protot/src/modules/RenderUtils.cc

1235 lines
30 KiB
C++

#include "GLFW/glfw3.h"
#include <string.h> // strlen
#include <locale.h>
#include <iostream>
#include "common.h"
#include <tinystl/allocator.h>
#include <tinystl/vector.h>
#include <tinystl/string.h>
namespace stl = tinystl;
#include <bx/readerwriter.h>
#include <bx/fpumath.h>
#include <bx/string.h>
#include <bx/crtimpl.h>
#include "entry/dbg.h"
#include <ib-compress/indexbufferdecompression.h>
#include "shaderc.h"
#include "RenderModule.h"
#include "RenderUtils.h"
#include "Globals.h"
using namespace SimpleMath;
void *load(const char *_filePath, uint32_t *_size = NULL);
void unload(void *_ptr);
namespace bgfx
{
// int32_t read(bx::ReaderI* _reader, bgfx::VertexDecl& _decl);
// int32_t read(bx::ReaderI* _reader, bgfx::VertexDecl& _decl, bx::Error* _err = NULL);
}
namespace bgfxutils {
namespace entry {
static bx::FileReaderI* s_fileReader = NULL;
static bx::FileWriterI* s_fileWriter = NULL;
bx::AllocatorI* getDefaultAllocator()
{
BX_PRAGMA_DIAGNOSTIC_PUSH();
BX_PRAGMA_DIAGNOSTIC_IGNORED_MSVC(4459); // warning C4459: declaration of 's_allocator' hides global declaration
BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wshadow");
static bx::CrtAllocator s_allocator;
return &s_allocator;
BX_PRAGMA_DIAGNOSTIC_POP();
}
static bx::AllocatorI* s_allocator = getDefaultAllocator();
bx::FileReaderI* getFileReader()
{
if (s_fileReader == NULL) {
s_fileReader = new bx::CrtFileReader;
}
return s_fileReader;
}
bx::FileWriterI* getFileWriter()
{
if (s_fileWriter == NULL) {
s_fileWriter = new bx::CrtFileWriter;
}
return s_fileWriter;
}
bx::AllocatorI* getAllocator()
{
return s_allocator;
}
}
void* load(bx::FileReaderI* _reader, bx::AllocatorI* _allocator, const char* _filePath, uint32_t* _size)
{
if (0 == bx::open(_reader, _filePath) )
{
uint32_t size = (uint32_t)bx::getSize(_reader);
void* data = BX_ALLOC(_allocator, size);
bx::read(_reader, data, size);
bx::close(_reader);
if (NULL != _size)
{
*_size = size;
}
return data;
}
else
{
DBG("Failed to open: %s.", _filePath);
}
if (NULL != _size)
{
*_size = 0;
}
return NULL;
}
void* load(const char* _filePath, uint32_t* _size)
{
return load(entry::getFileReader(), entry::getAllocator(), _filePath, _size);
}
void unload(void* _ptr)
{
BX_FREE(entry::getAllocator(), _ptr);
}
static const bgfx::Memory* loadMem(bx::FileReaderI* _reader, const char* _filePath)
{
bx::Error err;
bool file_ok = _reader->open(_filePath, &err);
if (file_ok)
{
uint32_t size = (uint32_t)bx::getSize(_reader);
const bgfx::Memory* mem = bgfx::alloc(size+1);
bx::read(_reader, mem->data, size);
bx::close(_reader);
mem->data[mem->size-1] = '\0';
return mem;
} else {
std::cerr << "Error opening file " << _filePath << std::endl;
abort();
}
return NULL;
}
static void* loadMem(bx::FileReaderI* _reader, bx::AllocatorI* _allocator, const char* _filePath, uint32_t* _size)
{
bx::Error err;
bool file_ok = _reader->open(_filePath, &err);
if (file_ok)
{
uint32_t size = (uint32_t)bx::getSize(_reader);
void* data = BX_ALLOC(_allocator, size);
bx::read(_reader, data, size);
bx::close(_reader);
if (NULL != _size)
{
*_size = size;
}
return data;
}
DBG("Failed to load %s.", _filePath);
return NULL;
}
static bgfx::ShaderHandle loadShader(bx::FileReaderI* _reader, const char* _name)
{
char filePath[512];
const char* shaderPath = "shaders/dx9/";
switch (bgfx::getRendererType() )
{
case bgfx::RendererType::Direct3D11:
case bgfx::RendererType::Direct3D12:
shaderPath = "shaders/dx11/";
break;
case bgfx::RendererType::OpenGL:
shaderPath = "shaders/glsl/";
break;
case bgfx::RendererType::Metal:
shaderPath = "shaders/metal/";
