protot/3rdparty/rbdl/addons/benchmark/benchmark.cc

880 lines
34 KiB
C++

#include <iostream>
#include <algorithm>
#include <string>
#include <vector>
#include <cstdlib>
#include <iomanip>
#include <sstream>
#include "rbdl/rbdl.h"
#include "model_generator.h"
#include "Human36Model.h"
#include "SampleData.h"
#include "Timer.h"
#ifdef RBDL_BUILD_ADDON_LUAMODEL
#include "../addons/luamodel/luamodel.h"
bool have_luamodel = true;
#else
bool have_luamodel = false;
#endif
#ifdef RBDL_BUILD_ADDON_URDFREADER
#include "../addons/urdfreader/urdfreader.h"
bool have_urdfreader = true;
bool urdf_floating_base = false;
#else
bool have_urdfreader = false;
#endif
using namespace std;
using namespace RigidBodyDynamics;
using namespace RigidBodyDynamics::Math;
int benchmark_sample_count = 1000;
int benchmark_model_max_depth = 5;
bool benchmark_run_fd_aba = true;
bool benchmark_run_fd_lagrangian = true;
bool benchmark_run_id_rnea = true;
bool benchmark_run_crba = true;
bool benchmark_run_nle = true;
bool benchmark_run_calc_minv_times_tau = true;
bool benchmark_run_contacts = false;
bool benchmark_run_ik = true;
string model_file = "";
enum ContactsMethod {
ContactsMethodLagrangian = 0,
ContactsMethodRangeSpaceSparse,
ContactsMethodNullSpace,
ContactsMethodKokkevis
};
double run_forward_dynamics_ABA_benchmark (Model *model, int sample_count) {
SampleData sample_data;
sample_data.fillRandom(model->dof_count, sample_count);
TimerInfo tinfo;
timer_start (&tinfo);
for (int i = 0; i < sample_count; i++) {
ForwardDynamics (*model,
sample_data.q[i],
sample_data.qdot[i],
sample_data.tau[i],
sample_data.qddot[i]);
}
double duration = timer_stop (&tinfo);
cout << "#DOF: " << setw(3) << model->dof_count
<< " #samples: " << sample_count
<< " duration = " << setw(10) << duration << "(s)"
<< " (~" << setw(10) << duration / sample_count << "(s) per call)" << endl;
return duration;
}
double run_forward_dynamics_lagrangian_benchmark (Model *model, int sample_count) {
SampleData sample_data;
sample_data.fillRandom(model->dof_count, sample_count);
TimerInfo tinfo;
timer_start (&tinfo);
MatrixNd H (MatrixNd::Zero(model->dof_count, model->dof_count));
VectorNd C (VectorNd::Zero(model->dof_count));
for (int i = 0; i < sample_count; i++) {
ForwardDynamicsLagrangian (*model,
sample_data.q[i],
sample_data.qdot[i],
sample_data.tau[i],
sample_data.qddot[i],
Math::LinearSolverPartialPivLU,
NULL,
&H,
&C
);
}
double duration = timer_stop (&tinfo);
cout << "#DOF: " << setw(3) << model->dof_count
<< " #samples: " << sample_count
<< " duration = " << setw(10) << duration << "(s)"
<< " (~" << setw(10) << duration / sample_count << "(s) per call)" << endl;
return duration;
}
double run_inverse_dynamics_RNEA_benchmark (Model *model, int sample_count) {
SampleData sample_data;
sample_data.fillRandom(model->dof_count, sample_count);
TimerInfo tinfo;
timer_start (&tinfo);
for (int i = 0; i < sample_count; i++) {
InverseDynamics (*model,
sample_data.q[i],
sample_data.qdot[i],
sample_data.qddot[i],
sample_data.tau[i]
);
}
double duration = timer_stop (&tinfo);
cout << "#DOF: " << setw(3) << model->dof_count
<< " #samples: " << sample_count
<< " duration = " << setw(10) << duration << "(s)"
<< " (~" << setw(10) << duration / sample_count << "(s) per call)" << endl;
return duration;
}
double run_CRBA_benchmark (Model *model, int sample_count) {
SampleData sample_data;
sample_data.fillRandom(model->dof_count, sample_count);
Math::MatrixNd H = Math::MatrixNd::Zero(model->dof_count, model->dof_count);
Math::MatrixNd identity = Math::MatrixNd::Identity(model->dof_count, model->dof_count);
Math::MatrixNd Hinv = Math::MatrixNd::Zero(model->dof_count, model->dof_count);
TimerInfo tinfo;
timer_start (&tinfo);
for (int i = 0; i < sample_count; i++) {
CompositeRigidBodyAlgorithm (*model, sample_data.q[i], H, true);
}
double duration = timer_stop (&tinfo);
cout << "#DOF: " << setw(3) << model->dof_count
<< " #samples: " << sample_count
<< " duration = " << setw(10) << duration << "(s)"
