AnimTestbed/3rdparty/glfw/tests/triangle-vulkan.c

2134 lines
79 KiB
C
Raw Permalink Normal View History

2021-11-11 21:22:24 +01:00
/*
* Copyright (c) 2015-2016 The Khronos Group Inc.
* Copyright (c) 2015-2016 Valve Corporation
* Copyright (c) 2015-2016 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Chia-I Wu <olvaffe@gmail.com>
* Author: Cody Northrop <cody@lunarg.com>
* Author: Courtney Goeltzenleuchter <courtney@LunarG.com>
* Author: Ian Elliott <ian@LunarG.com>
* Author: Jon Ashburn <jon@lunarg.com>
* Author: Piers Daniell <pdaniell@nvidia.com>
* Author: Gwan-gyeong Mun <elongbug@gmail.com>
* Porter: Camilla Löwy <elmindreda@glfw.org>
*/
/*
* Draw a textured triangle with depth testing. This is written against Intel
* ICD. It does not do state transition nor object memory binding like it
* should. It also does no error checking.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <assert.h>
#include <signal.h>
#ifdef _WIN32
#include <windows.h>
#endif
#include <glad/vulkan.h>
#define GLFW_INCLUDE_NONE
#include <GLFW/glfw3.h>
#define DEMO_TEXTURE_COUNT 1
#define VERTEX_BUFFER_BIND_ID 0
#define APP_SHORT_NAME "tri"
#define APP_LONG_NAME "The Vulkan Triangle Demo Program"
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#if defined(NDEBUG) && defined(__GNUC__)
#define U_ASSERT_ONLY __attribute__((unused))
#else
#define U_ASSERT_ONLY
#endif
#define ERR_EXIT(err_msg, err_class) \
do { \
printf(err_msg); \
fflush(stdout); \
exit(1); \
} while (0)
static GLADapiproc glad_vulkan_callback(const char* name, void* user)
{
return glfwGetInstanceProcAddress((VkInstance) user, name);
}
static const uint32_t fragShaderCode[] = {
0x07230203,0x00010000,0x00080007,0x00000014,0x00000000,0x00020011,0x00000001,0x0006000b,
0x00000001,0x4c534c47,0x6474732e,0x3035342e,0x00000000,0x0003000e,0x00000000,0x00000001,
0x0007000f,0x00000004,0x00000004,0x6e69616d,0x00000000,0x00000009,0x00000011,0x00030010,
0x00000004,0x00000007,0x00030003,0x00000002,0x00000190,0x00090004,0x415f4c47,0x735f4252,
0x72617065,0x5f657461,0x64616873,0x6f5f7265,0x63656a62,0x00007374,0x00090004,0x415f4c47,
0x735f4252,0x69646168,0x6c5f676e,0x75676e61,0x5f656761,0x70303234,0x006b6361,0x00040005,
0x00000004,0x6e69616d,0x00000000,0x00050005,0x00000009,0x61724675,0x6c6f4367,0x0000726f,
0x00030005,0x0000000d,0x00786574,0x00050005,0x00000011,0x63786574,0x64726f6f,0x00000000,
0x00040047,0x00000009,0x0000001e,0x00000000,0x00040047,0x0000000d,0x00000022,0x00000000,
0x00040047,0x0000000d,0x00000021,0x00000000,0x00040047,0x00000011,0x0000001e,0x00000000,
0x00020013,0x00000002,0x00030021,0x00000003,0x00000002,0x00030016,0x00000006,0x00000020,
0x00040017,0x00000007,0x00000006,0x00000004,0x00040020,0x00000008,0x00000003,0x00000007,
0x0004003b,0x00000008,0x00000009,0x00000003,0x00090019,0x0000000a,0x00000006,0x00000001,
0x00000000,0x00000000,0x00000000,0x00000001,0x00000000,0x0003001b,0x0000000b,0x0000000a,
0x00040020,0x0000000c,0x00000000,0x0000000b,0x0004003b,0x0000000c,0x0000000d,0x00000000,
0x00040017,0x0000000f,0x00000006,0x00000002,0x00040020,0x00000010,0x00000001,0x0000000f,
0x0004003b,0x00000010,0x00000011,0x00000001,0x00050036,0x00000002,0x00000004,0x00000000,
0x00000003,0x000200f8,0x00000005,0x0004003d,0x0000000b,0x0000000e,0x0000000d,0x0004003d,
0x0000000f,0x00000012,0x00000011,0x00050057,0x00000007,0x00000013,0x0000000e,0x00000012,
0x0003003e,0x00000009,0x00000013,0x000100fd,0x00010038
};
static const uint32_t vertShaderCode[] = {
0x07230203,0x00010000,0x00080007,0x00000018,0x00000000,0x00020011,0x00000001,0x0006000b,
0x00000001,0x4c534c47,0x6474732e,0x3035342e,0x00000000,0x0003000e,0x00000000,0x00000001,
0x0009000f,0x00000000,0x00000004,0x6e69616d,0x00000000,0x00000009,0x0000000b,0x00000010,
0x00000014,0x00030003,0x00000002,0x00000190,0x00090004,0x415f4c47,0x735f4252,0x72617065,
0x5f657461,0x64616873,0x6f5f7265,0x63656a62,0x00007374,0x00090004,0x415f4c47,0x735f4252,
0x69646168,0x6c5f676e,0x75676e61,0x5f656761,0x70303234,0x006b6361,0x00040005,0x00000004,
0x6e69616d,0x00000000,0x00050005,0x00000009,0x63786574,0x64726f6f,0x00000000,0x00040005,
0x0000000b,0x72747461,0x00000000,0x00060005,0x0000000e,0x505f6c67,0x65567265,0x78657472,
0x00000000,0x00060006,0x0000000e,0x00000000,0x505f6c67,0x7469736f,0x006e6f69,0x00030005,
0x00000010,0x00000000,0x00030005,0x00000014,0x00736f70,0x00040047,0x00000009,0x0000001e,
0x00000000,0x00040047,0x0000000b,0x0000001e,0x00000001,0x00050048,0x0000000e,0x00000000,
0x0000000b,0x00000000,0x00030047,0x0000000e,0x00000002,0x00040047,0x00000014,0x0000001e,
0x00000000,0x00020013,0x00000002,0x00030021,0x00000003,0x00000002,0x00030016,0x00000006,
0x00000020,0x00040017,0x00000007,0x00000006,0x00000002,0x00040020,0x00000008,0x00000003,
0x00000007,0x0004003b,0x00000008,0x00000009,0x00000003,0x00040020,0x0000000a,0x00000001,
0x00000007,0x0004003b,0x0000000a,0x0000000b,0x00000001,0x00040017,0x0000000d,0x00000006,
0x00000004,0x0003001e,0x0000000e,0x0000000d,0x00040020,0x0000000f,0x00000003,0x0000000e,
0x0004003b,0x0000000f,0x00000010,0x00000003,0x00040015,0x00000011,0x00000020,0x00000001,
0x0004002b,0x00000011,0x00000012,0x00000000,0x00040020,0x00000013,0x00000001,0x0000000d,
0x0004003b,0x00000013,0x00000014,0x00000001,0x00040020,0x00000016,0x00000003,0x0000000d,
0x00050036,0x00000002,0x00000004,0x00000000,0x00000003,0x000200f8,0x00000005,0x0004003d,
0x00000007,0x0000000c,0x0000000b,0x0003003e,0x00000009,0x0000000c,0x0004003d,0x0000000d,
0x00000015,0x00000014,0x00050041,0x00000016,0x00000017,0x00000010,0x00000012,0x0003003e,
0x00000017,0x00000015,0x000100fd,0x00010038
};
struct texture_object {
VkSampler sampler;
VkImage image;
VkImageLayout imageLayout;
VkDeviceMemory mem;
VkImageView view;
int32_t tex_width, tex_height;
};
static int validation_error = 0;
VKAPI_ATTR VkBool32 VKAPI_CALL
BreakCallback(VkFlags msgFlags, VkDebugReportObjectTypeEXT objType,
uint64_t srcObject, size_t location, int32_t msgCode,
const char *pLayerPrefix, const char *pMsg,
void *pUserData) {
#ifdef _WIN32
DebugBreak();
#else
raise(SIGTRAP);
#endif
return false;
}
typedef struct {
VkImage image;
VkCommandBuffer cmd;
VkImageView view;
} SwapchainBuffers;
struct demo {
GLFWwindow* window;
VkSurfaceKHR surface;
bool use_staging_buffer;
VkInstance inst;
VkPhysicalDevice gpu;
VkDevice device;
VkQueue queue;
VkPhysicalDeviceProperties gpu_props;
VkPhysicalDeviceFeatures gpu_features;
VkQueueFamilyProperties *queue_props;
uint32_t graphics_queue_node_index;
uint32_t enabled_extension_count;
uint32_t enabled_layer_count;
const char *extension_names[64];
const char *enabled_layers[64];
int width, height;
VkFormat format;
VkColorSpaceKHR color_space;
uint32_t swapchainImageCount;
VkSwapchainKHR swapchain;
SwapchainBuffers *buffers;
VkCommandPool cmd_pool;
struct {
VkFormat format;
VkImage image;
VkDeviceMemory mem;
VkImageView view;
} depth;
struct texture_object textures[DEMO_TEXTURE_COUNT];
struct {
VkBuffer buf;
VkDeviceMemory mem;
VkPipelineVertexInputStateCreateInfo vi;
VkVertexInputBindingDescription vi_bindings[1];
VkVertexInputAttributeDescription vi_attrs[2];
} vertices;
VkCommandBuffer setup_cmd; // Command Buffer for initialization commands
VkCommandBuffer draw_cmd; // Command Buffer for drawing commands
VkPipelineLayout pipeline_layout;
VkDescriptorSetLayout desc_layout;
VkPipelineCache pipelineCache;
VkRenderPass render_pass;
VkPipeline pipeline;
VkShaderModule vert_shader_module;
VkShaderModule frag_shader_module;
VkDescriptorPool desc_pool;
VkDescriptorSet desc_set;
VkFramebuffer *framebuffers;
VkPhysicalDeviceMemoryProperties memory_properties;
int32_t curFrame;
int32_t frameCount;
bool validate;
bool use_break;
VkDebugReportCallbackEXT msg_callback;
float depthStencil;
float depthIncrement;
uint32_t current_buffer;
uint32_t queue_count;
};
VKAPI_ATTR VkBool32 VKAPI_CALL
dbgFunc(VkFlags msgFlags, VkDebugReportObjectTypeEXT objType,
uint64_t srcObject, size_t location, int32_t msgCode,
const char *pLayerPrefix, const char *pMsg, void *pUserData) {
char *message = (char *)malloc(strlen(pMsg) + 100);
assert(message);
validation_error = 1;
if (msgFlags & VK_DEBUG_REPORT_ERROR_BIT_EXT) {
sprintf(message, "ERROR: [%s] Code %d : %s", pLayerPrefix, msgCode,
pMsg);
} else if (msgFlags & VK_DEBUG_REPORT_WARNING_BIT_EXT) {
sprintf(message, "WARNING: [%s] Code %d : %s", pLayerPrefix, msgCode,
pMsg);
} else {
return false;
}
printf("%s\n", message);
fflush(stdout);
free(message);
/*
* false indicates that layer should not bail-out of an
* API call that had validation failures. This may mean that the
* app dies inside the driver due to invalid parameter(s).