break;
case bgfx::RendererType::OpenGLES:
shaderPath = "shaders/gles/";
break;
default:
break;
}
strcpy(filePath, shaderPath);
strcat(filePath, _name);
strcat(filePath, ".bin");
return bgfx::createShader(loadMem(_reader, filePath) );
}
bgfx::ShaderHandle loadShader(const char* _name)
{
return loadShader(entry::getFileReader(), _name);
}
bgfx::ProgramHandle loadProgram(bx::FileReaderI* _reader, const char* _vsName, const char* _fsName)
{
bgfx::ShaderHandle vsh = loadShader(_reader, _vsName);
bgfx::ShaderHandle fsh = BGFX_INVALID_HANDLE;
if (NULL != _fsName)
{
fsh = loadShader(_reader, _fsName);
}
return bgfx::createProgram(vsh, fsh, true /* destroy shaders when program is destroyed */);
}
bgfx::ProgramHandle loadProgram(const char* _vsName, const char* _fsName)
{
return loadProgram(entry::getFileReader(), _vsName, _fsName);
}
bgfx::ProgramHandle loadProgramFromFiles(const char *_vsFileName, const char *_fsFileName) {
gLog ("Loading shader %s", _vsFileName);
const char* argv[10];
argv[0] = "--type";
argv[1] = "vertex";
argv[2] = "--platform";
argv[3] = "linux";
argv[4] = "-i";
argv[5] = "shaders/common";
argv[6] = "-p";
argv[7] = "120";
argv[8] = "-f";
argv[9] = _vsFileName;
// argv[6] = "--varyingdef";
// argv[7] = "-p";
// argv[8] = "120";
// argv[9] = "-f";
// argv[10] = _vsFileName;
bx::CommandLine cmdLine (10, argv);
const bgfx::Memory* vs_source_memory = loadMem(entry::getFileReader(), _vsFileName);
bx::ReaderSeekerI* vs_source_reader = new bx::MemoryReader (vs_source_memory->data, vs_source_memory->size);
bx::MemoryBlock* vs_compiled_memory = new bx::MemoryBlock (entry::getAllocator());
bx::MemoryWriter* vs_compiled_writer = new bx::MemoryWriter (vs_compiled_memory);
setlocale(LC_NUMERIC, "C");
int result = compileShader (cmdLine, vs_source_reader, vs_compiled_writer);
if (result != EXIT_SUCCESS) {
std::cerr << "Error compiling shader " << _vsFileName << std::endl;
return BGFX_INVALID_HANDLE;
}
uint32_t size = vs_compiled_writer->seek(0, bx::Whence::End);
const bgfx::Memory* mem = bgfx::alloc(size+1);
bx::ReaderSeekerI* vs_compiled_reader = new bx::MemoryReader ((uint8_t*) vs_compiled_memory->more(), size);
bx::read(vs_compiled_reader, mem->data, size);
delete vs_compiled_reader;
mem->data[mem->size-1] = '\0';
bgfx::ShaderHandle vsh = bgfx::createShader(mem);
delete vs_source_reader;
delete vs_compiled_writer;
delete vs_compiled_memory;
bgfx::ShaderHandle fsh = BGFX_INVALID_HANDLE;
if (_fsFileName != NULL) {
argv[1] = "fragment";
const bgfx::Memory* fs_source_memory = loadMem(entry::getFileReader(), _fsFileName);
bx::ReaderSeekerI* fs_source_reader = new bx::MemoryReader (fs_source_memory->data, fs_source_memory->size);
bx::MemoryBlock* fs_compiled_memory = new bx::MemoryBlock (entry::getAllocator());
bx::MemoryWriter* fs_compiled_writer = new bx::MemoryWriter (fs_compiled_memory);
result = compileShader (cmdLine, fs_source_reader, fs_compiled_writer);
if (result != EXIT_SUCCESS) {
std::cerr << "Error compiling shader " << _fsFileName << std::endl;
return BGFX_INVALID_HANDLE;
}
uint32_t size = fs_compiled_writer->seek(0, bx::Whence::End);
const bgfx::Memory* mem = bgfx::alloc(size+1);
bx::ReaderSeekerI* fs_compiled_reader = new bx::MemoryReader ((uint8_t*) fs_compiled_memory->more(), size);
bx::read(fs_compiled_reader, mem->data, size);
delete fs_compiled_reader;
mem->data[mem->size-1] = '\0';
fsh = bgfx::createShader(mem);
delete fs_source_reader;
delete fs_compiled_writer;
delete fs_compiled_memory;
}
return bgfx::createProgram(vsh, fsh, true /* destroy shaders when program is destroyed */);
}
typedef unsigned char stbi_uc;