<< " (~" << setw(10) << duration / sample_count << "(s) per call)" << endl;
return duration;
}
double run_nle_benchmark (Model *model, int sample_count) {
SampleData sample_data;
sample_data.fillRandom(model->dof_count, sample_count);
TimerInfo tinfo;
timer_start (&tinfo);
for (int i = 0; i < sample_count; i++) {
NonlinearEffects (*model,
sample_data.q[i],
sample_data.qdot[i],
sample_data.tau[i]
);
}
double duration = timer_stop (&tinfo);
cout << "#DOF: " << setw(3) << model->dof_count
<< " #samples: " << sample_count
<< " duration = " << setw(10) << duration << "(s)"
<< " (~" << setw(10) << duration / sample_count << "(s) per call)" << endl;
return duration;
}
double run_calc_minv_times_tau_benchmark (Model *model, int sample_count) {
SampleData sample_data;
sample_data.fillRandom(model->dof_count, sample_count);
CalcMInvTimesTau (*model, sample_data.q[0], sample_data.tau[0], sample_data.qddot[0]);
TimerInfo tinfo;
timer_start (&tinfo);
for (int i = 0; i < sample_count; i++) {
CalcMInvTimesTau (*model, sample_data.q[i], sample_data.tau[i], sample_data.qddot[i]);
}
double duration = timer_stop (&tinfo);
cout << "#DOF: " << setw(3) << model->dof_count
<< " #samples: " << sample_count
<< " duration = " << setw(10) << duration << "(s)"
<< " (~" << setw(10) << duration / sample_count << "(s) per call)" << endl;
return duration;
}
double run_contacts_lagrangian_benchmark (Model *model, ConstraintSet *constraint_set, int sample_count) {
SampleData sample_data;
sample_data.fillRandom(model->dof_count, sample_count);
TimerInfo tinfo;
timer_start (&tinfo);
for (int i = 0; i < sample_count; i++) {
ForwardDynamicsConstraintsDirect (*model, sample_data.q[i], sample_data.qdot[i], sample_data.tau[i], *constraint_set, sample_data.qddot[i]);
}
double duration = timer_stop (&tinfo);
return duration;
}
double run_contacts_lagrangian_sparse_benchmark (Model *model, ConstraintSet *constraint_set, int sample_count) {
SampleData sample_data;
sample_data.fillRandom(model->dof_count, sample_count);
TimerInfo tinfo;
timer_start (&tinfo);
for (int i = 0; i < sample_count; i++) {
ForwardDynamicsConstraintsRangeSpaceSparse (*model, sample_data.q[i], sample_data.qdot[i], sample_data.tau[i], *constraint_set, sample_data.qddot[i]);
}
double duration = timer_stop (&tinfo);
return duration;
}
double run_contacts_null_space (Model *model, ConstraintSet *constraint_set, int sample_count) {
SampleData sample_data;
sample_data.fillRandom(model->dof_count, sample_count);
TimerInfo tinfo;
timer_start (&tinfo);
for (int i = 0; i < sample_count; i++) {
ForwardDynamicsConstraintsNullSpace (*model, sample_data.q[i], sample_data.qdot[i], sample_data.tau[i], *constraint_set, sample_data.qddot[i]);
}
double duration = timer_stop (&tinfo);
return duration;
}
double run_contacts_kokkevis_benchmark (Model *model, ConstraintSet *constraint_set, int sample_count) {
SampleData sample_data;
sample_data.fillRandom(model->dof_count, sample_count);
TimerInfo tinfo;
timer_start (&tinfo);
for (int i = 0; i < sample_count; i++) {
ForwardDynamicsContactsKokkevis(*model, sample_data.q[i], sample_data.qdot[i], sample_data.tau[i], *constraint_set, sample_data.qddot[i]);
}
double duration = timer_stop (&tinfo);
return duration;
}
double contacts_benchmark (int sample_count, ContactsMethod contacts_method) {
// initialize the human model
Model *model = new Model();
generate_human36model(model);
// initialize the constraint sets
unsigned int foot_r = model->GetBodyId ("foot_r");
unsigned int foot_l = model->GetBodyId ("foot_l");
unsigned int hand_r = model->GetBodyId ("hand_r");
unsigned int hand_l = model->GetBodyId ("hand_l");
ConstraintSet one_body_one_constraint;
ConstraintSet two_bodies_one_constraint;
ConstraintSet four_bodies_one_constraint;
ConstraintSet one_body_four_constraints;
ConstraintSet two_bodies_four_constraints;
ConstraintSet four_bodies_four_constraints;
LinearSolver linear_solver = LinearSolverPartialPivLU;
one_body_one_constraint.linear_solver = linear_solver;