* That's what would happen without validation layers, so we'll
* keep that behavior here.
*/
return false;
}
// Forward declaration:
static void demo_resize(struct demo *demo);
static bool memory_type_from_properties(struct demo *demo, uint32_t typeBits,
VkFlags requirements_mask,
uint32_t *typeIndex) {
uint32_t i;
// Search memtypes to find first index with those properties
for (i = 0; i < VK_MAX_MEMORY_TYPES; i++) {
if ((typeBits & 1) == 1) {
// Type is available, does it match user properties?
if ((demo->memory_properties.memoryTypes[i].propertyFlags &
requirements_mask) == requirements_mask) {
*typeIndex = i;
return true;
}
}
typeBits >>= 1;
}
// No memory types matched, return failure
return false;
}
static void demo_flush_init_cmd(struct demo *demo) {
VkResult U_ASSERT_ONLY err;
if (demo->setup_cmd == VK_NULL_HANDLE)
return;
err = vkEndCommandBuffer(demo->setup_cmd);
assert(!err);
const VkCommandBuffer cmd_bufs[] = {demo->setup_cmd};
VkFence nullFence = {VK_NULL_HANDLE};
VkSubmitInfo submit_info = {.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.pNext = NULL,
.waitSemaphoreCount = 0,
.pWaitSemaphores = NULL,
.pWaitDstStageMask = NULL,
.commandBufferCount = 1,
.pCommandBuffers = cmd_bufs,
.signalSemaphoreCount = 0,
.pSignalSemaphores = NULL};
err = vkQueueSubmit(demo->queue, 1, &submit_info, nullFence);
assert(!err);
err = vkQueueWaitIdle(demo->queue);
assert(!err);
vkFreeCommandBuffers(demo->device, demo->cmd_pool, 1, cmd_bufs);
demo->setup_cmd = VK_NULL_HANDLE;
}
static void demo_set_image_layout(struct demo *demo, VkImage image,
VkImageAspectFlags aspectMask,
VkImageLayout old_image_layout,
VkImageLayout new_image_layout,
VkAccessFlagBits srcAccessMask) {
VkResult U_ASSERT_ONLY err;
if (demo->setup_cmd == VK_NULL_HANDLE) {
const VkCommandBufferAllocateInfo cmd = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.pNext = NULL,
.commandPool = demo->cmd_pool,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = 1,
};
err = vkAllocateCommandBuffers(demo->device, &cmd, &demo->setup_cmd);
assert(!err);
VkCommandBufferBeginInfo cmd_buf_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.pNext = NULL,
.flags = 0,
.pInheritanceInfo = NULL,
};
err = vkBeginCommandBuffer(demo->setup_cmd, &cmd_buf_info);
assert(!err);
}
VkImageMemoryBarrier image_memory_barrier = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = NULL,
.srcAccessMask = srcAccessMask,
.dstAccessMask = 0,
.oldLayout = old_image_layout,
.newLayout = new_image_layout,
.image = image,
.subresourceRange = {aspectMask, 0, 1, 0, 1}};
if (new_image_layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
/* Make sure anything that was copying from this image has completed */
image_memory_barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
}
if (new_image_layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
image_memory_barrier.dstAccessMask =
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
}
if (new_image_layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
image_memory_barrier.dstAccessMask =
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
}
if (new_image_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
/* Make sure any Copy or CPU writes to image are flushed */
image_memory_barrier.dstAccessMask =
VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
}
VkImageMemoryBarrier *pmemory_barrier = &image_memory_barrier;
VkPipelineStageFlags src_stages = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
VkPipelineStageFlags dest_stages = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
vkCmdPipelineBarrier(demo->setup_cmd, src_stages, dest_stages, 0, 0, NULL,
0, NULL, 1, pmemory_barrier);
}
static void demo_draw_build_cmd(struct demo *demo) {
const VkCommandBufferBeginInfo cmd_buf_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.pNext = NULL,
.flags = 0,
.pInheritanceInfo = NULL,
};
const VkClearValue clear_values[2] = {
[0] = {.color.float32 = {0.2f, 0.2f, 0.2f, 0.2f}},
[1] = {.depthStencil = {demo->depthStencil, 0}},
};
const VkRenderPassBeginInfo rp_begin = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.pNext = NULL,
.renderPass = demo->render_pass,
.framebuffer = demo->framebuffers[demo->current_buffer],
.renderArea.offset.x = 0,
.renderArea.offset.y = 0,
.renderArea.extent.width = demo->width,
.renderArea.extent.height = demo->height,
.clearValueCount = 2,
.pClearValues = clear_values,
};
VkResult U_ASSERT_ONLY err;
err = vkBeginCommandBuffer(demo->draw_cmd, &cmd_buf_info);
assert(!err);
// We can use LAYOUT_UNDEFINED as a wildcard here because we don't care what
// happens to the previous contents of the image
VkImageMemoryBarrier image_memory_barrier = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = NULL,
.srcAccessMask = 0,
.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = demo->buffers[demo->current_buffer].image,
.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}};
vkCmdPipelineBarrier(demo->draw_cmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, NULL, 0,
NULL, 1, &image_memory_barrier);
vkCmdBeginRenderPass(demo->draw_cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(demo->draw_cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
demo->pipeline);
vkCmdBindDescriptorSets(demo->draw_cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
demo->pipeline_layout, 0, 1, &demo->desc_set, 0,
NULL);
VkViewport viewport;
memset(&viewport, 0, sizeof(viewport));
viewport.height = (float)demo->height;
viewport.width = (float)demo->width;
viewport.minDepth = (float)0.0f;
viewport.maxDepth = (float)1.0f;
vkCmdSetViewport(demo->draw_cmd, 0, 1, &viewport);
VkRect2D scissor;
memset(&scissor, 0, sizeof(scissor));
scissor.extent.width = demo->width;
scissor.extent.height = demo->height;
scissor.offset.x = 0;
scissor.offset.y = 0;
vkCmdSetScissor(demo->draw_cmd, 0, 1, &scissor);
VkDeviceSize offsets[1] = {0};
vkCmdBindVertexBuffers(demo->draw_cmd, VERTEX_BUFFER_BIND_ID, 1,
&demo->vertices.buf, offsets);
vkCmdDraw(demo->draw_cmd, 3, 1, 0, 0);
vkCmdEndRenderPass(demo->draw_cmd);
VkImageMemoryBarrier prePresentBarrier = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = NULL,
.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}};
prePresentBarrier.image = demo->buffers[demo->current_buffer].image;
VkImageMemoryBarrier *pmemory_barrier = &prePresentBarrier;
vkCmdPipelineBarrier(demo->draw_cmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, NULL, 0,
NULL, 1, pmemory_barrier);
err = vkEndCommandBuffer(demo->draw_cmd);
assert(!err);
}
static void demo_draw(struct demo *demo) {
VkResult U_ASSERT_ONLY err;
VkSemaphore imageAcquiredSemaphore, drawCompleteSemaphore;
VkSemaphoreCreateInfo semaphoreCreateInfo = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
.pNext = NULL,
.flags = 0,
};
err = vkCreateSemaphore(demo->device, &semaphoreCreateInfo,
NULL, &imageAcquiredSemaphore);
assert(!err);
err = vkCreateSemaphore(demo->device, &semaphoreCreateInfo,
NULL, &drawCompleteSemaphore);
assert(!err);
// Get the index of the next available swapchain image:
err = vkAcquireNextImageKHR(demo->device, demo->swapchain, UINT64_MAX,
imageAcquiredSemaphore,
(VkFence)0, // TODO: Show use of fence
&demo->current_buffer);
if (err == VK_ERROR_OUT_OF_DATE_KHR) {
// demo->swapchain is out of date (e.g. the window was resized) and
// must be recreated:
demo_resize(demo);
demo_draw(demo);
vkDestroySemaphore(demo->device, imageAcquiredSemaphore, NULL);
vkDestroySemaphore(demo->device, drawCompleteSemaphore, NULL);
return;
} else if (err == VK_SUBOPTIMAL_KHR) {
// demo->swapchain is not as optimal as it could be, but the platform's
// presentation engine will still present the image correctly.