extern "C" stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
bgfx::TextureHandle loadTexture(bx::FileReaderI* _reader, const char* _name, uint32_t _flags, uint8_t _skip, bgfx::TextureInfo* _info)
{
char filePath[512] = { '\0' };
if (NULL == strchr(_name, '/') )
{
strcpy(filePath, "data/textures/");
}
strcat(filePath, _name);
gLog ("Loading texture %s", filePath);
if (NULL != bx::stristr(_name, ".dds")
|| NULL != bx::stristr(_name, ".pvr")
|| NULL != bx::stristr(_name, ".ktx") )
{
const bgfx::Memory* mem = loadMem(_reader, filePath);
if (NULL != mem)
{
return bgfx::createTexture(mem, _flags, _skip, _info);
}
bgfx::TextureHandle handle = BGFX_INVALID_HANDLE;
DBG("Failed to load %s.", filePath);
return handle;
}
bgfx::TextureHandle handle = BGFX_INVALID_HANDLE;
bx::AllocatorI* allocator = entry::getAllocator();
uint32_t size = 0;
void* data = loadMem(_reader, allocator, filePath, &size);
if (NULL != data)
{
int width = 0;
int height = 0;
int comp = 0;
uint8_t* img = NULL;
img = stbi_load_from_memory( (uint8_t*)data, size, &width, &height, &comp, 4);
BX_FREE(allocator, data);
if (NULL != img)
{
handle = bgfx::createTexture2D(uint16_t(width), uint16_t(height),
false,
1,
bgfx::TextureFormat::RGBA8,
_flags,
bgfx::copy(img, width*height*4)
);
free(img);
if (NULL != _info)
{
bgfx::calcTextureSize(*_info
, uint16_t(width)
, uint16_t(height)
, 0
, false
, false
, 1
, bgfx::TextureFormat::RGBA8
);
}
}
}
else
{
DBG("Failed to load %s.", filePath);
}
return handle;
}
bgfx::TextureHandle loadTexture(const char* _name, uint32_t _flags, uint8_t _skip, bgfx::TextureInfo* _info)
{
return loadTexture(entry::getFileReader(), _name, _flags, _skip, _info);
}
void calcTangents(void* _vertices, uint16_t _numVertices, bgfx::VertexDecl _decl, const uint16_t* _indices, uint32_t _numIndices)
{
struct PosTexcoord
{
float m_x;
float m_y;
float m_z;
float m_pad0;
float m_u;
float m_v;
float m_pad1;
float m_pad2;
};
float* tangents = new float[6*_numVertices];
memset(tangents, 0, 6*_numVertices*sizeof(float) );
PosTexcoord v0;
PosTexcoord v1;
PosTexcoord v2;
for (uint32_t ii = 0, num = _numIndices/3; ii < num; ++ii)
{
const uint16_t* indices = &_indices[ii*3];
uint32_t i0 = indices[0];
uint32_t i1 = indices[1];
uint32_t i2 = indices[2];
bgfx::vertexUnpack(&v0.m_x, bgfx::Attrib::Position, _decl, _vertices, i0);
bgfx::vertexUnpack(&v0.m_u, bgfx::Attrib::TexCoord0, _decl, _vertices, i0);
bgfx::vertexUnpack(&v1.m_x, bgfx::Attrib::Position, _decl, _vertices, i1);
bgfx::vertexUnpack(&v1.m_u, bgfx::Attrib::TexCoord0, _decl, _vertices, i1);
bgfx::vertexUnpack(&v2.m_x, bgfx::Attrib::Position, _decl, _vertices, i2);
bgfx::vertexUnpack(&v2.m_u, bgfx::Attrib::TexCoord0, _decl, _vertices, i2);
const float bax = v1.m_x - v0.m_x;
const float bay = v1.m_y - v0.m_y;
const float baz = v1.m_z - v0.m_z;
const float bau = v1.m_u - v0.m_u;
const float bav = v1.m_v - v0.m_v;
const float cax = v2.m_x - v0.m_x;
const float cay = v2.m_y - v0.m_y;
const float caz = v2.m_z - v0.m_z;
const float cau = v2.m_u - v0.m_u;
const float cav = v2.m_v - v0.m_v;
const float det = (bau * cav - bav * cau);
const float invDet = 1.0f / det;
const float tx = (bax * cav - cax * bav) * invDet;
const float ty = (bay * cav - cay * bav) * invDet;
const float tz = (baz * cav - caz * bav) * invDet;
const float bx = (cax * bau - bax * cau) * invDet;
const float by = (cay * bau - bay * cau) * invDet;
const float bz = (caz * bau - baz * cau) * invDet;
for (uint32_t jj = 0; jj < 3; ++jj)
{
float* tanu = &tangents[indices[jj]*6];
float* tanv = &tanu[3];
tanu[0] += tx;
tanu[1] += ty;
tanu[2] += tz;
tanv[0] += bx;
tanv[1] += by;
tanv[2] += bz;
}
}
