protot/3rdparty/rbdl/include/rbdl/rbdl_mathutils.h

266 lines
7.4 KiB
C++

/*
* RBDL - Rigid Body Dynamics Library
* Copyright (c) 2011-2016 Martin Felis <martin@fysx.org>
*
* Licensed under the zlib license. See LICENSE for more details.
*/
#ifndef RBDL_MATHUTILS_H
#define RBDL_MATHUTILS_H
#include <assert.h>
#include <cmath>
#include "rbdl/rbdl_math.h"
namespace RigidBodyDynamics {
struct Model;
namespace Math {
/** \brief Available solver methods for the linear systems.
*
* Please note that these methods are only available when Eigen3 is used.
* When the math library SimpleMath is used it will always use a slow
* column pivoting gauss elimination.
*/
enum RBDL_DLLAPI LinearSolver {
LinearSolverUnknown = 0,
LinearSolverPartialPivLU,
LinearSolverColPivHouseholderQR,
LinearSolverHouseholderQR,
LinearSolverLLT,
LinearSolverLast,
};
extern RBDL_DLLAPI Vector3d Vector3dZero;
extern RBDL_DLLAPI Matrix3d Matrix3dIdentity;
extern RBDL_DLLAPI Matrix3d Matrix3dZero;
RBDL_DLLAPI inline VectorNd VectorFromPtr (unsigned int n, double *ptr) {
// TODO: use memory mapping operators for Eigen
VectorNd result (n);
for (unsigned int i = 0; i < n; i++) {
result[i] = ptr[i];
}
return result;
}
RBDL_DLLAPI inline MatrixNd MatrixFromPtr (unsigned int rows, unsigned int cols, double *ptr, bool row_major = true) {
MatrixNd result (rows, cols);
if (row_major) {
for (unsigned int i = 0; i < rows; i++) {
for (unsigned int j = 0; j < cols; j++) {
result(i,j) = ptr[i * cols + j];
}
}
} else {
for (unsigned int i = 0; i < rows; i++) {
for (unsigned int j = 0; j < cols; j++) {
result(i,j) = ptr[i + j * rows];
}
}
}
return result;
}
/// \brief Solves a linear system using gaussian elimination with pivoting
RBDL_DLLAPI bool LinSolveGaussElimPivot (MatrixNd A, VectorNd b, VectorNd &x);
// \todo write test
RBDL_DLLAPI void SpatialMatrixSetSubmatrix(SpatialMatrix &dest, unsigned int row, unsigned int col, const Matrix3d &matrix);
RBDL_DLLAPI bool SpatialMatrixCompareEpsilon (const SpatialMatrix &matrix_a,
const SpatialMatrix &matrix_b, double epsilon);
RBDL_DLLAPI bool SpatialVectorCompareEpsilon (const SpatialVector &vector_a,
const SpatialVector &vector_b, double epsilon);
/** \brief Translates the inertia matrix to a new center. */
RBDL_DLLAPI Matrix3d parallel_axis (const Matrix3d &inertia, double mass, const Vector3d &com);
/** \brief Creates a transformation of a linear displacement
*
* This can be used to specify the translation to the joint center when
* adding a body to a model. See also section 2.8 in RBDA.
*
* \note The transformation returned is for motions. For a transformation for forces
* \note one has to conjugate the matrix.
*
* \param displacement The displacement as a 3D vector
*/
RBDL_DLLAPI SpatialMatrix Xtrans_mat (const Vector3d &displacement);
/** \brief Creates a rotational transformation around the Z-axis
*
* Creates a rotation around the current Z-axis by the given angle
* (specified in radians).
*
* \param zrot Rotation angle in radians.
*/
RBDL_DLLAPI SpatialMatrix Xrotz_mat (const double &zrot);
/** \brief Creates a rotational transformation around the Y-axis
*
* Creates a rotation around the current Y-axis by the given angle
* (specified in radians).
*
* \param yrot Rotation angle in radians.
*/
RBDL_DLLAPI SpatialMatrix Xroty_mat (const double &yrot);
/** \brief Creates a rotational transformation around the X-axis
*
* Creates a rotation around the current X-axis by the given angle
* (specified in radians).
*
* \param xrot Rotation angle in radians.
*/
RBDL_DLLAPI SpatialMatrix Xrotx_mat (const double &xrot);
/** \brief Creates a spatial transformation for given parameters
*
* Creates a transformation to a coordinate system that is first rotated
* and then translated.
*
* \param displacement The displacement to the new origin
* \param zyx_euler The orientation of the new coordinate system, specifyed
* by ZYX-Euler angles.