two_bodies_one_constraint.linear_solver = linear_solver;
four_bodies_one_constraint.linear_solver = linear_solver;
one_body_four_constraints.linear_solver = linear_solver;
two_bodies_four_constraints.linear_solver = linear_solver;
four_bodies_four_constraints.linear_solver = linear_solver;
// one_body_one
one_body_one_constraint.AddContactConstraint (foot_r, Vector3d (0.1, 0., -0.05), Vector3d (1., 0., 0.));
one_body_one_constraint.Bind (*model);
// two_bodies_one
two_bodies_one_constraint.AddContactConstraint (foot_r, Vector3d (0.1, 0., -0.05), Vector3d (1., 0., 0.));
two_bodies_one_constraint.AddContactConstraint (foot_l, Vector3d (0.1, 0., -0.05), Vector3d (1., 0., 0.));
two_bodies_one_constraint.Bind (*model);
// four_bodies_one
four_bodies_one_constraint.AddContactConstraint (foot_r, Vector3d (0.1, 0., -0.05), Vector3d (1., 0., 0.));
four_bodies_one_constraint.AddContactConstraint (foot_l, Vector3d (0.1, 0., -0.05), Vector3d (1., 0., 0.));
four_bodies_one_constraint.AddContactConstraint (hand_r, Vector3d (0.1, 0., -0.05), Vector3d (1., 0., 0.));
four_bodies_one_constraint.AddContactConstraint (hand_l, Vector3d (0.1, 0., -0.05), Vector3d (1., 0., 0.));
four_bodies_one_constraint.Bind (*model);
// one_body_four
one_body_four_constraints.AddContactConstraint (foot_r, Vector3d (0.1, 0., -0.05), Vector3d (1., 0., 0.));
one_body_four_constraints.AddContactConstraint (foot_r, Vector3d (0.1, 0., -0.05), Vector3d (0., 1., 0.));
one_body_four_constraints.AddContactConstraint (foot_r, Vector3d (0.1, 0., -0.05), Vector3d (0., 0., 1.));
one_body_four_constraints.AddContactConstraint (foot_r, Vector3d (-0.1, 0., -0.05), Vector3d (1., 0., 0.));
one_body_four_constraints.Bind (*model);
// two_bodies_four
two_bodies_four_constraints.AddContactConstraint (foot_r, Vector3d (0.1, 0., -0.05), Vector3d (1., 0., 0.));
two_bodies_four_constraints.AddContactConstraint (foot_r, Vector3d (0.1, 0., -0.05), Vector3d (0., 1., 0.));
two_bodies_four_constraints.AddContactConstraint (foot_r, Vector3d (0.1, 0., -0.05), Vector3d (0., 0., 1.));
two_bodies_four_constraints.AddContactConstraint (foot_r, Vector3d (-0.1, 0., -0.05), Vector3d (1., 0., 0.));
two_bodies_four_constraints.AddContactConstraint (foot_l, Vector3d (0.1, 0., -0.05), Vector3d (1., 0., 0.));
two_bodies_four_constraints.AddContactConstraint (foot_l, Vector3d (0.1, 0., -0.05), Vector3d (0., 1., 0.));
two_bodies_four_constraints.AddContactConstraint (foot_l, Vector3d (0.1, 0., -0.05), Vector3d (0., 0., 1.));
two_bodies_four_constraints.AddContactConstraint (foot_l, Vector3d (-0.1, 0., -0.05), Vector3d (1., 0., 0.));
two_bodies_four_constraints.Bind (*model);
// four_bodies_four
four_bodies_four_constraints.AddContactConstraint (foot_r, Vector3d (0.1, 0., -0.05), Vector3d (1., 0., 0.));
four_bodies_four_constraints.AddContactConstraint (foot_r, Vector3d (0.1, 0., -0.05), Vector3d (0., 1., 0.));
four_bodies_four_constraints.AddContactConstraint (foot_r, Vector3d (0.1, 0., -0.05), Vector3d (0., 0., 1.));
four_bodies_four_constraints.AddContactConstraint (foot_r, Vector3d (-0.1, 0., -0.05), Vector3d (1., 0., 0.));
four_bodies_four_constraints.AddContactConstraint (foot_l, Vector3d (0.1, 0., -0.05), Vector3d (1., 0., 0.));
four_bodies_four_constraints.AddContactConstraint (foot_l, Vector3d (0.1, 0., -0.05), Vector3d (0., 1., 0.));
four_bodies_four_constraints.AddContactConstraint (foot_l, Vector3d (0.1, 0., -0.05), Vector3d (0., 0., 1.));
four_bodies_four_constraints.AddContactConstraint (foot_l, Vector3d (-0.1, 0., -0.05), Vector3d (1., 0., 0.));
four_bodies_four_constraints.AddContactConstraint (hand_r, Vector3d (0.1, 0., -0.05), Vector3d (1., 0., 0.));
four_bodies_four_constraints.AddContactConstraint (hand_r, Vector3d (0.1, 0., -0.05), Vector3d (0., 1., 0.));
four_bodies_four_constraints.AddContactConstraint (hand_r, Vector3d (0.1, 0., -0.05), Vector3d (0., 0., 1.));
four_bodies_four_constraints.AddContactConstraint (hand_r, Vector3d (-0.1, 0., -0.05), Vector3d (1., 0., 0.));