} else {
assert(!err);
}
demo_flush_init_cmd(demo);
// Wait for the present complete semaphore to be signaled to ensure
// that the image won't be rendered to until the presentation
// engine has fully released ownership to the application, and it is
// okay to render to the image.
demo_draw_build_cmd(demo);
VkFence nullFence = VK_NULL_HANDLE;
VkPipelineStageFlags pipe_stage_flags =
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
VkSubmitInfo submit_info = {.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.pNext = NULL,
.waitSemaphoreCount = 1,
.pWaitSemaphores = &imageAcquiredSemaphore,
.pWaitDstStageMask = &pipe_stage_flags,
.commandBufferCount = 1,
.pCommandBuffers = &demo->draw_cmd,
.signalSemaphoreCount = 1,
.pSignalSemaphores = &drawCompleteSemaphore};
err = vkQueueSubmit(demo->queue, 1, &submit_info, nullFence);
assert(!err);
VkPresentInfoKHR present = {
.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
.pNext = NULL,
.waitSemaphoreCount = 1,
.pWaitSemaphores = &drawCompleteSemaphore,
.swapchainCount = 1,
.pSwapchains = &demo->swapchain,
.pImageIndices = &demo->current_buffer,
};
err = vkQueuePresentKHR(demo->queue, &present);
if (err == VK_ERROR_OUT_OF_DATE_KHR) {
// demo->swapchain is out of date (e.g. the window was resized) and
// must be recreated:
demo_resize(demo);
} else if (err == VK_SUBOPTIMAL_KHR) {
// demo->swapchain is not as optimal as it could be, but the platform's
// presentation engine will still present the image correctly.
} else {
assert(!err);
}
err = vkQueueWaitIdle(demo->queue);
assert(err == VK_SUCCESS);
vkDestroySemaphore(demo->device, imageAcquiredSemaphore, NULL);
vkDestroySemaphore(demo->device, drawCompleteSemaphore, NULL);
}
static void demo_prepare_buffers(struct demo *demo) {
VkResult U_ASSERT_ONLY err;
VkSwapchainKHR oldSwapchain = demo->swapchain;
// Check the surface capabilities and formats
VkSurfaceCapabilitiesKHR surfCapabilities;
err = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(
demo->gpu, demo->surface, &surfCapabilities);
assert(!err);
uint32_t presentModeCount;
err = vkGetPhysicalDeviceSurfacePresentModesKHR(
demo->gpu, demo->surface, &presentModeCount, NULL);
assert(!err);
VkPresentModeKHR *presentModes =
(VkPresentModeKHR *)malloc(presentModeCount * sizeof(VkPresentModeKHR));
assert(presentModes);
err = vkGetPhysicalDeviceSurfacePresentModesKHR(
demo->gpu, demo->surface, &presentModeCount, presentModes);
assert(!err);
VkExtent2D swapchainExtent;
// width and height are either both 0xFFFFFFFF, or both not 0xFFFFFFFF.
if (surfCapabilities.currentExtent.width == 0xFFFFFFFF) {
// If the surface size is undefined, the size is set to the size
// of the images requested, which must fit within the minimum and
// maximum values.
swapchainExtent.width = demo->width;
swapchainExtent.height = demo->height;
if (swapchainExtent.width < surfCapabilities.minImageExtent.width) {
swapchainExtent.width = surfCapabilities.minImageExtent.width;
} else if (swapchainExtent.width > surfCapabilities.maxImageExtent.width) {
swapchainExtent.width = surfCapabilities.maxImageExtent.width;
}
if (swapchainExtent.height < surfCapabilities.minImageExtent.height) {
swapchainExtent.height = surfCapabilities.minImageExtent.height;
} else if (swapchainExtent.height > surfCapabilities.maxImageExtent.height) {
swapchainExtent.height = surfCapabilities.maxImageExtent.height;
}
} else {
// If the surface size is defined, the swap chain size must match
swapchainExtent = surfCapabilities.currentExtent;
demo->width = surfCapabilities.currentExtent.width;
demo->height = surfCapabilities.currentExtent.height;
}
VkPresentModeKHR swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR;
// Determine the number of VkImage's to use in the swap chain.
// Application desires to only acquire 1 image at a time (which is
// "surfCapabilities.minImageCount").
uint32_t desiredNumOfSwapchainImages = surfCapabilities.minImageCount;
// If maxImageCount is 0, we can ask for as many images as we want;
// otherwise we're limited to maxImageCount
if ((surfCapabilities.maxImageCount > 0) &&
(desiredNumOfSwapchainImages > surfCapabilities.maxImageCount)) {
// Application must settle for fewer images than desired:
desiredNumOfSwapchainImages = surfCapabilities.maxImageCount;
}
VkSurfaceTransformFlagsKHR preTransform;
if (surfCapabilities.supportedTransforms &
VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) {
preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
} else {
preTransform = surfCapabilities.currentTransform;
}
const VkSwapchainCreateInfoKHR swapchain = {
.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
.pNext = NULL,
.surface = demo->surface,
.minImageCount = desiredNumOfSwapchainImages,
.imageFormat = demo->format,
.imageColorSpace = demo->color_space,
.imageExtent =
{
.width = swapchainExtent.width, .height = swapchainExtent.height,
},
.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
.preTransform = preTransform,
.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
.imageArrayLayers = 1,
.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = NULL,
.presentMode = swapchainPresentMode,
.oldSwapchain = oldSwapchain,
.clipped = true,
};
uint32_t i;
err = vkCreateSwapchainKHR(demo->device, &swapchain, NULL, &demo->swapchain);
assert(!err);
// If we just re-created an existing swapchain, we should destroy the old
// swapchain at this point.
// Note: destroying the swapchain also cleans up all its associated
// presentable images once the platform is done with them.
