protot/3rdparty/rbdl/src/Constraints.cc

1538 lines
46 KiB
C++

/*
* RBDL - Rigid Body Dynamics Library
* Copyright (c) 2011-2015 Martin Felis <martin@fysx.org>
*
* Licensed under the zlib license. See LICENSE for more details.
*/
#include <iostream>
#include <limits>
#include <assert.h>
#include "rbdl/rbdl_mathutils.h"
#include "rbdl/Logging.h"
#include "rbdl/Model.h"
#include "rbdl/Joint.h"
#include "rbdl/Body.h"
#include "rbdl/Constraints.h"
#include "rbdl/Dynamics.h"
#include "rbdl/Kinematics.h"
namespace RigidBodyDynamics {
using namespace Math;
void SolveLinearSystem (
const MatrixNd& A,
const VectorNd& b,
VectorNd& x,
LinearSolver ls
);
unsigned int GetMovableBodyId (Model& model, unsigned int id);
unsigned int ConstraintSet::AddContactConstraint (
unsigned int body_id,
const Vector3d &body_point,
const Vector3d &world_normal,
const char *constraint_name,
double normal_acceleration
) {
assert (bound == false);
unsigned int n_constr = size() + 1;
std::string name_str;
if (constraint_name != NULL) {
name_str = constraint_name;
}
constraintType.push_back (ContactConstraint);
name.push_back (name_str);
contactConstraintIndices.push_back(size());
// These variables will be used for this type of constraint.
body.push_back (body_id);
point.push_back (body_point);
normal.push_back (world_normal);
// These variables will not be used.
body_p.push_back (0);
body_s.push_back (0);
X_p.push_back (SpatialTransform());
X_s.push_back (SpatialTransform());
constraintAxis.push_back (SpatialVector::Zero());
T_stab_inv.push_back (0.);
err.conservativeResize(n_constr);
err[n_constr - 1] = 0.;
errd.conservativeResize(n_constr);
errd[n_constr - 1] = 0.;
acceleration.conservativeResize (n_constr);
acceleration[n_constr - 1] = normal_acceleration;
force.conservativeResize (n_constr);
force[n_constr - 1] = 0.;
impulse.conservativeResize (n_constr);
impulse[n_constr - 1] = 0.;
v_plus.conservativeResize (n_constr);
v_plus[n_constr - 1] = 0.;
d_multdof3_u = std::vector<Math::Vector3d>(n_constr, Math::Vector3d::Zero());
return n_constr - 1;
}
unsigned int ConstraintSet::AddLoopConstraint (
unsigned int id_predecessor,
unsigned int id_successor,
const Math::SpatialTransform &X_predecessor,
const Math::SpatialTransform &X_successor,
const Math::SpatialVector& axis,
double T_stabilization,
const char *constraint_name
) {
assert (bound == false);
unsigned int n_constr = size() + 1;
std::string name_str;
if (constraint_name != NULL) {
name_str = constraint_name;
}
constraintType.push_back(LoopConstraint);
name.push_back (name_str);
loopConstraintIndices.push_back(size());
// These variables will be used for this kind of constraint.
body_p.push_back (id_predecessor);
body_s.push_back (id_successor);
X_p.push_back (X_predecessor);
X_s.push_back (X_successor);
constraintAxis.push_back (axis);
T_stab_inv.push_back (1. / T_stabilization);
err.conservativeResize(n_constr);
err[n_constr - 1] = 0.;
errd.conservativeResize(n_constr);
errd[n_constr - 1] = 0.;
// These variables will not be used.
body.push_back (0);
point.push_back (Vector3d::Zero());
normal.push_back (Vector3d::Zero());
acceleration.conservativeResize (n_constr);
acceleration[n_constr - 1] = 0.;
force.conservativeResize (n_constr);
force[n_constr - 1] = 0.;
impulse.conservativeResize (n_constr);
impulse[n_constr - 1] = 0.;
v_plus.conservativeResize (n_constr);
v_plus[n_constr - 1] = 0.;
d_multdof3_u = std::vector<Math::Vector3d>(n_constr, Math::Vector3d::Zero());
return n_constr - 1;
}
bool ConstraintSet::Bind (const Model &model) {
assert (bound == false);
if (bound) {
std::cerr << "Error: binding an already bound constraint set!" << std::endl;
abort();
}
unsigned int n_constr = size();
H.conservativeResize (model.dof_count, model.dof_count);
H.setZero();
C.conservativeResize (model.dof_count);
C.setZero();
gamma.conservativeResize (n_constr);
gamma.setZero();
G.conservativeResize (n_constr, model.dof_count);
G.setZero();
A.conservativeResize (model.dof_count + n_constr, model.dof_count + n_constr);
A.setZero();
b.conservativeResize (model.dof_count + n_constr);
b.setZero();
x.conservativeResize (model.dof_count + n_constr);
x.setZero();
Gi.conservativeResize (3, model.qdot_size);
GSpi.conservativeResize (6, model.qdot_size);
GSsi.conservativeResize (6, model.qdot_size);
GSJ.conservativeResize (6, model.qdot_size);
// HouseHolderQR crashes if matrix G has more rows than columns.