for (uint32_t ii = 0; ii < _numVertices; ++ii)
{
const float* tanu = &tangents[ii*6];
const float* tanv = &tangents[ii*6 + 3];
float normal[4];
bgfx::vertexUnpack(normal, bgfx::Attrib::Normal, _decl, _vertices, ii);
float ndt = bx::vec3Dot(normal, tanu);
float nxt[3];
bx::vec3Cross(nxt, normal, tanu);
float tmp[3];
tmp[0] = tanu[0] - normal[0] * ndt;
tmp[1] = tanu[1] - normal[1] * ndt;
tmp[2] = tanu[2] - normal[2] * ndt;
float tangent[4];
bx::vec3Norm(tangent, tmp);
tangent[3] = bx::vec3Dot(nxt, tanv) < 0.0f ? -1.0f : 1.0f;
bgfx::vertexPack(tangent, true, bgfx::Attrib::Tangent, _decl, _vertices, ii);
}
delete [] tangents;
}
struct Aabb
{
float m_min[3];
float m_max[3];
};
struct Obb
{
float m_mtx[16];
};
struct Sphere
{
float m_center[3];
float m_radius;
};
struct Primitive
{
uint32_t m_startIndex;
uint32_t m_numIndices;
uint32_t m_startVertex;
uint32_t m_numVertices;
Sphere m_sphere;
Aabb m_aabb;
Obb m_obb;
};
typedef stl::vector<Primitive> PrimitiveArray;
struct Group
{
Group()
{
reset();
}
void reset()
{
m_vbh.idx = bgfx::invalidHandle;
m_ibh.idx = bgfx::invalidHandle;
m_prims.clear();
}
bgfx::VertexBufferHandle m_vbh;
bgfx::IndexBufferHandle m_ibh;
Sphere m_sphere;
Aabb m_aabb;
Obb m_obb;
PrimitiveArray m_prims;
};
struct Mesh
{
void load(bx::ReaderSeekerI* _reader)
{
#define BGFX_CHUNK_MAGIC_VB BX_MAKEFOURCC('V', 'B', ' ', 0x1)
#define BGFX_CHUNK_MAGIC_IB BX_MAKEFOURCC('I', 'B', ' ', 0x0)
#define BGFX_CHUNK_MAGIC_IBC BX_MAKEFOURCC('I', 'B', 'C', 0x0)
#define BGFX_CHUNK_MAGIC_PRI BX_MAKEFOURCC('P', 'R', 'I', 0x0)
using namespace bx;
using namespace bgfx;
Group group;
bx::AllocatorI* allocator = entry::getAllocator();
uint32_t chunk;
while (4 == bx::read(_reader, chunk) )
{
switch (chunk)
{
case BGFX_CHUNK_MAGIC_VB:
{
read(_reader, group.m_sphere);
read(_reader, group.m_aabb);
read(_reader, group.m_obb);
read(_reader, m_decl);
uint16_t stride = m_decl.getStride();
uint16_t numVertices;
read(_reader, numVertices);
const bgfx::Memory* mem = bgfx::alloc(numVertices*stride);
read(_reader, mem->data, mem->size);
group.m_vbh = bgfx::createVertexBuffer(mem, m_decl);
}
break;
case BGFX_CHUNK_MAGIC_IB:
{
uint32_t numIndices;
read(_reader, numIndices);
const bgfx::Memory* mem = bgfx::alloc(numIndices*2);
read(_reader, mem->data, mem->size);
group.m_ibh = bgfx::createIndexBuffer(mem);
}
break;
case BGFX_CHUNK_MAGIC_IBC:
{
uint32_t numIndices;
bx::read(_reader, numIndices);
const bgfx::Memory* mem = bgfx::alloc(numIndices*2);
uint32_t compressedSize;
bx::read(_reader, compressedSize);
void* compressedIndices = BX_ALLOC(allocator, compressedSize);
bx::read(_reader, compressedIndices, compressedSize);
ReadBitstream rbs( (const uint8_t*)compressedIndices, compressedSize);
DecompressIndexBuffer( (uint16_t*)mem->data, numIndices / 3, rbs);
BX_FREE(allocator, compressedIndices);
group.m_ibh = bgfx::createIndexBuffer(mem);
}
break;
case BGFX_CHUNK_MAGIC_PRI:
{
uint16_t len;
read(_reader, len);
stl::string material;
material.resize(len);
read(_reader, const_cast<char*>(material.c_str() ), len);
uint16_t num;
read(_reader, num);
for (uint32_t ii = 0; ii < num; ++ii)
{
read(_reader, len);
stl::string name;
name.resize(len);
read(_reader, const_cast<char*>(name.c_str() ), len);
Primitive prim;
read(_reader, prim.m_startIndex);
read(_reader, prim.m_numIndices);
read(_reader, prim.m_startVertex);
read(_reader, prim.m_numVertices);
read(_reader, prim.m_sphere);
read(_reader, prim.m_aabb);
read(_reader, prim.m_obb);
group.m_prims.push_back(prim);
}
m_groups.push_back(group);
group.reset();
}
break;
default:
DBG("%08x at %d", chunk, bx::skip(_reader, 0) );
break;
}
}
}
void unload()
{