if (oldSwapchain != VK_NULL_HANDLE) {
vkDestroySwapchainKHR(demo->device, oldSwapchain, NULL);
}
err = vkGetSwapchainImagesKHR(demo->device, demo->swapchain,
&demo->swapchainImageCount, NULL);
assert(!err);
VkImage *swapchainImages =
(VkImage *)malloc(demo->swapchainImageCount * sizeof(VkImage));
assert(swapchainImages);
err = vkGetSwapchainImagesKHR(demo->device, demo->swapchain,
&demo->swapchainImageCount,
swapchainImages);
assert(!err);
demo->buffers = (SwapchainBuffers *)malloc(sizeof(SwapchainBuffers) *
demo->swapchainImageCount);
assert(demo->buffers);
for (i = 0; i < demo->swapchainImageCount; i++) {
VkImageViewCreateInfo color_attachment_view = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.pNext = NULL,
.format = demo->format,
.components =
{
.r = VK_COMPONENT_SWIZZLE_R,
.g = VK_COMPONENT_SWIZZLE_G,
.b = VK_COMPONENT_SWIZZLE_B,
.a = VK_COMPONENT_SWIZZLE_A,
},
.subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1},
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.flags = 0,
};
demo->buffers[i].image = swapchainImages[i];
color_attachment_view.image = demo->buffers[i].image;
err = vkCreateImageView(demo->device, &color_attachment_view, NULL,
&demo->buffers[i].view);
assert(!err);
}
demo->current_buffer = 0;
if (NULL != presentModes) {
free(presentModes);
}
}
static void demo_prepare_depth(struct demo *demo) {
const VkFormat depth_format = VK_FORMAT_D16_UNORM;
const VkImageCreateInfo image = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = NULL,
.imageType = VK_IMAGE_TYPE_2D,
.format = depth_format,
.extent = {demo->width, demo->height, 1},
.mipLevels = 1,
.arrayLayers = 1,
.samples = VK_SAMPLE_COUNT_1_BIT,
.tiling = VK_IMAGE_TILING_OPTIMAL,
.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
.flags = 0,
};
VkMemoryAllocateInfo mem_alloc = {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
.pNext = NULL,
.allocationSize = 0,
.memoryTypeIndex = 0,
};
VkImageViewCreateInfo view = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.pNext = NULL,
.image = VK_NULL_HANDLE,
.format = depth_format,
.subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1},
.flags = 0,
.viewType = VK_IMAGE_VIEW_TYPE_2D,
};
VkMemoryRequirements mem_reqs;
VkResult U_ASSERT_ONLY err;
bool U_ASSERT_ONLY pass;
demo->depth.format = depth_format;
/* create image */
err = vkCreateImage(demo->device, &image, NULL, &demo->depth.image);
assert(!err);
/* get memory requirements for this object */
vkGetImageMemoryRequirements(demo->device, demo->depth.image, &mem_reqs);
/* select memory size and type */
mem_alloc.allocationSize = mem_reqs.size;
pass = memory_type_from_properties(demo, mem_reqs.memoryTypeBits,
0, /* No requirements */
&mem_alloc.memoryTypeIndex);
assert(pass);
/* allocate memory */
err = vkAllocateMemory(demo->device, &mem_alloc, NULL, &demo->depth.mem);
assert(!err);
/* bind memory */
err =
vkBindImageMemory(demo->device, demo->depth.image, demo->depth.mem, 0);
assert(!err);
demo_set_image_layout(demo, demo->depth.image, VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
0);
/* create image view */
view.image = demo->depth.image;
err = vkCreateImageView(demo->device, &view, NULL, &demo->depth.view);
assert(!err);
}
static void
demo_prepare_texture_image(struct demo *demo, const uint32_t *tex_colors,
struct texture_object *tex_obj, VkImageTiling tiling,
VkImageUsageFlags usage, VkFlags required_props) {
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
const int32_t tex_width = 2;
const int32_t tex_height = 2;
VkResult U_ASSERT_ONLY err;
bool U_ASSERT_ONLY pass;
tex_obj->tex_width = tex_width;
tex_obj->tex_height = tex_height;
const VkImageCreateInfo image_create_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = NULL,
.imageType = VK_IMAGE_TYPE_2D,
.format = tex_format,
.extent = {tex_width, tex_height, 1},
.mipLevels = 1,
.arrayLayers = 1,
.samples = VK_SAMPLE_COUNT_1_BIT,
.tiling = tiling,
.usage = usage,
.flags = 0,
.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED
};
VkMemoryAllocateInfo mem_alloc = {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
.pNext = NULL,
.allocationSize = 0,
.memoryTypeIndex = 0,
};
VkMemoryRequirements mem_reqs;
err =
vkCreateImage(demo->device, &image_create_info, NULL, &tex_obj->image);
assert(!err);
vkGetImageMemoryRequirements(demo->device, tex_obj->image, &mem_reqs);
mem_alloc.allocationSize = mem_reqs.size;
pass =
memory_type_from_properties(demo, mem_reqs.memoryTypeBits,
required_props, &mem_alloc.memoryTypeIndex);
assert(pass);
/* allocate memory */
err = vkAllocateMemory(demo->device, &mem_alloc, NULL, &tex_obj->mem);
assert(!err);
/* bind memory */
err = vkBindImageMemory(demo->device, tex_obj->image, tex_obj->mem, 0);
assert(!err);
if (required_props & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
const VkImageSubresource subres = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.mipLevel = 0,
.arrayLayer = 0,
};
VkSubresourceLayout layout;
void *data;
int32_t x, y;
vkGetImageSubresourceLayout(demo->device, tex_obj->image, &subres,
&layout);
err = vkMapMemory(demo->device, tex_obj->mem, 0,
mem_alloc.allocationSize, 0, &data);
assert(!err);
for (y = 0; y < tex_height; y++) {
uint32_t *row = (uint32_t *)((char *)data + layout.rowPitch * y);
for (x = 0; x < tex_width; x++)
row[x] = tex_colors[(x & 1) ^ (y & 1)];
}
vkUnmapMemory(demo->device, tex_obj->mem);
}
tex_obj->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
demo_set_image_layout(demo, tex_obj->image, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_PREINITIALIZED, tex_obj->imageLayout,
VK_ACCESS_HOST_WRITE_BIT);
/* setting the image layout does not reference the actual memory so no need
* to add a mem ref */
}
static void demo_destroy_texture_image(struct demo *demo,
struct texture_object *tex_obj) {
/* clean up staging resources */
vkDestroyImage(demo->device, tex_obj->image, NULL);
vkFreeMemory(demo->device, tex_obj->mem, NULL);
}
static void demo_prepare_textures(struct demo *demo) {
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
VkFormatProperties props;
const uint32_t tex_colors[DEMO_TEXTURE_COUNT][2] = {
{0xffff0000, 0xff00ff00},
};
uint32_t i;
VkResult U_ASSERT_ONLY err;
vkGetPhysicalDeviceFormatProperties(demo->gpu, tex_format, &props);
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
if ((props.linearTilingFeatures &
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) &&
!demo->use_staging_buffer) {
/* Device can texture using linear textures */
demo_prepare_texture_image(
demo, tex_colors[i], &demo->textures[i], VK_IMAGE_TILING_LINEAR,
VK_IMAGE_USAGE_SAMPLED_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
} else if (props.optimalTilingFeatures &
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) {
/* Must use staging buffer to copy linear texture to optimized */
struct texture_object staging_texture;
memset(&staging_texture, 0, sizeof(staging_texture));
demo_prepare_texture_image(
demo, tex_colors[i], &staging_texture, VK_IMAGE_TILING_LINEAR,
VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
demo_prepare_texture_image(
demo, tex_colors[i], &demo->textures[i],
VK_IMAGE_TILING_OPTIMAL,
(VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT),
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
demo_set_image_layout(demo, staging_texture.image,
VK_IMAGE_ASPECT_COLOR_BIT,
staging_texture.imageLayout,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
0);
demo_set_image_layout(demo, demo->textures[i].image,
VK_IMAGE_ASPECT_COLOR_BIT,
demo->textures[i].imageLayout,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
0);
VkImageCopy copy_region = {
.srcSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1},
.srcOffset = {0, 0, 0},
.dstSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1},
.dstOffset = {0, 0, 0},
.extent = {staging_texture.tex_width,
staging_texture.tex_height, 1},
};
vkCmdCopyImage(
demo->setup_cmd, staging_texture.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, demo->textures[i].image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copy_region);
demo_set_image_layout(demo, demo->textures[i].image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
demo->textures[i].imageLayout,
0);
demo_flush_init_cmd(demo);
demo_destroy_texture_image(demo, &staging_texture);
} else {
/* Can't support VK_FORMAT_B8G8R8A8_UNORM !? */
assert(!"No support for B8G8R8A8_UNORM as texture image format");
}
const VkSamplerCreateInfo sampler = {
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.pNext = NULL,
.magFilter = VK_FILTER_NEAREST,
.minFilter = VK_FILTER_NEAREST,
.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST,
.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT,
.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT,
.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT,
.mipLodBias = 0.0f,
.anisotropyEnable = VK_FALSE,
.maxAnisotropy = 1,
.compareOp = VK_COMPARE_OP_NEVER,
.minLod = 0.0f,
.maxLod = 0.0f,