four_bodies_four_constraints.AddContactConstraint (hand_l, Vector3d (0.1, 0., -0.05), Vector3d (1., 0., 0.));
four_bodies_four_constraints.AddContactConstraint (hand_l, Vector3d (0.1, 0., -0.05), Vector3d (0., 1., 0.));
four_bodies_four_constraints.AddContactConstraint (hand_l, Vector3d (0.1, 0., -0.05), Vector3d (0., 0., 1.));
four_bodies_four_constraints.AddContactConstraint (hand_l, Vector3d (-0.1, 0., -0.05), Vector3d (1., 0., 0.));
four_bodies_four_constraints.Bind (*model);
cout << "= #DOF: " << setw(3) << model->dof_count << endl;
cout << "= #samples: " << sample_count << endl;
cout << "= No constraints (Articulated Body Algorithm):" << endl;
run_forward_dynamics_ABA_benchmark (model, sample_count);
cout << "= Constraints:" << endl;
double duration;
// one body one
if (contacts_method == ContactsMethodLagrangian) {
duration = run_contacts_lagrangian_benchmark (model, &one_body_one_constraint, sample_count);
} else if (contacts_method == ContactsMethodRangeSpaceSparse) {
duration = run_contacts_lagrangian_sparse_benchmark (model, &one_body_one_constraint, sample_count);
} else if (contacts_method == ContactsMethodNullSpace) {
duration = run_contacts_null_space (model, &one_body_one_constraint, sample_count);
} else {
duration = run_contacts_kokkevis_benchmark (model, &one_body_one_constraint, sample_count);
}
cout << "ConstraintSet: 1 Body 1 Constraint : "
<< " duration = " << setw(10) << duration << "(s)"
<< " (~" << setw(10) << duration / sample_count << "(s) per call)" << endl;
// two_bodies_one
if (contacts_method == ContactsMethodLagrangian) {
duration = run_contacts_lagrangian_benchmark (model, &two_bodies_one_constraint, sample_count);
} else if (contacts_method == ContactsMethodRangeSpaceSparse) {
duration = run_contacts_lagrangian_sparse_benchmark (model, &two_bodies_one_constraint, sample_count);
} else if (contacts_method == ContactsMethodNullSpace) {
duration = run_contacts_null_space (model, &two_bodies_one_constraint, sample_count);
} else {
duration = run_contacts_kokkevis_benchmark (model, &two_bodies_one_constraint, sample_count);
}
cout << "ConstraintSet: 2 Bodies 1 Constraint : "
<< " duration = " << setw(10) << duration << "(s)"
<< " (~" << setw(10) << duration / sample_count << "(s) per call)" << endl;
// four_bodies_one
if (contacts_method == ContactsMethodLagrangian) {
duration = run_contacts_lagrangian_benchmark (model, &four_bodies_one_constraint, sample_count);
} else if (contacts_method == ContactsMethodRangeSpaceSparse) {
duration = run_contacts_lagrangian_sparse_benchmark (model, &four_bodies_one_constraint, sample_count);
} else if (contacts_method == ContactsMethodNullSpace) {
duration = run_contacts_null_space (model, &four_bodies_one_constraint, sample_count);
} else {
duration = run_contacts_kokkevis_benchmark (model, &four_bodies_one_constraint, sample_count);
}
cout << "ConstraintSet: 4 Bodies 1 Constraint : "
<< " duration = " << setw(10) << duration << "(s)"
<< " (~" << setw(10) << duration / sample_count << "(s) per call)" << endl;
// one_body_four
if (contacts_method == ContactsMethodLagrangian) {
duration = run_contacts_lagrangian_benchmark (model, &one_body_four_constraints, sample_count);
} else if (contacts_method == ContactsMethodRangeSpaceSparse) {
duration = run_contacts_lagrangian_sparse_benchmark (model, &one_body_four_constraints, sample_count);
} else if (contacts_method == ContactsMethodNullSpace) {
duration = run_contacts_null_space (model, &one_body_four_constraints, sample_count);
} else {
duration = run_contacts_kokkevis_benchmark (model, &one_body_four_constraints, sample_count);
}
cout << "ConstraintSet: 1 Body 4 Constraints : "
<< " duration = " << setw(10) << duration << "(s)"
<< " (~" << setw(10) << duration / sample_count << "(s) per call)" << endl;
// two_bodies_four
if (contacts_method == ContactsMethodLagrangian) {
duration = run_contacts_lagrangian_benchmark (model, &two_bodies_four_constraints, sample_count);