for (GroupArray::const_iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it)
{
const Group& group = *it;
bgfx::destroyVertexBuffer(group.m_vbh);
if (bgfx::isValid(group.m_ibh) )
{
bgfx::destroyIndexBuffer(group.m_ibh);
}
}
m_groups.clear();
}
void submit(uint8_t _id, bgfx::ProgramHandle _program, const float* _mtx, uint64_t _state) const
{
if (BGFX_STATE_MASK == _state)
{
_state = 0
| BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_DEPTH_WRITE
| BGFX_STATE_DEPTH_TEST_LESS
| BGFX_STATE_CULL_CCW
| BGFX_STATE_MSAA
;
}
uint32_t cached = bgfx::setTransform(_mtx);
for (GroupArray::const_iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it)
{
const Group& group = *it;
bgfx::setTransform(cached);
bgfx::setIndexBuffer(group.m_ibh);
bgfx::setVertexBuffer(group.m_vbh);
bgfx::setState(_state);
bgfx::submit(_id, _program);
}
}
void submit(const RenderState* _state, uint8_t _numPasses, const float* _mtx, uint16_t _numMatrices) const
{
uint32_t cached = bgfx::setTransform(_mtx, _numMatrices);
for (uint32_t pass = 0; pass < _numPasses; ++pass)
{
const RenderState& state = _state[pass];
for (GroupArray::const_iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it)
{
const Group& group = *it;
bgfx::setTransform(cached, _numMatrices);
for (uint8_t tex = 0; tex < state.m_numTextures; ++tex)
{
const RenderState::Texture& texture = state.m_textures[tex];
bgfx::setTexture(texture.m_stage
, texture.m_sampler
, texture.m_texture
, texture.m_flags
);
}
bgfx::setIndexBuffer(group.m_ibh);
bgfx::setVertexBuffer(group.m_vbh);
bgfx::setState(state.m_state);
bgfx::submit(state.m_viewId, state.m_program.program);
}
}
}
bgfx::VertexDecl m_decl;
typedef stl::vector<Group> GroupArray;
GroupArray m_groups;
};
Mesh* meshLoad(bx::ReaderSeekerI* _reader)
{
Mesh* mesh = new Mesh;
mesh->load(_reader);
return mesh;
}
Mesh* meshLoad(const char* _filePath)
{
bx::FileReaderI* reader = entry::getFileReader();
bx::open(reader, _filePath);
Mesh* mesh = meshLoad(reader);
bx::close(reader);
return mesh;
}
void meshUnload(Mesh* _mesh)
{
_mesh->unload();
delete _mesh;
}
void meshSubmit(const Mesh* _mesh, uint8_t _id, bgfx::ProgramHandle _program, const float* _mtx, uint64_t _state)
{
_mesh->submit(_id, _program, _mtx, _state);
}
void meshSubmit(const Mesh* _mesh, const RenderState* _state, uint8_t _numPasses, const float* _mtx, uint16_t _numMatrices)
{
_mesh->submit(_state, _numPasses, _mtx, _numMatrices);
}
uint32_t packUint32(uint8_t _x, uint8_t _y, uint8_t _z, uint8_t _w)
{
union
{
uint32_t ui32;
uint8_t arr[4];
} un;
un.arr[0] = _x;
un.arr[1] = _y;
un.arr[2] = _z;
un.arr[3] = _w;
return un.ui32;
}
uint32_t packF4u(float _x, float _y = 0.0f, float _z = 0.0f, float _w = 0.0f)
{
const uint8_t xx = uint8_t(_x*127.0f + 128.0f);
const uint8_t yy = uint8_t(_y*127.0f + 128.0f);
const uint8_t zz = uint8_t(_z*127.0f + 128.0f);
const uint8_t ww = uint8_t(_w*127.0f + 128.0f);
return packUint32(xx, yy, zz, ww);
}
struct PosNormalColorVertex {
float m_x;
float m_y;
float m_z;
uint32_t m_normal;
uint32_t m_rgba;
static void init() {
ms_decl
.begin()
.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
.add(bgfx::Attrib::Normal, 4, bgfx::AttribType::Uint8, true, true)
.add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true, true)
.end();
}
static bgfx::VertexDecl ms_decl;
};
bgfx::VertexDecl PosNormalColorVertex::ms_decl;
struct PosNormalTexcoordVertex
{
float m_x;
float m_y;
float m_z;
uint32_t m_normal;
static void init()
{
ms_decl
.begin()
.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
.add(bgfx::Attrib::Normal, 4, bgfx::AttribType::Uint8, true, true)
.end();
}
static bgfx::VertexDecl ms_decl;