.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE,
.unnormalizedCoordinates = VK_FALSE,
};
VkImageViewCreateInfo view = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.pNext = NULL,
.image = VK_NULL_HANDLE,
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = tex_format,
.components =
{
VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G,
VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A,
},
.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1},
.flags = 0,
};
/* create sampler */
err = vkCreateSampler(demo->device, &sampler, NULL,
&demo->textures[i].sampler);
assert(!err);
/* create image view */
view.image = demo->textures[i].image;
err = vkCreateImageView(demo->device, &view, NULL,
&demo->textures[i].view);
assert(!err);
}
}
static void demo_prepare_vertices(struct demo *demo) {
// clang-format off
const float vb[3][5] = {
/* position texcoord */
{ -1.0f, -1.0f, 0.25f, 0.0f, 0.0f },
{ 1.0f, -1.0f, 0.25f, 1.0f, 0.0f },
{ 0.0f, 1.0f, 1.0f, 0.5f, 1.0f },
};
// clang-format on
const VkBufferCreateInfo buf_info = {
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = NULL,
.size = sizeof(vb),
.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
.flags = 0,
};
VkMemoryAllocateInfo mem_alloc = {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
.pNext = NULL,
.allocationSize = 0,
.memoryTypeIndex = 0,
};
VkMemoryRequirements mem_reqs;
VkResult U_ASSERT_ONLY err;
bool U_ASSERT_ONLY pass;
void *data;
memset(&demo->vertices, 0, sizeof(demo->vertices));
err = vkCreateBuffer(demo->device, &buf_info, NULL, &demo->vertices.buf);
assert(!err);
vkGetBufferMemoryRequirements(demo->device, demo->vertices.buf, &mem_reqs);
assert(!err);
mem_alloc.allocationSize = mem_reqs.size;
pass = memory_type_from_properties(demo, mem_reqs.memoryTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&mem_alloc.memoryTypeIndex);
assert(pass);
err = vkAllocateMemory(demo->device, &mem_alloc, NULL, &demo->vertices.mem);
assert(!err);
err = vkMapMemory(demo->device, demo->vertices.mem, 0,
mem_alloc.allocationSize, 0, &data);
assert(!err);
memcpy(data, vb, sizeof(vb));
vkUnmapMemory(demo->device, demo->vertices.mem);
err = vkBindBufferMemory(demo->device, demo->vertices.buf,
demo->vertices.mem, 0);
assert(!err);
demo->vertices.vi.sType =
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
demo->vertices.vi.pNext = NULL;
demo->vertices.vi.vertexBindingDescriptionCount = 1;
demo->vertices.vi.pVertexBindingDescriptions = demo->vertices.vi_bindings;
demo->vertices.vi.vertexAttributeDescriptionCount = 2;
demo->vertices.vi.pVertexAttributeDescriptions = demo->vertices.vi_attrs;
demo->vertices.vi_bindings[0].binding = VERTEX_BUFFER_BIND_ID;
demo->vertices.vi_bindings[0].stride = sizeof(vb[0]);
demo->vertices.vi_bindings[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
demo->vertices.vi_attrs[0].binding = VERTEX_BUFFER_BIND_ID;
demo->vertices.vi_attrs[0].location = 0;
demo->vertices.vi_attrs[0].format = VK_FORMAT_R32G32B32_SFLOAT;
demo->vertices.vi_attrs[0].offset = 0;
demo->vertices.vi_attrs[1].binding = VERTEX_BUFFER_BIND_ID;
demo->vertices.vi_attrs[1].location = 1;
demo->vertices.vi_attrs[1].format = VK_FORMAT_R32G32_SFLOAT;
demo->vertices.vi_attrs[1].offset = sizeof(float) * 3;
}
static void demo_prepare_descriptor_layout(struct demo *demo) {
const VkDescriptorSetLayoutBinding layout_binding = {
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = DEMO_TEXTURE_COUNT,
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
.pImmutableSamplers = NULL,
};
const VkDescriptorSetLayoutCreateInfo descriptor_layout = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.pNext = NULL,
.bindingCount = 1,
.pBindings = &layout_binding,
};
VkResult U_ASSERT_ONLY err;
err = vkCreateDescriptorSetLayout(demo->device, &descriptor_layout, NULL,
&demo->desc_layout);
assert(!err);
const VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.pNext = NULL,
.setLayoutCount = 1,
.pSetLayouts = &demo->desc_layout,
};
err = vkCreatePipelineLayout(demo->device, &pPipelineLayoutCreateInfo, NULL,
&demo->pipeline_layout);
assert(!err);
}
static void demo_prepare_render_pass(struct demo *demo) {
const VkAttachmentDescription attachments[2] = {
[0] =
{
.format = demo->format,
.samples = VK_SAMPLE_COUNT_1_BIT,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
},
[1] =
{
.format = demo->depth.format,
.samples = VK_SAMPLE_COUNT_1_BIT,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.initialLayout =
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
.finalLayout =
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
},
};
const VkAttachmentReference color_reference = {
.attachment = 0, .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
};
const VkAttachmentReference depth_reference = {
.attachment = 1,
.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
};
const VkSubpassDescription subpass = {
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.flags = 0,
.inputAttachmentCount = 0,
.pInputAttachments = NULL,
.colorAttachmentCount = 1,
.pColorAttachments = &color_reference,
.pResolveAttachments = NULL,
.pDepthStencilAttachment = &depth_reference,
.preserveAttachmentCount = 0,
.pPreserveAttachments = NULL,
};
const VkRenderPassCreateInfo rp_info = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.pNext = NULL,
.attachmentCount = 2,
.pAttachments = attachments,
.subpassCount = 1,
.pSubpasses = &subpass,
.dependencyCount = 0,
.pDependencies = NULL,
};
VkResult U_ASSERT_ONLY err;
err = vkCreateRenderPass(demo->device, &rp_info, NULL, &demo->render_pass);
assert(!err);
}
static VkShaderModule
demo_prepare_shader_module(struct demo *demo, const void *code, size_t size) {
VkShaderModuleCreateInfo moduleCreateInfo;
VkShaderModule module;
VkResult U_ASSERT_ONLY err;
moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
moduleCreateInfo.pNext = NULL;
moduleCreateInfo.codeSize = size;
moduleCreateInfo.pCode = code;
moduleCreateInfo.flags = 0;
err = vkCreateShaderModule(demo->device, &moduleCreateInfo, NULL, &module);
assert(!err);
return module;
}
static VkShaderModule demo_prepare_vs(struct demo *demo) {
size_t size = sizeof(vertShaderCode);
demo->vert_shader_module =
demo_prepare_shader_module(demo, vertShaderCode, size);
return demo->vert_shader_module;
}
static VkShaderModule demo_prepare_fs(struct demo *demo) {
size_t size = sizeof(fragShaderCode);
demo->frag_shader_module =
demo_prepare_shader_module(demo, fragShaderCode, size);
return demo->frag_shader_module;
}
static void demo_prepare_pipeline(struct demo *demo) {
VkGraphicsPipelineCreateInfo pipeline;
VkPipelineCacheCreateInfo pipelineCache;
VkPipelineVertexInputStateCreateInfo vi;
VkPipelineInputAssemblyStateCreateInfo ia;
VkPipelineRasterizationStateCreateInfo rs;
VkPipelineColorBlendStateCreateInfo cb;
VkPipelineDepthStencilStateCreateInfo ds;
VkPipelineViewportStateCreateInfo vp;
VkPipelineMultisampleStateCreateInfo ms;
VkDynamicState dynamicStateEnables[VK_DYNAMIC_STATE_RANGE_SIZE];
VkPipelineDynamicStateCreateInfo dynamicState;
VkResult U_ASSERT_ONLY err;
memset(dynamicStateEnables, 0, sizeof dynamicStateEnables);
memset(&dynamicState, 0, sizeof dynamicState);
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicState.pDynamicStates = dynamicStateEnables;
memset(&pipeline, 0, sizeof(pipeline));
pipeline.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipeline.layout = demo->pipeline_layout;
vi = demo->vertices.vi;
memset(&ia, 0, sizeof(ia));
ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
memset(&rs, 0, sizeof(rs));
rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rs.polygonMode = VK_POLYGON_MODE_FILL;
rs.cullMode = VK_CULL_MODE_BACK_BIT;
rs.frontFace = VK_FRONT_FACE_CLOCKWISE;
rs.depthClampEnable = VK_FALSE;
rs.rasterizerDiscardEnable = VK_FALSE;
rs.depthBiasEnable = VK_FALSE;
rs.lineWidth = 1.0f;
memset(&cb, 0, sizeof(cb));
cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
VkPipelineColorBlendAttachmentState att_state[1];
memset(att_state, 0, sizeof(att_state));
att_state[0].colorWriteMask = 0xf;
att_state[0].blendEnable = VK_FALSE;
cb.attachmentCount = 1;
cb.pAttachments = att_state;
memset(&vp, 0, sizeof(vp));
vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
vp.viewportCount = 1;
dynamicStateEnables[dynamicState.dynamicStateCount++] =
VK_DYNAMIC_STATE_VIEWPORT;
vp.scissorCount = 1;
dynamicStateEnables[dynamicState.dynamicStateCount++] =
VK_DYNAMIC_STATE_SCISSOR;
memset(&ds, 0, sizeof(ds));
ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
ds.depthTestEnable = VK_TRUE;
ds.depthWriteEnable = VK_TRUE;
ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
ds.depthBoundsTestEnable = VK_FALSE;
ds.back.failOp = VK_STENCIL_OP_KEEP;
ds.back.passOp = VK_STENCIL_OP_KEEP;
ds.back.compareOp = VK_COMPARE_OP_ALWAYS;
ds.stencilTestEnable = VK_FALSE;
ds.front = ds.back;
memset(&ms, 0, sizeof(ms));
ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
ms.pSampleMask = NULL;