} else if (contacts_method == ContactsMethodRangeSpaceSparse) {
duration = run_contacts_lagrangian_sparse_benchmark (model, &two_bodies_four_constraints, sample_count);
} else if (contacts_method == ContactsMethodNullSpace) {
duration = run_contacts_null_space (model, &two_bodies_four_constraints, sample_count);
} else {
duration = run_contacts_kokkevis_benchmark (model, &two_bodies_four_constraints, sample_count);
}
cout << "ConstraintSet: 2 Bodies 4 Constraints: "
<< " duration = " << setw(10) << duration << "(s)"
<< " (~" << setw(10) << duration / sample_count << "(s) per call)" << endl;
// four_bodies_four
if (contacts_method == ContactsMethodLagrangian) {
duration = run_contacts_lagrangian_benchmark (model, &four_bodies_four_constraints, sample_count);
} else if (contacts_method == ContactsMethodRangeSpaceSparse) {
duration = run_contacts_lagrangian_sparse_benchmark (model, &four_bodies_four_constraints, sample_count);
} else if (contacts_method == ContactsMethodNullSpace) {
duration = run_contacts_null_space (model, &four_bodies_four_constraints, sample_count);
} else {
duration = run_contacts_kokkevis_benchmark (model, &four_bodies_four_constraints, sample_count);
}
cout << "ConstraintSet: 4 Bodies 4 Constraints: "
<< " duration = " << setw(10) << duration << "(s)"
<< " (~" << setw(10) << duration / sample_count << "(s) per call)" << endl;
delete model;
return duration;
}
double run_single_inverse_kinematics_benchmark(Model *model, std::vector<InverseKinematicsConstraintSet> &CS, int sample_count){
TimerInfo tinfo;
timer_start (&tinfo);
VectorNd qinit = VectorNd::Zero(model->dof_count);
VectorNd qres = VectorNd::Zero(model->dof_count);
VectorNd failures = VectorNd::Zero(model->dof_count);
for (int i = 0; i < sample_count; i++) {
if (!InverseKinematics(*model, qinit, CS[i], qres)){
failures[i] = 1;
}
}
double duration = timer_stop (&tinfo);
std::cout << "Success Rate: " << (1-failures.mean())*100 << "% for: ";
return duration;
}
double run_all_inverse_kinematics_benchmark (int sample_count){
//initialize the human model
Model *model = new Model();
generate_human36model(model);
unsigned int foot_r = model->GetBodyId ("foot_r");
unsigned int foot_l = model->GetBodyId ("foot_l");
unsigned int hand_r = model->GetBodyId ("hand_r");
unsigned int hand_l = model->GetBodyId ("hand_l");
unsigned int head = model->GetBodyId ("head");
Vector3d foot_r_point (1., 0., 0.);
Vector3d foot_l_point (-1., 0., 0.);
Vector3d hand_r_point (0., 1., 0.);
Vector3d hand_l_point (1., 0., 1.);
Vector3d head_point (0.,0.,-1.);
SampleData sample_data;
sample_data.fillRandom(model->dof_count, sample_count);
//create constraint sets
std::vector<InverseKinematicsConstraintSet> cs_one_point;
std::vector<InverseKinematicsConstraintSet> cs_two_point_one_orientation;
std::vector<InverseKinematicsConstraintSet> cs_two_full_one_point;
std::vector<InverseKinematicsConstraintSet> cs_two_full_two_point_one_orientation;
std::vector<InverseKinematicsConstraintSet> cs_five_full;
for (unsigned int i = 0; i < sample_count; i++){
Vector3d foot_r_position = CalcBodyToBaseCoordinates (*model, sample_data.q[i], foot_r, foot_r_point);
Vector3d foot_l_position = CalcBodyToBaseCoordinates (*model, sample_data.q[i], foot_l, foot_l_point);
Vector3d hand_r_position = CalcBodyToBaseCoordinates (*model, sample_data.q[i], hand_r, hand_r_point);
Vector3d hand_l_position = CalcBodyToBaseCoordinates (*model, sample_data.q[i], hand_l, hand_l_point);
Vector3d head_position = CalcBodyToBaseCoordinates (*model, sample_data.q[i], head , head_point);
Matrix3d foot_r_orientation = CalcBodyWorldOrientation (*model, sample_data.q[i], foot_r, false);
Matrix3d foot_l_orientation = CalcBodyWorldOrientation (*model, sample_data.q[i], foot_l, false);
Matrix3d hand_r_orientation = CalcBodyWorldOrientation (*model, sample_data.q[i], hand_r, false);
Matrix3d hand_l_orientation = CalcBodyWorldOrientation (*model, sample_data.q[i], hand_l, false);