*/
RBDL_DLLAPI SpatialMatrix XtransRotZYXEuler (const Vector3d &displacement, const Vector3d &zyx_euler);
RBDL_DLLAPI inline Matrix3d rotx (const double &xrot) {
double s, c;
s = sin (xrot);
c = cos (xrot);
return Matrix3d (
1., 0., 0.,
0., c, s,
0., -s, c
);
}
RBDL_DLLAPI inline Matrix3d roty (const double &yrot) {
double s, c;
s = sin (yrot);
c = cos (yrot);
return Matrix3d (
c, 0., -s,
0., 1., 0.,
s, 0., c
);
}
RBDL_DLLAPI inline Matrix3d rotz (const double &zrot) {
double s, c;
s = sin (zrot);
c = cos (zrot);
return Matrix3d (
c, s, 0.,
-s, c, 0.,
0., 0., 1.
);
}
RBDL_DLLAPI inline Matrix3d rotxdot (const double &x, const double &xdot) {
double s, c;
s = sin (x);
c = cos (x);
return Matrix3d (
0., 0., 0.,
0., -s * xdot, c * xdot,
0., -c * xdot,-s * xdot
);
}
RBDL_DLLAPI inline Matrix3d rotydot (const double &y, const double &ydot) {
double s, c;
s = sin (y);
c = cos (y);
return Matrix3d (
-s * ydot, 0., - c * ydot,
0., 0., 0.,
c * ydot, 0., - s * ydot
);
}
RBDL_DLLAPI inline Matrix3d rotzdot (const double &z, const double &zdot) {
double s, c;
s = sin (z);
c = cos (z);
return Matrix3d (
-s * zdot, c * zdot, 0.,
-c * zdot, -s * zdot, 0.,
0., 0., 0.
);
}
RBDL_DLLAPI inline Vector3d angular_velocity_from_angle_rates (const Vector3d &zyx_angles, const Vector3d &zyx_angle_rates) {
double sy = sin(zyx_angles[1]);
double cy = cos(zyx_angles[1]);
double sx = sin(zyx_angles[2]);
double cx = cos(zyx_angles[2]);
return Vector3d (
zyx_angle_rates[2] - sy * zyx_angle_rates[0],
cx * zyx_angle_rates[1] + sx * cy * zyx_angle_rates[0],
-sx * zyx_angle_rates[1] + cx * cy * zyx_angle_rates[0]
);
}
RBDL_DLLAPI inline Vector3d global_angular_velocity_from_rates (const Vector3d &zyx_angles, const Vector3d &zyx_rates) {
Matrix3d RzT = rotz(zyx_angles[0]).transpose();
Matrix3d RyT = roty(zyx_angles[1]).transpose();
return Vector3d (
Vector3d (0., 0., zyx_rates[0])
+ RzT * Vector3d (0., zyx_rates[1], 0.)
+ RzT * RyT * Vector3d (zyx_rates[2], 0., 0.)
);
}
RBDL_DLLAPI inline Vector3d angular_acceleration_from_angle_rates (const Vector3d &zyx_angles, const Vector3d &zyx_angle_rates, const Vector3d &zyx_angle_rates_dot) {
double sy = sin(zyx_angles[1]);
double cy = cos(zyx_angles[1]);
double sx = sin(zyx_angles[2]);
double cx = cos(zyx_angles[2]);
double xdot = zyx_angle_rates[2];
double ydot = zyx_angle_rates[1];
double zdot = zyx_angle_rates[0];
double xddot = zyx_angle_rates_dot[2];
double yddot = zyx_angle_rates_dot[1];
double zddot = zyx_angle_rates_dot[0];
return Vector3d (
xddot - (cy * ydot * zdot + sy * zddot),
-sx * xdot * ydot + cx * yddot + cx * xdot * cy * zdot + sx * ( - sy * ydot * zdot + cy * zddot),
-cx * xdot * ydot - sx * yddot - sx * xdot * cy * zdot + cx * ( - sy * ydot * zdot + cy * zddot)
);
}
RBDL_DLLAPI
void SparseFactorizeLTL (Model &model, Math::MatrixNd &H);
RBDL_DLLAPI
void SparseMultiplyHx (Model &model, Math::MatrixNd &L);
RBDL_DLLAPI
void SparseMultiplyLx (Model &model, Math::MatrixNd &L);
RBDL_DLLAPI
void SparseMultiplyLTx (Model &model, Math::MatrixNd &L);
RBDL_DLLAPI
void SparseSolveLx (Model &model, Math::MatrixNd &L, Math::VectorNd &x);
RBDL_DLLAPI
void SparseSolveLTx (Model &model, Math::MatrixNd &L, Math::VectorNd &x);
} /* Math */
} /* RigidBodyDynamics */
/* RBDL_MATHUTILS_H */
#endif