};
bgfx::VertexDecl PosNormalTexcoordVertex::ms_decl;
static const PosNormalTexcoordVertex s_cubeVertices[] =
{
{ -1.0f, 1.0f, 1.0f, packF4u( 0.0f, 1.0f, 0.0f)},
{ 1.0f, 1.0f, 1.0f, packF4u( 0.0f, 1.0f, 0.0f)},
{ -1.0f, 1.0f, -1.0f, packF4u( 0.0f, 1.0f, 0.0f)},
{ 1.0f, 1.0f, -1.0f, packF4u( 0.0f, 1.0f, 0.0f)},
{ -1.0f, -1.0f, 1.0f, packF4u( 0.0f, -1.0f, 0.0f)},
{ 1.0f, -1.0f, 1.0f, packF4u( 0.0f, -1.0f, 0.0f)},
{ -1.0f, -1.0f, -1.0f, packF4u( 0.0f, -1.0f, 0.0f)},
{ 1.0f, -1.0f, -1.0f, packF4u( 0.0f, -1.0f, 0.0f)},
{ 1.0f, -1.0f, 1.0f, packF4u( 0.0f, 0.0f, 1.0f)},
{ 1.0f, 1.0f, 1.0f, packF4u( 0.0f, 0.0f, 1.0f)},
{ -1.0f, -1.0f, 1.0f, packF4u( 0.0f, 0.0f, 1.0f)},
{ -1.0f, 1.0f, 1.0f, packF4u( 0.0f, 0.0f, 1.0f)},
{ 1.0f, -1.0f, -1.0f, packF4u( 0.0f, 0.0f, -1.0f)},
{ 1.0f, 1.0f, -1.0f, packF4u( 0.0f, 0.0f, -1.0f)},
{ -1.0f, -1.0f, -1.0f, packF4u( 0.0f, 0.0f, -1.0f)},
{ -1.0f, 1.0f, -1.0f, packF4u( 0.0f, 0.0f, -1.0f)},
{ 1.0f, 1.0f, -1.0f, packF4u( 1.0f, 0.0f, 0.0f)},
{ 1.0f, 1.0f, 1.0f, packF4u( 1.0f, 0.0f, 0.0f)},
{ 1.0f, -1.0f, -1.0f, packF4u( 1.0f, 0.0f, 0.0f)},
{ 1.0f, -1.0f, 1.0f, packF4u( 1.0f, 0.0f, 0.0f)},
{ -1.0f, 1.0f, -1.0f, packF4u(-1.0f, 0.0f, 0.0f)},
{ -1.0f, 1.0f, 1.0f, packF4u(-1.0f, 0.0f, 0.0f)},
{ -1.0f, -1.0f, -1.0f, packF4u(-1.0f, 0.0f, 0.0f)},
{ -1.0f, -1.0f, 1.0f, packF4u(-1.0f, 0.0f, 0.0f)},
};
static const uint16_t s_cubeIndices[] =
{
0, 1, 2,
1, 3, 2,
4, 6, 5,
5, 6, 7,
8, 9, 10,
9, 11, 10,
12, 14, 13,
13, 14, 15,
16, 17, 18,
17, 19, 18,
20, 22, 21,
21, 22, 23,
};
void mesh_load(Mesh* mesh, const void* _vertices, uint32_t _numVertices, const bgfx::VertexDecl _decl
, const uint16_t* _indices, uint32_t _numIndices)
{
Group group;
const bgfx::Memory* mem;
uint32_t size;
size = _numVertices*_decl.getStride();
mem = bgfx::makeRef(_vertices, size);
group.m_vbh = bgfx::createVertexBuffer(mem, _decl);
size = _numIndices*2;
mem = bgfx::makeRef(_indices, size);
group.m_ibh = bgfx::createIndexBuffer(mem);
//TODO:
// group.m_sphere = ...
// group.m_aabb = ...
// group.m_obb = ...
// group.m_prims = ...
mesh->m_groups.push_back(group);
}
// Mesh *createMeshFromVBO (const MeshVBO& mesh_buffer) {
// PosNormalTexcoordVertex::init();
// Mesh* result = new Mesh();
//
// const std::vector<Vector4f>& vertices = mesh_buffer.vertices;
// const std::vector<Vector3f>& normals = mesh_buffer.normals;
// const std::vector<Vector4f>& colors = mesh_buffer.colors;
//
// bool have_normals = mesh_buffer.normals.size() > 0;
// bool have_colors = mesh_buffer.colors.size() > 0;
//
// PosNormalColorVertex::init();
//
// uint16_t stride = PosNormalColorVertex::ms_decl.getStride();
// const bgfx::Memory* vb_mem = bgfx::alloc (vertices.size() * stride);
// PosNormalColorVertex* mesh_vb = (PosNormalColorVertex*) vb_mem;
//
// const bgfx::Memory* ib_mem = bgfx::alloc (sizeof(uint16_t) * vertices.size());
// uint16_t* mesh_ib = (uint16_t*) ib_mem;
//
// for (unsigned int i = 0; i < mesh_buffer.vertices.size(); i++) {
// mesh_vb[i].m_x = vertices[i][0];
// mesh_vb[i].m_y = vertices[i][1];
// mesh_vb[i].m_z = vertices[i][2];
//
// if (have_normals) {
// mesh_vb[i].m_normal = packF4u (-normals[i][0], -normals[i][1], -normals[i][2]);
// } else {
// mesh_vb[i].m_normal = 0;
// }
//
// if (have_colors) {
// mesh_vb[i].m_rgba = packF4u (colors[i][0], colors[i][1], colors[i][2], colors[i][3]);
// } else {
// mesh_vb[i].m_rgba = packF4u (1.f, 1.f, 1.f, 1.f);
// }
//
// mesh_ib[i] = i;
// }
//
// mesh_load(result, mesh_vb, vertices.size(), PosNormalColorVertex::ms_decl, mesh_ib, vertices.size());
//
// return result;
// }
Mesh *createMeshFromStdVectors (
const std::vector<Vector4f> &vertices,