Matrix3d head_orientation = CalcBodyWorldOrientation (*model, sample_data.q[i], head , false);
//single point
InverseKinematicsConstraintSet one_point;
one_point.AddPointConstraint(foot_r, foot_r_point, foot_r_position);
one_point.step_tol = 1e-12;
cs_one_point.push_back(one_point);
//two point and one orientation
InverseKinematicsConstraintSet two_point_one_orientation;
two_point_one_orientation.AddPointConstraint(foot_l,foot_l_point, foot_l_position);
two_point_one_orientation.AddPointConstraint(foot_r, foot_r_point, foot_r_position);
two_point_one_orientation.AddOrientationConstraint(head, head_orientation);
two_point_one_orientation.step_tol = 1e-12;
cs_two_point_one_orientation.push_back(two_point_one_orientation);
//two full and one point
InverseKinematicsConstraintSet two_full_one_point;
two_full_one_point.AddFullConstraint(hand_r, hand_r_point, hand_r_position, hand_r_orientation);
two_full_one_point.AddFullConstraint(hand_l, hand_l_point, hand_l_position, hand_l_orientation);
two_full_one_point.AddPointConstraint(head, head_point, head_position);
two_full_one_point.step_tol = 1e-12;
cs_two_full_one_point.push_back(two_full_one_point);
//two full, two points and one orienation
InverseKinematicsConstraintSet two_full_two_point_one_orientation;
two_full_two_point_one_orientation.AddPointConstraint(foot_r, foot_r_point, foot_r_position);
two_full_two_point_one_orientation.AddPointConstraint(foot_l, foot_l_point, foot_l_position);
two_full_two_point_one_orientation.AddFullConstraint(hand_r, hand_r_point, hand_r_position, hand_r_orientation);
two_full_two_point_one_orientation.AddFullConstraint(hand_l, hand_l_point, hand_l_position, hand_l_orientation);
two_full_two_point_one_orientation.AddOrientationConstraint(head, head_orientation);
two_full_two_point_one_orientation.step_tol = 1e-12;
cs_two_full_two_point_one_orientation.push_back(two_full_two_point_one_orientation);
//five points 5 orientations
InverseKinematicsConstraintSet five_full;
five_full.AddFullConstraint(foot_r, foot_r_point, foot_r_position, foot_r_orientation);
five_full.AddFullConstraint(foot_l, foot_l_point, foot_l_position, foot_l_orientation);
five_full.AddFullConstraint(hand_r, hand_r_point, hand_r_position, hand_r_orientation);
five_full.AddFullConstraint(hand_l, hand_l_point, hand_l_position, hand_l_orientation);
five_full.AddFullConstraint(head, head_point, head_position, head_orientation);
five_full.step_tol = 1e-12;
cs_five_full.push_back(five_full);
}
cout << "= #DOF: " << setw(3) << model->dof_count << endl;
cout << "= #samples: " << sample_count << endl;
double duration;
duration = run_single_inverse_kinematics_benchmark(model, cs_one_point, sample_count);
cout << "Constraints: 1 Body: 1 Point : "
<< " duration = " << setw(10) << duration << "(s)"
<< " (~" << setw(10) << duration / sample_count << "(s) per call)" << endl;
duration = run_single_inverse_kinematics_benchmark(model, cs_two_point_one_orientation, sample_count);
cout << "Constraints: 3 Bodies: 2 Points 1 Orienation : "
<< " duration = " << setw(10) << duration << "(s)"
<< " (~" << setw(10) << duration / sample_count << "(s) per call)" << endl;
duration = run_single_inverse_kinematics_benchmark(model, cs_two_full_one_point, sample_count);
cout << "Constraints: 3 Bodies: 2 Full 1 Point : "
<< " duration = " << setw(10) << duration << "(s)"
<< " (~" << setw(10) << duration / sample_count << "(s) per call)" << endl;
duration = run_single_inverse_kinematics_benchmark(model, cs_two_full_two_point_one_orientation, sample_count);
cout << "Constraints: 5 Bodies: 2 Full 2 Points 1 Orienation : "
<< " duration = " << setw(10) << duration << "(s)"
<< " (~" << setw(10) << duration / sample_count << "(s) per call)" << endl;
duration = run_single_inverse_kinematics_benchmark(model, cs_five_full, sample_count);
cout << "Constraints: 5 Bodies: 5 Full : "
<< " duration = " << setw(10) << duration << "(s)"
<< " (~" << setw(10) << duration / sample_count << "(s) per call)" << endl;
return duration;
}
void print_usage () {