#ifdef RBDL_USE_SIMPLE_MATH
GT_qr = SimpleMath::HouseholderQR<Math::MatrixNd> (G.transpose());
#else
GT_qr = Eigen::HouseholderQR<Math::MatrixNd> (G.transpose());
#endif
GT_qr_Q = MatrixNd::Zero (model.dof_count, model.dof_count);
Y = MatrixNd::Zero (model.dof_count, G.rows());
Z = MatrixNd::Zero (model.dof_count, model.dof_count - G.rows());
qddot_y = VectorNd::Zero (model.dof_count);
qddot_z = VectorNd::Zero (model.dof_count);
K.conservativeResize (n_constr, n_constr);
K.setZero();
a.conservativeResize (n_constr);
a.setZero();
QDDot_t.conservativeResize (model.dof_count);
QDDot_t.setZero();
QDDot_0.conservativeResize (model.dof_count);
QDDot_0.setZero();
f_t.resize (n_constr, SpatialVector::Zero());
f_ext_constraints.resize (model.mBodies.size(), SpatialVector::Zero());
point_accel_0.resize (n_constr, Vector3d::Zero());
d_pA = std::vector<SpatialVector> (model.mBodies.size(), SpatialVector::Zero());
d_a = std::vector<SpatialVector> (model.mBodies.size(), SpatialVector::Zero());
d_u = VectorNd::Zero (model.mBodies.size());
d_IA = std::vector<SpatialMatrix> (model.mBodies.size()
, SpatialMatrix::Identity());
d_U = std::vector<SpatialVector> (model.mBodies.size(), SpatialVector::Zero());
d_d = VectorNd::Zero (model.mBodies.size());
d_multdof3_u = std::vector<Math::Vector3d> (model.mBodies.size()
, Math::Vector3d::Zero());
bound = true;
return bound;
}
void ConstraintSet::clear() {
acceleration.setZero();
force.setZero();
impulse.setZero();
H.setZero();
C.setZero();
gamma.setZero();
G.setZero();
A.setZero();
b.setZero();
x.setZero();
K.setZero();
a.setZero();
QDDot_t.setZero();
QDDot_0.setZero();
unsigned int i;
for (i = 0; i < f_t.size(); i++)
f_t[i].setZero();
for (i = 0; i < f_ext_constraints.size(); i++)
f_ext_constraints[i].setZero();
for (i = 0; i < point_accel_0.size(); i++)
point_accel_0[i].setZero();
for (i = 0; i < d_pA.size(); i++)
d_pA[i].setZero();
for (i = 0; i < d_a.size(); i++)
d_a[i].setZero();
d_u.setZero();
}
RBDL_DLLAPI
void SolveConstrainedSystemDirect (
Math::MatrixNd &H,
const Math::MatrixNd &G,
const Math::VectorNd &c,
const Math::VectorNd &gamma,
Math::VectorNd &qddot,
Math::VectorNd &lambda,
Math::MatrixNd &A,
Math::VectorNd &b,
Math::VectorNd &x,
Math::LinearSolver &linear_solver
) {
// Build the system: Copy H
A.block(0, 0, c.rows(), c.rows()) = H;
// Copy G and G^T
A.block(0, c.rows(), c.rows(), gamma.rows()) = G.transpose();
A.block(c.rows(), 0, gamma.rows(), c.rows()) = G;
// Build the system: Copy -C + \tau
b.block(0, 0, c.rows(), 1) = c;
b.block(c.rows(), 0, gamma.rows(), 1) = gamma;
LOG << "A = " << std::endl << A << std::endl;
LOG << "b = " << std::endl << b << std::endl;
switch (linear_solver) {
case (LinearSolverPartialPivLU) :
#ifdef RBDL_USE_SIMPLE_MATH
// SimpleMath does not have a LU solver so just use its QR solver
x = A.householderQr().solve(b);
#else
x = A.partialPivLu().solve(b);
#endif
break;
case (LinearSolverColPivHouseholderQR) :
x = A.colPivHouseholderQr().solve(b);
break;
case (LinearSolverHouseholderQR) :
x = A.householderQr().solve(b);
break;
default:
LOG << "Error: Invalid linear solver: " << linear_solver << std::endl;
assert (0);
break;
}
LOG << "x = " << std::endl << x << std::endl;
}
RBDL_DLLAPI
void SolveConstrainedSystemRangeSpaceSparse (
Model &model,
Math::MatrixNd &H,
const Math::MatrixNd &G,
const Math::VectorNd &c,
const Math::VectorNd &gamma,
Math::VectorNd &qddot,
Math::VectorNd &lambda,
Math::MatrixNd &K,
Math::VectorNd &a,
Math::LinearSolver linear_solver
) {
SparseFactorizeLTL (model, H);
MatrixNd Y (G.transpose());
for (unsigned int i = 0; i < Y.cols(); i++) {
VectorNd Y_col = Y.block(0,i,Y.rows(),1);