const std::vector<Vector3f> &normals,
const std::vector<Vector4f> &colors
) {
// create and copy the data into the actual mesh
Mesh* result = new Mesh();
PosNormalColorVertex::init();
bool have_normals = normals.size() > 0;
bool have_colors = colors.size() > 0;
uint16_t stride = PosNormalColorVertex::ms_decl.getStride();
const bgfx::Memory* vb_mem = bgfx::alloc (vertices.size() * stride);
PosNormalColorVertex* mesh_vb = (PosNormalColorVertex*) vb_mem;
const bgfx::Memory* ib_mem = bgfx::alloc (sizeof(uint16_t) * vertices.size());
uint16_t* mesh_ib = (uint16_t*) ib_mem;
for (unsigned int i = 0; i < vertices.size(); i++) {
mesh_vb[i].m_x = vertices[i][0];
mesh_vb[i].m_y = vertices[i][1];
mesh_vb[i].m_z = vertices[i][2];
if (have_normals) {
mesh_vb[i].m_normal = packF4u (normals[i][0], normals[i][1], normals[i][2]);
} else {
mesh_vb[i].m_normal = 0;
}
if (have_colors) {
mesh_vb[i].m_rgba = packF4u (colors[i][0], colors[i][1], colors[i][2], colors[i][3]);
} else {
mesh_vb[i].m_rgba = packF4u (1.f, 1.f, 1.f, 1.f);
}
mesh_ib[i] = i;
}
mesh_load(result, mesh_vb, vertices.size(), PosNormalColorVertex::ms_decl, mesh_ib, vertices.size());
return result;
}
Mesh *createCuboid (float width, float height, float depth) {
// work arrays that we fill with data
std::vector<Vector4f> vertices;
std::vector<Vector3f> normals;
std::vector<Vector4f> colors;
Vector4f v0 ( 0.5 * width, -0.5 * height, 0.5 * depth, 1.f);
Vector4f v1 ( 0.5 * width, -0.5 * height, -0.5 * depth, 1.f);
Vector4f v2 ( 0.5 * width, 0.5 * height, -0.5 * depth, 1.f);
Vector4f v3 ( 0.5 * width, 0.5 * height, 0.5 * depth, 1.f);
Vector4f v4 ( -0.5 * width, -0.5 * height, 0.5 * depth, 1.f);
Vector4f v5 ( -0.5 * width, -0.5 * height, -0.5 * depth, 1.f);
Vector4f v6 ( -0.5 * width, 0.5 * height, -0.5 * depth, 1.f);
Vector4f v7 ( -0.5 * width, 0.5 * height, 0.5 * depth, 1.f);
Vector3f normal;
// +x
normal = Vector3f (1., 0., 0.);
vertices.push_back(v0);
normals.push_back(normal);
vertices.push_back(v1);
normals.push_back(normal);
vertices.push_back(v2);
normals.push_back(normal);
vertices.push_back(v2);
normals.push_back(normal);
vertices.push_back(v3);
normals.push_back(normal);
vertices.push_back(v0);
normals.push_back(normal);
// +y
normal = Vector3f (0., 1., 0.);
vertices.push_back(v3);
normals.push_back(normal);
vertices.push_back(v2);
normals.push_back(normal);
vertices.push_back(v6);
normals.push_back(normal);
vertices.push_back(v6);
normals.push_back(normal);
vertices.push_back(v7);
normals.push_back(normal);
vertices.push_back(v3);
normals.push_back(normal);
// +z
normal = Vector3f (0., 0., 1.);
vertices.push_back(v4);
normals.push_back(normal);
vertices.push_back(v0);
normals.push_back(normal);
vertices.push_back(v3);
normals.push_back(normal);
vertices.push_back(v3);
normals.push_back(normal);
vertices.push_back(v7);
normals.push_back(normal);
vertices.push_back(v4);
normals.push_back(normal);
// -x
normal = Vector3f (-1., 0., 0.);
vertices.push_back(v5);
normals.push_back(normal);
vertices.push_back(v4);
normals.push_back(normal);
vertices.push_back(v7);
normals.push_back(normal);
vertices.push_back(v7);
normals.push_back(normal);
vertices.push_back(v6);
normals.push_back(normal);
vertices.push_back(v5);
normals.push_back(normal);
// -y
normal = Vector3f (0., -1., 0.);
vertices.push_back(v0);
normals.push_back(normal);
vertices.push_back(v4);
normals.push_back(normal);
vertices.push_back(v5);
normals.push_back(normal);
vertices.push_back(v5);
normals.push_back(normal);
vertices.push_back(v1);
normals.push_back(normal);
vertices.push_back(v0);
normals.push_back(normal);
// -z
normal = Vector3f (0., 0., -1.);