#if defined (RBDL_BUILD_ADDON_LUAMODEL) || defined (RBDL_BUILD_ADDON_URDFREADER)
cout << "Usage: benchmark [--count|-c <sample_count>] [--depth|-d <depth>] <model.lua>" << endl;
#else
cout << "Usage: benchmark [--count|-c <sample_count>] [--depth|-d <depth>]" << endl;
#endif
cout << "Simple benchmark tool for the Rigid Body Dynamics Library." << endl;
cout << " --count | -c <sample_count> : sets the number of sample states that should" << endl;
cout << " be calculated (default: 1000)" << endl;
cout << " --depth | -d <depth> : sets maximum depth for the branched test model" << endl;
cout << " which is created increased from 1 to <depth> (default: 5)." << endl;
#if defined RBDL_BUILD_ADDON_URDFREADER
cout << " --floating-base | -f : the specified URDF model is a floating base model." << endl;
#endif
cout << " --no-fd : disables benchmarking of forward dynamics." << endl;
cout << " --no-fd-aba : disables benchmark for forwards dynamics using" << endl;
cout << " the Articulated Body Algorithm" << endl;
cout << " --no-fd-lagrangian : disables benchmark for forward dynamics via" << endl;
cout << " solving the lagrangian equation." << endl;
cout << " --no-id-rnea : disables benchmark for inverse dynamics using" << endl;
cout << " the recursive newton euler algorithm." << endl;
cout << " --no-crba : disables benchmark for joint space inertia" << endl;
cout << " matrix computation using the composite rigid" << endl;
cout << " body algorithm." << endl;
cout << " --no-nle : disables benchmark for the nonlinear effects." << endl;
cout << " --no-calc-minv : disables benchmark M^-1 * tau benchmark." << endl;
cout << " --only-contacts | -C : only runs contact model benchmarks." << endl;
cout << " --help | -h : prints this help." << endl;
}
void disable_all_benchmarks () {
benchmark_run_fd_aba = false;
benchmark_run_fd_lagrangian = false;
benchmark_run_id_rnea = false;
benchmark_run_crba = false;
benchmark_run_nle = false;
benchmark_run_calc_minv_times_tau = false;
benchmark_run_contacts = false;
}
void parse_args (int argc, char* argv[]) {
int argi = 1;
while (argi < argc) {
string arg = argv[argi];
if (arg == "--help" || arg == "-h") {
print_usage();
exit (1);
} else if (arg == "--count" || arg == "-c" ) {
if (argi == argc - 1) {
print_usage();
cerr << "Error: missing number of samples!" << endl;
exit (1);
}
argi++;
stringstream count_stream (argv[argi]);
count_stream >> benchmark_sample_count;
} else if (arg == "--depth" || arg == "-d" ) {
if (argi == argc - 1) {
print_usage();
cerr << "Error: missing number for model depth!" << endl;
exit (1);
}
argi++;
stringstream depth_stream (argv[argi]);
depth_stream >> benchmark_model_max_depth;
#ifdef RBDL_BUILD_ADDON_URDFREADER
} else if (arg == "--floating-base" || arg == "-f") {
urdf_floating_base = true;
#endif
} else if (arg == "--no-fd" ) {
benchmark_run_fd_aba = false;
benchmark_run_fd_lagrangian = false;
} else if (arg == "--no-fd-aba" ) {
benchmark_run_fd_aba = false;
} else if (arg == "--no-fd-lagrangian" ) {
benchmark_run_fd_lagrangian = false;
} else if (arg == "--no-id-rnea" ) {
benchmark_run_id_rnea = false;
} else if (arg == "--no-crba" ) {
benchmark_run_crba = false;
} else if (arg == "--no-nle" ) {
benchmark_run_nle = false;
} else if (arg == "--no-calc-minv" ) {
benchmark_run_calc_minv_times_tau = false;
} else if (arg == "--only-contacts" || arg == "-C") {
disable_all_benchmarks();
benchmark_run_contacts = true;
benchmark_run_ik = false;
#if defined (RBDL_BUILD_ADDON_LUAMODEL) || defined (RBDL_BUILD_ADDON_URDFREADER)
} else if (model_file == "") {
model_file = arg;
#endif
} else {
print_usage();
cerr << "Invalid argument '" << arg << "'." << endl;
exit(1);
}
argi++;
}
}
int main (int argc, char *argv[]) {
parse_args (argc, argv);
Model *model = NULL;
model = new Model();
if (model_file != "") {
if (model_file.substr (model_file.size() - 4, 4) == ".lua") {
#ifdef RBDL_BUILD_ADDON_LUAMODEL
RigidBodyDynamics::Addons::LuaModelReadFromFile (model_file.c_str(), model);