ms.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
// Two stages: vs and fs
pipeline.stageCount = 2;
VkPipelineShaderStageCreateInfo shaderStages[2];
memset(&shaderStages, 0, 2 * sizeof(VkPipelineShaderStageCreateInfo));
shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
shaderStages[0].module = demo_prepare_vs(demo);
shaderStages[0].pName = "main";
shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
shaderStages[1].module = demo_prepare_fs(demo);
shaderStages[1].pName = "main";
pipeline.pVertexInputState = &vi;
pipeline.pInputAssemblyState = &ia;
pipeline.pRasterizationState = &rs;
pipeline.pColorBlendState = &cb;
pipeline.pMultisampleState = &ms;
pipeline.pViewportState = &vp;
pipeline.pDepthStencilState = &ds;
pipeline.pStages = shaderStages;
pipeline.renderPass = demo->render_pass;
pipeline.pDynamicState = &dynamicState;
memset(&pipelineCache, 0, sizeof(pipelineCache));
pipelineCache.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
err = vkCreatePipelineCache(demo->device, &pipelineCache, NULL,
&demo->pipelineCache);
assert(!err);
err = vkCreateGraphicsPipelines(demo->device, demo->pipelineCache, 1,
&pipeline, NULL, &demo->pipeline);
assert(!err);
vkDestroyPipelineCache(demo->device, demo->pipelineCache, NULL);
vkDestroyShaderModule(demo->device, demo->frag_shader_module, NULL);
vkDestroyShaderModule(demo->device, demo->vert_shader_module, NULL);
}
static void demo_prepare_descriptor_pool(struct demo *demo) {
const VkDescriptorPoolSize type_count = {
.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = DEMO_TEXTURE_COUNT,
};
const VkDescriptorPoolCreateInfo descriptor_pool = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
.pNext = NULL,
.maxSets = 1,
.poolSizeCount = 1,
.pPoolSizes = &type_count,
};
VkResult U_ASSERT_ONLY err;
err = vkCreateDescriptorPool(demo->device, &descriptor_pool, NULL,
&demo->desc_pool);
assert(!err);
}
static void demo_prepare_descriptor_set(struct demo *demo) {
VkDescriptorImageInfo tex_descs[DEMO_TEXTURE_COUNT];
VkWriteDescriptorSet write;
VkResult U_ASSERT_ONLY err;
uint32_t i;
VkDescriptorSetAllocateInfo alloc_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
.pNext = NULL,
.descriptorPool = demo->desc_pool,
.descriptorSetCount = 1,
.pSetLayouts = &demo->desc_layout};
err = vkAllocateDescriptorSets(demo->device, &alloc_info, &demo->desc_set);
assert(!err);
memset(&tex_descs, 0, sizeof(tex_descs));
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
tex_descs[i].sampler = demo->textures[i].sampler;
tex_descs[i].imageView = demo->textures[i].view;
tex_descs[i].imageLayout = VK_IMAGE_LAYOUT_GENERAL;
}
memset(&write, 0, sizeof(write));
write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
write.dstSet = demo->desc_set;
write.descriptorCount = DEMO_TEXTURE_COUNT;
write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
write.pImageInfo = tex_descs;
vkUpdateDescriptorSets(demo->device, 1, &write, 0, NULL);
}
static void demo_prepare_framebuffers(struct demo *demo) {
VkImageView attachments[2];
attachments[1] = demo->depth.view;
const VkFramebufferCreateInfo fb_info = {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.pNext = NULL,
.renderPass = demo->render_pass,
.attachmentCount = 2,
.pAttachments = attachments,
.width = demo->width,
.height = demo->height,
.layers = 1,
};
VkResult U_ASSERT_ONLY err;
uint32_t i;
demo->framebuffers = (VkFramebuffer *)malloc(demo->swapchainImageCount *
sizeof(VkFramebuffer));
assert(demo->framebuffers);
for (i = 0; i < demo->swapchainImageCount; i++) {
attachments[0] = demo->buffers[i].view;
err = vkCreateFramebuffer(demo->device, &fb_info, NULL,
&demo->framebuffers[i]);
assert(!err);
}
}
static void demo_prepare(struct demo *demo) {
VkResult U_ASSERT_ONLY err;
const VkCommandPoolCreateInfo cmd_pool_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
.pNext = NULL,
.queueFamilyIndex = demo->graphics_queue_node_index,
.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,
};
err = vkCreateCommandPool(demo->device, &cmd_pool_info, NULL,
&demo->cmd_pool);
assert(!err);
const VkCommandBufferAllocateInfo cmd = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.pNext = NULL,
.commandPool = demo->cmd_pool,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = 1,
};
err = vkAllocateCommandBuffers(demo->device, &cmd, &demo->draw_cmd);
assert(!err);
demo_prepare_buffers(demo);
demo_prepare_depth(demo);
demo_prepare_textures(demo);
demo_prepare_vertices(demo);
demo_prepare_descriptor_layout(demo);
demo_prepare_render_pass(demo);
demo_prepare_pipeline(demo);
demo_prepare_descriptor_pool(demo);
demo_prepare_descriptor_set(demo);
demo_prepare_framebuffers(demo);
}
static void demo_error_callback(int error, const char* description) {
printf("GLFW error: %s\n", description);
fflush(stdout);
}
static void demo_key_callback(GLFWwindow* window, int key, int scancode, int action, int mods) {
if (key == GLFW_KEY_ESCAPE && action == GLFW_RELEASE)
glfwSetWindowShouldClose(window, GLFW_TRUE);
}
static void demo_refresh_callback(GLFWwindow* window) {
struct demo* demo = glfwGetWindowUserPointer(window);
demo_draw(demo);
}
static void demo_resize_callback(GLFWwindow* window, int width, int height) {
struct demo* demo = glfwGetWindowUserPointer(window);
demo->width = width;
demo->height = height;
demo_resize(demo);
}
static void demo_run(struct demo *demo) {
while (!glfwWindowShouldClose(demo->window)) {
glfwPollEvents();
demo_draw(demo);
if (demo->depthStencil > 0.99f)
demo->depthIncrement = -0.001f;
if (demo->depthStencil < 0.8f)
demo->depthIncrement = 0.001f;
demo->depthStencil += demo->depthIncrement;
// Wait for work to finish before updating MVP.
vkDeviceWaitIdle(demo->device);
demo->curFrame++;
if (demo->frameCount != INT32_MAX && demo->curFrame == demo->frameCount)
glfwSetWindowShouldClose(demo->window, GLFW_TRUE);
}
}
static void demo_create_window(struct demo *demo) {
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
demo->window = glfwCreateWindow(demo->width,
demo->height,
APP_LONG_NAME,
NULL,
NULL);
if (!demo->window) {
// It didn't work, so try to give a useful error:
printf("Cannot create a window in which to draw!\n");
fflush(stdout);
exit(1);
}
glfwSetWindowUserPointer(demo->window, demo);
glfwSetWindowRefreshCallback(demo->window, demo_refresh_callback);
glfwSetFramebufferSizeCallback(demo->window, demo_resize_callback);
glfwSetKeyCallback(demo->window, demo_key_callback);
}
/*
* Return 1 (true) if all layer names specified in check_names
* can be found in given layer properties.
*/
static VkBool32 demo_check_layers(uint32_t check_count, const char **check_names,
uint32_t layer_count,
VkLayerProperties *layers) {
uint32_t i, j;
for (i = 0; i < check_count; i++) {
VkBool32 found = 0;
for (j = 0; j < layer_count; j++) {
if (!strcmp(check_names[i], layers[j].layerName)) {
found = 1;
break;
}
}
if (!found) {
fprintf(stderr, "Cannot find layer: %s\n", check_names[i]);
return 0;
}
}
return 1;
}
static void demo_init_vk(struct demo *demo) {
VkResult err;
uint32_t i = 0;
uint32_t required_extension_count = 0;
uint32_t instance_extension_count = 0;
uint32_t instance_layer_count = 0;
uint32_t validation_layer_count = 0;
const char **required_extensions = NULL;
const char **instance_validation_layers = NULL;
demo->enabled_extension_count = 0;
demo->enabled_layer_count = 0;
char *instance_validation_layers_alt1[] = {
"VK_LAYER_LUNARG_standard_validation"
};
char *instance_validation_layers_alt2[] = {
"VK_LAYER_GOOGLE_threading", "VK_LAYER_LUNARG_parameter_validation",
"VK_LAYER_LUNARG_object_tracker", "VK_LAYER_LUNARG_image",
"VK_LAYER_LUNARG_core_validation", "VK_LAYER_LUNARG_swapchain",
"VK_LAYER_GOOGLE_unique_objects"
};
/* Look for validation layers */
VkBool32 validation_found = 0;
if (demo->validate) {
err = vkEnumerateInstanceLayerProperties(&instance_layer_count, NULL);
assert(!err);
instance_validation_layers = (const char**) instance_validation_layers_alt1;
if (instance_layer_count > 0) {
VkLayerProperties *instance_layers =
malloc(sizeof (VkLayerProperties) * instance_layer_count);
err = vkEnumerateInstanceLayerProperties(&instance_layer_count,
instance_layers);
assert(!err);
validation_found = demo_check_layers(
ARRAY_SIZE(instance_validation_layers_alt1),
instance_validation_layers, instance_layer_count,
instance_layers);
if (validation_found) {
demo->enabled_layer_count = ARRAY_SIZE(instance_validation_layers_alt1);
demo->enabled_layers[0] = "VK_LAYER_LUNARG_standard_validation";
validation_layer_count = 1;
} else {
// use alternative set of validation layers
instance_validation_layers =
(const char**) instance_validation_layers_alt2;
demo->enabled_layer_count = ARRAY_SIZE(instance_validation_layers_alt2);
validation_found = demo_check_layers(
ARRAY_SIZE(instance_validation_layers_alt2),
instance_validation_layers, instance_layer_count,
instance_layers);
validation_layer_count =
ARRAY_SIZE(instance_validation_layers_alt2);
for (i = 0; i < validation_layer_count; i++) {
