0., -50));
Capsule<S> capsule (50, 200.);
Matrix3<S> rotation(
AngleAxis<S>(constants<S>::pi() * 0.5, Vector3<S>::UnitX())
* AngleAxis<S>(0.0, Vector3<S>::UnitY())
* AngleAxis<S>(0.0, Vector3<S>::UnitZ()));
Transform3<S> capsule_transform = Transform3<S>::Identity();
capsule_transform.linear() = rotation;
capsule_transform.translation() = Vector3<S>(150., 0., 0.);
EXPECT_TRUE (!solver.shapeIntersect(sphere1, sphere1_transform, capsule, capsule_transform, nullptr));
}
GTEST_TEST(FCL_SPHERE_CAPSULE, Sphere_Capsule_Intersect_test_separated_capsule_rotated)
{
// test_Sphere_Capsule_Intersect_test_separated_capsule_rotated<float>();
test_Sphere_Capsule_Intersect_test_separated_capsule_rotated<double>();
}
template <typename S>
void test_Sphere_Capsule_Intersect_test_penetration_z()
{
detail::GJKSolver_libccd<S> solver;
Sphere<S> sphere1 (50);
Transform3<S> sphere1_transform(Translation3<S>(Vector3<S>(0., 0., -50)));
Capsule<S> capsule (50, 200.);
Transform3<S> capsule_transform(Translation3<S>(Vector3<S>(0., 0., 125)));
std::vector<ContactPoint<S>> contacts;
bool is_intersecting = solver.shapeIntersect(sphere1, sphere1_transform, capsule, capsule_transform, &contacts);
S penetration = contacts[0].penetration_depth;
Vector3<S> contact_point = contacts[0].pos;
Vector3<S> normal = contacts[0].normal;
EXPECT_TRUE (is_intersecting);
EXPECT_TRUE (penetration == 25.);
EXPECT_TRUE (Vector3<S> (0., 0., 1.).isApprox(normal));
EXPECT_TRUE (Vector3<S> (0., 0., 0.).isApprox(contact_point));
}
GTEST_TEST(FCL_SPHERE_CAPSULE, Sphere_Capsule_Intersect_test_penetration_z)
{
// test_Sphere_Capsule_Intersect_test_penetration_z<float>();
test_Sphere_Capsule_Intersect_test_penetration_z<double>();
}
template <typename S>
void test_Sphere_Capsule_Intersect_test_penetration_z_rotated()
{
detail::GJKSolver_libccd<S> solver;
Sphere<S> sphere1 (50);
Transform3<S> sphere1_transform = Transform3<S>::Identity();
Capsule<S> capsule (50, 200.);
Matrix3<S> rotation(
AngleAxis<S>(constants<S>::pi() * 0.5, Vector3<S>::UnitX())
* AngleAxis<S>(0.0, Vector3<S>::UnitY())
* AngleAxis<S>(0.0, Vector3<S>::UnitZ()));
Transform3<S> capsule_transform = Transform3<S>::Identity();
capsule_transform.linear() = rotation;
capsule_transform.translation() = Vector3<S> (0., 50., 75);
std::vector<ContactPoint<S>> contacts;
bool is_intersecting = solver.shapeIntersect(sphere1, sphere1_transform, capsule, capsule_transform, &contacts);
S penetration = contacts[0].penetration_depth;
Vector3<S> contact_point = contacts[0].pos;
Vector3<S> normal = contacts[0].normal;
EXPECT_TRUE (is_intersecting);
EXPECT_NEAR (25, penetration, solver.collision_tolerance);
EXPECT_TRUE (Vector3<S> (0., 0., 1.).isApprox(normal));
EXPECT_TRUE (Vector3<S> (0., 0., 50.).isApprox(contact_point, solver.collision_tolerance));
}
GTEST_TEST(FCL_SPHERE_CAPSULE, Sphere_Capsule_Intersect_test_penetration_z_rotated)
{
// test_Sphere_Capsule_Intersect_test_penetration_z_rotated<float>();
test_Sphere_Capsule_Intersect_test_penetration_z_rotated<double>();
}
template <typename S>
void test_Sphere_Capsule_Distance_test_collision()
{
detail::GJKSolver_libccd<S> solver;
Sphere<S> sphere1 (50);
Transform3<S> sphere1_transform(Translation3<S>(Vector3<S>(0., 0., -50)));
Capsule<S> capsule (50, 200.);
Transform3<S> capsule_transform(Translation3<S>(Vector3<S>(0., 0., 100)));
S distance;
EXPECT_TRUE (!solver.shapeDistance(sphere1, sphere1_transform, capsule, capsule_transform, &distance));
}
GTEST_TEST(FCL_SPHERE_CAPSULE, Sphere_Capsule_Distance_test_collision)
{
// test_Sphere_Capsule_Distance_test_collision<float>();
test_Sphere_Capsule_Distance_test_collision<double>();
}
template <typename S>
void test_Sphere_Capsule_Distance_test_separated()
{
detail::GJKSolver_libccd<S> solver;
Sphere<S> sphere1 (50);
Transform3<S> sphere1_transform(Translation3<S>(Vector3<S>(0., 0., -50)));
Capsule<S> capsule (50, 200.);
Transform3<S> capsule_transform(Translation3<S>(Vector3<S>(0., 0., 175)));
S distance = 0.;
Vector3<S> p1;
Vector3<S> p2;
bool is_separated = solver.shapeDistance(sphere1, sphere1_transform, capsule, capsule_transform, &distance);
EXPECT_TRUE (is_separated);
EXPECT_TRUE (distance == 25.);
}
GTEST_TEST(FCL_SPHERE_CAPSULE, Sphere_Capsule_Distance_test_separated)
{
// test_Sphere_Capsule_Distance_test_separated<float>();
test_Sphere_Capsule_Distance_test_separated<double>();
}
//==============================================================================
int main(int argc, char* argv[])
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}