#else
cerr << "Could not load Lua model: LuaModel addon not enabled!" << endl;
abort();
#endif
}
if (model_file.substr (model_file.size() - 5, 5) == ".urdf") {
#ifdef RBDL_BUILD_ADDON_URDFREADER
RigidBodyDynamics::Addons::URDFReadFromFile(model_file.c_str(), model, urdf_floating_base);
#else
cerr << "Could not load URDF model: urdfreader addon not enabled!" << endl;
abort();
#endif
}
if (benchmark_run_fd_aba) {
cout << "= Forward Dynamics: ABA =" << endl;
run_forward_dynamics_ABA_benchmark (model, benchmark_sample_count);
}
if (benchmark_run_fd_lagrangian) {
cout << "= Forward Dynamics: Lagrangian (Piv. LU decomposition) =" << endl;
run_forward_dynamics_lagrangian_benchmark (model, benchmark_sample_count);
}
if (benchmark_run_id_rnea) {
cout << "= Inverse Dynamics: RNEA =" << endl;
run_inverse_dynamics_RNEA_benchmark (model, benchmark_sample_count);
}
if (benchmark_run_crba) {
cout << "= Joint Space Inertia Matrix: CRBA =" << endl;
run_CRBA_benchmark (model, benchmark_sample_count);
}
if (benchmark_run_nle) {
cout << "= Nonlinear effects =" << endl;
run_nle_benchmark (model, benchmark_sample_count);
}
delete model;
return 0;
}
rbdl_print_version();
cout << endl;
if (benchmark_run_fd_aba) {
cout << "= Forward Dynamics: ABA =" << endl;
for (int depth = 1; depth <= benchmark_model_max_depth; depth++) {
model = new Model();
model->gravity = Vector3d (0., -9.81, 0.);
generate_planar_tree (model, depth);
run_forward_dynamics_ABA_benchmark (model, benchmark_sample_count);
delete model;
}
cout << endl;
}
if (benchmark_run_fd_lagrangian) {
cout << "= Forward Dynamics: Lagrangian (Piv. LU decomposition) =" << endl;
for (int depth = 1; depth <= benchmark_model_max_depth; depth++) {
model = new Model();
model->gravity = Vector3d (0., -9.81, 0.);
generate_planar_tree (model, depth);
run_forward_dynamics_lagrangian_benchmark (model, benchmark_sample_count);
delete model;
}
cout << endl;
}
if (benchmark_run_id_rnea) {
cout << "= Inverse Dynamics: RNEA =" << endl;
for (int depth = 1; depth <= benchmark_model_max_depth; depth++) {
model = new Model();
model->gravity = Vector3d (0., -9.81, 0.);
generate_planar_tree (model, depth);
run_inverse_dynamics_RNEA_benchmark (model, benchmark_sample_count);
delete model;
}
cout << endl;
}
if (benchmark_run_crba) {
cout << "= Joint Space Inertia Matrix: CRBA =" << endl;
for (int depth = 1; depth <= benchmark_model_max_depth; depth++) {
model = new Model();
model->gravity = Vector3d (0., -9.81, 0.);
generate_planar_tree (model, depth);
run_CRBA_benchmark (model, benchmark_sample_count);
delete model;
}
cout << endl;
}
if (benchmark_run_nle) {
cout << "= Nonlinear Effects =" << endl;
for (int depth = 1; depth <= benchmark_model_max_depth; depth++) {
model = new Model();
model->gravity = Vector3d (0., -9.81, 0.);
generate_planar_tree (model, depth);
run_nle_benchmark (model, benchmark_sample_count);
delete model;
}
cout << endl;
}
if (benchmark_run_calc_minv_times_tau) {
cout << "= CalcMInvTimesTau =" << endl;
for (int depth = 1; depth <= benchmark_model_max_depth; depth++) {
model = new Model();
model->gravity = Vector3d (0., -9.81, 0.);
generate_planar_tree (model, depth);
run_calc_minv_times_tau_benchmark (model, benchmark_sample_count);
delete model;
}
cout << endl;
}
if (benchmark_run_contacts) {
cout << "= Contacts: ForwardDynamicsConstraintsLagrangian" << endl;
contacts_benchmark (benchmark_sample_count, ContactsMethodLagrangian);
cout << "= Contacts: ForwardDynamicsConstraintsRangeSpaceSparse" << endl;
contacts_benchmark (benchmark_sample_count, ContactsMethodRangeSpaceSparse);
cout << "= Contacts: ForwardDynamicsConstraintsNullSpace" << endl;
contacts_benchmark (benchmark_sample_count, ContactsMethodNullSpace);
cout << "= Contacts: ForwardDynamicsContactsKokkevis" << endl;
contacts_benchmark (benchmark_sample_count, ContactsMethodKokkevis);
}
if (benchmark_run_ik) {
cout << "= Inverse Kinematics" << endl;
run_all_inverse_kinematics_benchmark(benchmark_sample_count);
}
return 0;
}