demo->enabled_layers[i] = instance_validation_layers[i];
}
}
free(instance_layers);
}
if (!validation_found) {
ERR_EXIT("vkEnumerateInstanceLayerProperties failed to find "
"required validation layer.\n\n"
"Please look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
}
}
/* Look for instance extensions */
required_extensions = glfwGetRequiredInstanceExtensions(&required_extension_count);
if (!required_extensions) {
ERR_EXIT("glfwGetRequiredInstanceExtensions failed to find the "
"platform surface extensions.\n\nDo you have a compatible "
"Vulkan installable client driver (ICD) installed?\nPlease "
"look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
}
for (i = 0; i < required_extension_count; i++) {
demo->extension_names[demo->enabled_extension_count++] = required_extensions[i];
assert(demo->enabled_extension_count < 64);
}
err = vkEnumerateInstanceExtensionProperties(
NULL, &instance_extension_count, NULL);
assert(!err);
if (instance_extension_count > 0) {
VkExtensionProperties *instance_extensions =
malloc(sizeof(VkExtensionProperties) * instance_extension_count);
err = vkEnumerateInstanceExtensionProperties(
NULL, &instance_extension_count, instance_extensions);
assert(!err);
for (i = 0; i < instance_extension_count; i++) {
if (!strcmp(VK_EXT_DEBUG_REPORT_EXTENSION_NAME,
instance_extensions[i].extensionName)) {
if (demo->validate) {
demo->extension_names[demo->enabled_extension_count++] =
VK_EXT_DEBUG_REPORT_EXTENSION_NAME;
}
}
assert(demo->enabled_extension_count < 64);
}
free(instance_extensions);
}
const VkApplicationInfo app = {
.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
.pNext = NULL,
.pApplicationName = APP_SHORT_NAME,
.applicationVersion = 0,
.pEngineName = APP_SHORT_NAME,
.engineVersion = 0,
.apiVersion = VK_API_VERSION_1_0,
};
VkInstanceCreateInfo inst_info = {
.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
.pNext = NULL,
.pApplicationInfo = &app,
.enabledLayerCount = demo->enabled_layer_count,
.ppEnabledLayerNames = (const char *const *)instance_validation_layers,
.enabledExtensionCount = demo->enabled_extension_count,
.ppEnabledExtensionNames = (const char *const *)demo->extension_names,
};
uint32_t gpu_count;
err = vkCreateInstance(&inst_info, NULL, &demo->inst);
if (err == VK_ERROR_INCOMPATIBLE_DRIVER) {
ERR_EXIT("Cannot find a compatible Vulkan installable client driver "
"(ICD).\n\nPlease look at the Getting Started guide for "
"additional information.\n",
"vkCreateInstance Failure");
} else if (err == VK_ERROR_EXTENSION_NOT_PRESENT) {
ERR_EXIT("Cannot find a specified extension library"
".\nMake sure your layers path is set appropriately\n",
"vkCreateInstance Failure");
} else if (err) {
ERR_EXIT("vkCreateInstance failed.\n\nDo you have a compatible Vulkan "
"installable client driver (ICD) installed?\nPlease look at "
"the Getting Started guide for additional information.\n",
"vkCreateInstance Failure");
}
gladLoadVulkanUserPtr(NULL, glad_vulkan_callback, demo->inst);
/* Make initial call to query gpu_count, then second call for gpu info*/
err = vkEnumeratePhysicalDevices(demo->inst, &gpu_count, NULL);
assert(!err && gpu_count > 0);
if (gpu_count > 0) {
VkPhysicalDevice *physical_devices =
malloc(sizeof(VkPhysicalDevice) * gpu_count);
err = vkEnumeratePhysicalDevices(demo->inst, &gpu_count,
physical_devices);
assert(!err);
/* For tri demo we just grab the first physical device */
demo->gpu = physical_devices[0];
free(physical_devices);
} else {
ERR_EXIT("vkEnumeratePhysicalDevices reported zero accessible devices."
"\n\nDo you have a compatible Vulkan installable client"
" driver (ICD) installed?\nPlease look at the Getting Started"
" guide for additional information.\n",
"vkEnumeratePhysicalDevices Failure");
}
gladLoadVulkanUserPtr(demo->gpu, glad_vulkan_callback, demo->inst);
/* Look for device extensions */
uint32_t device_extension_count = 0;
VkBool32 swapchainExtFound = 0;
demo->enabled_extension_count = 0;
err = vkEnumerateDeviceExtensionProperties(demo->gpu, NULL,
&device_extension_count, NULL);
assert(!err);
if (device_extension_count > 0) {
VkExtensionProperties *device_extensions =
malloc(sizeof(VkExtensionProperties) * device_extension_count);
err = vkEnumerateDeviceExtensionProperties(
demo->gpu, NULL, &device_extension_count, device_extensions);
assert(!err);
for (i = 0; i < device_extension_count; i++) {
if (!strcmp(VK_KHR_SWAPCHAIN_EXTENSION_NAME,
device_extensions[i].extensionName)) {
swapchainExtFound = 1;
demo->extension_names[demo->enabled_extension_count++] =
VK_KHR_SWAPCHAIN_EXTENSION_NAME;
}
assert(demo->enabled_extension_count < 64);
}
free(device_extensions);
}
if (!swapchainExtFound) {
ERR_EXIT("vkEnumerateDeviceExtensionProperties failed to find "
"the " VK_KHR_SWAPCHAIN_EXTENSION_NAME
" extension.\n\nDo you have a compatible "
"Vulkan installable client driver (ICD) installed?\nPlease "
"look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
}
if (demo->validate) {
VkDebugReportCallbackCreateInfoEXT dbgCreateInfo;
dbgCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT;
dbgCreateInfo.flags =
VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT;
dbgCreateInfo.pfnCallback = demo->use_break ? BreakCallback : dbgFunc;
dbgCreateInfo.pUserData = demo;
dbgCreateInfo.pNext = NULL;
err = vkCreateDebugReportCallbackEXT(demo->inst, &dbgCreateInfo, NULL,
&demo->msg_callback);
switch (err) {
case VK_SUCCESS:
break;
case VK_ERROR_OUT_OF_HOST_MEMORY:
ERR_EXIT("CreateDebugReportCallback: out of host memory\n",
"CreateDebugReportCallback Failure");
break;
default:
ERR_EXIT("CreateDebugReportCallback: unknown failure\n",
"CreateDebugReportCallback Failure");
break;
}
}
vkGetPhysicalDeviceProperties(demo->gpu, &demo->gpu_props);
// Query with NULL data to get count
vkGetPhysicalDeviceQueueFamilyProperties(demo->gpu, &demo->queue_count,
NULL);
demo->queue_props = (VkQueueFamilyProperties *)malloc(
demo->queue_count * sizeof(VkQueueFamilyProperties));
vkGetPhysicalDeviceQueueFamilyProperties(demo->gpu, &demo->queue_count,
demo->queue_props);
assert(demo->queue_count >= 1);
vkGetPhysicalDeviceFeatures(demo->gpu, &demo->gpu_features);
// Graphics queue and MemMgr queue can be separate.
// TODO: Add support for separate queues, including synchronization,
// and appropriate tracking for QueueSubmit
}
static void demo_init_device(struct demo *demo) {
VkResult U_ASSERT_ONLY err;
float queue_priorities[1] = {0.0};
const VkDeviceQueueCreateInfo queue = {
.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
.pNext = NULL,
.queueFamilyIndex = demo->graphics_queue_node_index,
.queueCount = 1,
.pQueuePriorities = queue_priorities};
VkPhysicalDeviceFeatures features;
memset(&features, 0, sizeof(features));
if (demo->gpu_features.shaderClipDistance) {
features.shaderClipDistance = VK_TRUE;
}
VkDeviceCreateInfo device = {
.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
.pNext = NULL,
.queueCreateInfoCount = 1,
.pQueueCreateInfos = &queue,
.enabledLayerCount = 0,
.ppEnabledLayerNames = NULL,
.enabledExtensionCount = demo->enabled_extension_count,
.ppEnabledExtensionNames = (const char *const *)demo->extension_names,
.pEnabledFeatures = &features,
};
err = vkCreateDevice(demo->gpu, &device, NULL, &demo->device);
assert(!err);
}
static void demo_init_vk_swapchain(struct demo *demo) {
VkResult U_ASSERT_ONLY err;
uint32_t i;
// Create a WSI surface for the window:
glfwCreateWindowSurface(demo->inst, demo->window, NULL, &demo->surface);
// Iterate over each queue to learn whether it supports presenting:
VkBool32 *supportsPresent =
(VkBool32 *)malloc(demo->queue_count * sizeof(VkBool32));
for (i = 0; i < demo->queue_count; i++) {
vkGetPhysicalDeviceSurfaceSupportKHR(demo->gpu, i, demo->surface,
&supportsPresent[i]);
}
// Search for a graphics and a present queue in the array of queue
// families, try to find one that supports both
uint32_t graphicsQueueNodeIndex = UINT32_MAX;
uint32_t presentQueueNodeIndex = UINT32_MAX;
for (i = 0; i < demo->queue_count; i++) {
if ((demo->queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0) {
if (graphicsQueueNodeIndex == UINT32_MAX) {
graphicsQueueNodeIndex = i;
}
if (supportsPresent[i] == VK_TRUE) {
graphicsQueueNodeIndex = i;
presentQueueNodeIndex = i;
break;
}
}
}
if (presentQueueNodeIndex == UINT32_MAX) {
// If didn't find a queue that supports both graphics and present, then
// find a separate present queue.
for (i = 0; i < demo->queue_count; ++i) {
if (supportsPresent[i] == VK_TRUE) {
presentQueueNodeIndex = i;
break;
}
}
}
free(supportsPresent);
// Generate error if could not find both a graphics and a present queue
if (graphicsQueueNodeIndex == UINT32_MAX ||
presentQueueNodeIndex == UINT32_MAX) {
ERR_EXIT("Could not find a graphics and a present queue\n",
"Swapchain Initialization Failure");
}
// TODO: Add support for separate queues, including presentation,
// synchronization, and appropriate tracking for QueueSubmit.