vertices.push_back(v1);
normals.push_back(normal);
vertices.push_back(v5);
normals.push_back(normal);
vertices.push_back(v6);
normals.push_back(normal);
vertices.push_back(v6);
normals.push_back(normal);
vertices.push_back(v2);
normals.push_back(normal);
vertices.push_back(v1);
normals.push_back(normal);
return createMeshFromStdVectors (vertices, normals, colors);
}
Mesh *createUVSphere (int rows, int segments, float radius) {
// work arrays that we fill with data
std::vector<Vector4f> vertices;
std::vector<Vector3f> normals;
std::vector<Vector4f> colors;
// fill arrays
float row_d = 1. / (rows);
float angle_d = 2 * M_PI / static_cast<float>(segments);
for (unsigned int j = 0; j < rows; j++) {
float alpha0 = j * row_d * M_PI;
float alpha1 = (j + 1) * row_d * M_PI;
float r0 = sin (alpha0) * 0.5f * radius;
float r1 = sin (alpha1) * 0.5f * radius;
float h0 = cos (alpha0) * 0.5f * radius;
float h1 = cos (alpha1) * 0.5f * radius;
for (unsigned int i = 0; i < segments; i++) {
Vector3f v0, v1, v2, v3;
float a0 = (i - 0.5) * angle_d;
float a1 = (i + 0.5) * angle_d;
v0 = Vector3f (r1 * cos(a0), h1, r1 * sin (a0));
v1 = Vector3f (r1 * cos(a1), h1, r1 * sin (a1));
v2 = Vector3f (r0 * cos(a1), h0, r0 * sin (a1));
v3 = Vector3f (r0 * cos(a0), h0, r0 * sin (a0));
vertices.push_back (Vector4f(v0[0], v0[1], v0[2], 1.f));
normals.push_back (v0 * 1.f/ v0.norm());
vertices.push_back (Vector4f(v2[0], v2[1], v2[2], 1.f));
normals.push_back (v2 * 1.f/ v2.norm());
vertices.push_back (Vector4f(v1[0], v1[1], v1[2], 1.f));
normals.push_back (v1 * 1.f/ v1.norm());
vertices.push_back (Vector4f(v0[0], v0[1], v0[2], 1.f));
normals.push_back (v0 * 1.f/ v0.norm());
vertices.push_back (Vector4f(v3[0], v3[1], v3[2], 1.f));
normals.push_back (v3 * 1.f/ v3.norm());
vertices.push_back (Vector4f(v2[0], v2[1], v2[2], 1.f));
normals.push_back (v2 * 1.f/ v2.norm());
}
}
return createMeshFromStdVectors (vertices, normals, colors);
}
Mesh *createCylinder (int segments) {
// work arrays that we fill with data
std::vector<Vector4f> vertices;
std::vector<Vector3f> normals;
std::vector<Vector4f> colors;
float delta = 2. * M_PI / static_cast<float>(segments);
for (unsigned int i = 0; i < segments; i++) {
float r0 = (i - 0.5) * delta;
float r1 = (i + 0.5) * delta;
float c0 = cos (r0);
float s0 = sin (r0);
float c1 = cos (r1);
float s1 = sin (r1);
Vector3f normal0 (-c0, -s0, 0.f);
Vector3f normal1 (-c1, -s1, 0.f);
Vector4f normal0_4 (-c0, -s0, 0.f, 0.f);
Vector4f normal1_4 (-c1, -s1, 0.f, 0.f);
Vector4f p0 = normal0_4 + Vector4f (0., 0., 0.5f, 1.0f);
Vector4f p1 = normal0_4 + Vector4f (0., 0., -0.5f, 1.0f);
Vector4f p2 = normal1_4 + Vector4f (0., 0., 0.5f, 1.0f);
Vector4f p3 = normal1_4 + Vector4f (0., 0., -0.5f, 1.0f);
// side triangle 1
vertices.push_back(p0);
normals.push_back(normal0);
vertices.push_back(p1);
normals.push_back(normal0);
vertices.push_back(p2);
normals.push_back(normal1);
// side triangle 2
vertices.push_back(p2);
normals.push_back(normal1);
vertices.push_back(p1);
normals.push_back(normal0);
vertices.push_back(p3);
normals.push_back(normal1);
// upper end triangle
Vector3f normal (0.f, 0.f, 1.f);
vertices.push_back(p0);
normals.push_back(normal);
vertices.push_back(p2);
normals.push_back(normal);
vertices.push_back(Vector4f (0.f, 0.f, 0.5f, 1.0f));
normals.push_back(normal);
// lower end triangle
normal = Vector3f(0.f, 0.f, -1.f);
vertices.push_back(p3);
normals.push_back(normal);
vertices.push_back(p1);
normals.push_back(normal);
vertices.push_back(Vector4f (0.f, 0.f, -0.5f, 1.0f));
normals.push_back(normal);
}
return createMeshFromStdVectors (vertices, normals, colors);
}
}