// NOTE: While it is possible for an application to use a separate graphics
// and a present queues, this demo program assumes it is only using
// one:
if (graphicsQueueNodeIndex != presentQueueNodeIndex) {
ERR_EXIT("Could not find a common graphics and a present queue\n",
"Swapchain Initialization Failure");
}
demo->graphics_queue_node_index = graphicsQueueNodeIndex;
demo_init_device(demo);
vkGetDeviceQueue(demo->device, demo->graphics_queue_node_index, 0,
&demo->queue);
// Get the list of VkFormat's that are supported:
uint32_t formatCount;
err = vkGetPhysicalDeviceSurfaceFormatsKHR(demo->gpu, demo->surface,
&formatCount, NULL);
assert(!err);
VkSurfaceFormatKHR *surfFormats =
(VkSurfaceFormatKHR *)malloc(formatCount * sizeof(VkSurfaceFormatKHR));
err = vkGetPhysicalDeviceSurfaceFormatsKHR(demo->gpu, demo->surface,
&formatCount, surfFormats);
assert(!err);
// If the format list includes just one entry of VK_FORMAT_UNDEFINED,
// the surface has no preferred format. Otherwise, at least one
// supported format will be returned.
if (formatCount == 1 && surfFormats[0].format == VK_FORMAT_UNDEFINED) {
demo->format = VK_FORMAT_B8G8R8A8_UNORM;
} else {
assert(formatCount >= 1);
demo->format = surfFormats[0].format;
}
demo->color_space = surfFormats[0].colorSpace;
demo->curFrame = 0;
// Get Memory information and properties
vkGetPhysicalDeviceMemoryProperties(demo->gpu, &demo->memory_properties);
}
static void demo_init_connection(struct demo *demo) {
glfwSetErrorCallback(demo_error_callback);
if (!glfwInit()) {
printf("Cannot initialize GLFW.\nExiting ...\n");
fflush(stdout);
exit(1);
}
if (!glfwVulkanSupported()) {
printf("GLFW failed to find the Vulkan loader.\nExiting ...\n");
fflush(stdout);
exit(1);
}
gladLoadVulkanUserPtr(NULL, glad_vulkan_callback, NULL);
}
static void demo_init(struct demo *demo, const int argc, const char *argv[])
{
int i;
memset(demo, 0, sizeof(*demo));
demo->frameCount = INT32_MAX;
for (i = 1; i < argc; i++) {
if (strcmp(argv[i], "--use_staging") == 0) {
demo->use_staging_buffer = true;
continue;
}
if (strcmp(argv[i], "--break") == 0) {
demo->use_break = true;
continue;
}
if (strcmp(argv[i], "--validate") == 0) {
demo->validate = true;
continue;
}
if (strcmp(argv[i], "--c") == 0 && demo->frameCount == INT32_MAX &&
i < argc - 1 && sscanf(argv[i + 1], "%d", &demo->frameCount) == 1 &&
demo->frameCount >= 0) {
i++;
continue;
}
fprintf(stderr, "Usage:\n %s [--use_staging] [--validate] [--break] "
"[--c <framecount>]\n",
APP_SHORT_NAME);
fflush(stderr);
exit(1);
}
demo_init_connection(demo);
demo_init_vk(demo);
demo->width = 300;
demo->height = 300;
demo->depthStencil = 1.0;
demo->depthIncrement = -0.01f;
}
static void demo_cleanup(struct demo *demo) {
uint32_t i;
for (i = 0; i < demo->swapchainImageCount; i++) {
vkDestroyFramebuffer(demo->device, demo->framebuffers[i], NULL);
}
free(demo->framebuffers);
vkDestroyDescriptorPool(demo->device, demo->desc_pool, NULL);
if (demo->setup_cmd) {
vkFreeCommandBuffers(demo->device, demo->cmd_pool, 1, &demo->setup_cmd);
}
vkFreeCommandBuffers(demo->device, demo->cmd_pool, 1, &demo->draw_cmd);
vkDestroyCommandPool(demo->device, demo->cmd_pool, NULL);
vkDestroyPipeline(demo->device, demo->pipeline, NULL);
vkDestroyRenderPass(demo->device, demo->render_pass, NULL);
vkDestroyPipelineLayout(demo->device, demo->pipeline_layout, NULL);
vkDestroyDescriptorSetLayout(demo->device, demo->desc_layout, NULL);
vkDestroyBuffer(demo->device, demo->vertices.buf, NULL);
vkFreeMemory(demo->device, demo->vertices.mem, NULL);
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
vkDestroyImageView(demo->device, demo->textures[i].view, NULL);
vkDestroyImage(demo->device, demo->textures[i].image, NULL);
vkFreeMemory(demo->device, demo->textures[i].mem, NULL);
vkDestroySampler(demo->device, demo->textures[i].sampler, NULL);
}
for (i = 0; i < demo->swapchainImageCount; i++) {
vkDestroyImageView(demo->device, demo->buffers[i].view, NULL);
}
vkDestroyImageView(demo->device, demo->depth.view, NULL);
vkDestroyImage(demo->device, demo->depth.image, NULL);
vkFreeMemory(demo->device, demo->depth.mem, NULL);
vkDestroySwapchainKHR(demo->device, demo->swapchain, NULL);
free(demo->buffers);
vkDestroyDevice(demo->device, NULL);
if (demo->validate) {
vkDestroyDebugReportCallbackEXT(demo->inst, demo->msg_callback, NULL);
}
vkDestroySurfaceKHR(demo->inst, demo->surface, NULL);
vkDestroyInstance(demo->inst, NULL);
free(demo->queue_props);
glfwDestroyWindow(demo->window);
glfwTerminate();
}
static void demo_resize(struct demo *demo) {
uint32_t i;
// In order to properly resize the window, we must re-create the swapchain
// AND redo the command buffers, etc.
//
// First, perform part of the demo_cleanup() function:
for (i = 0; i < demo->swapchainImageCount; i++) {
vkDestroyFramebuffer(demo->device, demo->framebuffers[i], NULL);
}
free(demo->framebuffers);
vkDestroyDescriptorPool(demo->device, demo->desc_pool, NULL);
if (demo->setup_cmd) {
vkFreeCommandBuffers(demo->device, demo->cmd_pool, 1, &demo->setup_cmd);
demo->setup_cmd = VK_NULL_HANDLE;
}
vkFreeCommandBuffers(demo->device, demo->cmd_pool, 1, &demo->draw_cmd);
vkDestroyCommandPool(demo->device, demo->cmd_pool, NULL);
vkDestroyPipeline(demo->device, demo->pipeline, NULL);
vkDestroyRenderPass(demo->device, demo->render_pass, NULL);
vkDestroyPipelineLayout(demo->device, demo->pipeline_layout, NULL);
vkDestroyDescriptorSetLayout(demo->device, demo->desc_layout, NULL);
vkDestroyBuffer(demo->device, demo->vertices.buf, NULL);
vkFreeMemory(demo->device, demo->vertices.mem, NULL);
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
vkDestroyImageView(demo->device, demo->textures[i].view, NULL);
vkDestroyImage(demo->device, demo->textures[i].image, NULL);
vkFreeMemory(demo->device, demo->textures[i].mem, NULL);
vkDestroySampler(demo->device, demo->textures[i].sampler, NULL);
}
for (i = 0; i < demo->swapchainImageCount; i++) {
vkDestroyImageView(demo->device, demo->buffers[i].view, NULL);
}
vkDestroyImageView(demo->device, demo->depth.view, NULL);
vkDestroyImage(demo->device, demo->depth.image, NULL);
vkFreeMemory(demo->device, demo->depth.mem, NULL);
free(demo->buffers);
// Second, re-perform the demo_prepare() function, which will re-create the
// swapchain:
demo_prepare(demo);
}
int main(const int argc, const char *argv[]) {
struct demo demo;
demo_init(&demo, argc, argv);
demo_create_window(&demo);
demo_init_vk_swapchain(&demo);
demo_prepare(&demo);
demo_run(&demo);
demo_cleanup(&demo);
return validation_error;
}