SparseSolveLTx (model, H, Y_col);
Y.block(0,i,Y.rows(),1) = Y_col;
}
VectorNd z (c);
SparseSolveLTx (model, H, z);
K = Y.transpose() * Y;
a = gamma - Y.transpose() * z;
lambda = K.llt().solve(a);
qddot = c + G.transpose() * lambda;
SparseSolveLTx (model, H, qddot);
SparseSolveLx (model, H, qddot);
}
RBDL_DLLAPI
void SolveConstrainedSystemNullSpace (
Math::MatrixNd &H,
const Math::MatrixNd &G,
const Math::VectorNd &c,
const Math::VectorNd &gamma,
Math::VectorNd &qddot,
Math::VectorNd &lambda,
Math::MatrixNd &Y,
Math::MatrixNd &Z,
Math::VectorNd &qddot_y,
Math::VectorNd &qddot_z,
Math::LinearSolver &linear_solver
) {
switch (linear_solver) {
case (LinearSolverPartialPivLU) :
#ifdef RBDL_USE_SIMPLE_MATH
// SimpleMath does not have a LU solver so just use its QR solver
qddot_y = (G * Y).householderQr().solve (gamma);
#else
qddot_y = (G * Y).partialPivLu().solve (gamma);
#endif
break;
case (LinearSolverColPivHouseholderQR) :
qddot_y = (G * Y).colPivHouseholderQr().solve (gamma);
break;
case (LinearSolverHouseholderQR) :
qddot_y = (G * Y).householderQr().solve (gamma);
break;
default:
LOG << "Error: Invalid linear solver: " << linear_solver << std::endl;
assert (0);
break;
}
qddot_z = (Z.transpose() * H * Z).llt().solve(Z.transpose() * (c - H * Y * qddot_y));
qddot = Y * qddot_y + Z * qddot_z;
switch (linear_solver) {
case (LinearSolverPartialPivLU) :
#ifdef RBDL_USE_SIMPLE_MATH
// SimpleMath does not have a LU solver so just use its QR solver
qddot_y = (G * Y).householderQr().solve (gamma);
#else
lambda = (G * Y).partialPivLu().solve (Y.transpose() * (H * qddot - c));
#endif
break;
case (LinearSolverColPivHouseholderQR) :
lambda = (G * Y).colPivHouseholderQr().solve (Y.transpose() * (H * qddot - c));
break;
case (LinearSolverHouseholderQR) :
lambda = (G * Y).householderQr().solve (Y.transpose() * (H * qddot - c));
break;
default:
LOG << "Error: Invalid linear solver: " << linear_solver << std::endl;
assert (0);
break;
}
}
RBDL_DLLAPI
void CalcConstraintsPositionError (
Model& model,
const Math::VectorNd &Q,
ConstraintSet &CS,
Math::VectorNd& err,
bool update_kinematics
) {
assert(err.size() == CS.size());
if(update_kinematics) {
UpdateKinematicsCustom (model, &Q, NULL, NULL);
}
for (unsigned int i = 0; i < CS.contactConstraintIndices.size(); i++) {
const unsigned int c = CS.contactConstraintIndices[i];
err[c] = 0.;
}
for (unsigned int i = 0; i < CS.loopConstraintIndices.size(); i++) {
const unsigned int lci = CS.loopConstraintIndices[i];
// Variables used for computations.
Vector3d pos_p;
Vector3d pos_s;
Matrix3d rot_p;
Matrix3d rot_s;
Matrix3d rot_ps;
SpatialVector d;
// Constraints computed in the predecessor body frame.
// Compute the orientation of the two constraint frames.
rot_p = CalcBodyWorldOrientation (model, Q, CS.body_p[lci], false).transpose()
* CS.X_p[lci].E;
rot_s = CalcBodyWorldOrientation (model, Q, CS.body_s[lci], false).transpose()
* CS.X_s[lci].E;
// Compute the orientation from the predecessor to the successor frame.
rot_ps = rot_p.transpose() * rot_s;
// Compute the position of the two contact points.
pos_p = CalcBodyToBaseCoordinates (model, Q, CS.body_p[lci], CS.X_p[lci].r
, false);
pos_s = CalcBodyToBaseCoordinates (model, Q, CS.body_s[lci], CS.X_s[lci].r
, false);
// The first three elemenets represent the rotation error.
// This formulation is equivalent to u * sin(theta), where u and theta are
// the angle-axis of rotation from the predecessor to the successor frame.
// These quantities are expressed in the predecessor frame.
d[0] = -0.5 * (rot_ps(1,2) - rot_ps(2,1));
d[1] = -0.5 * (rot_ps(2,0) - rot_ps(0,2));
d[2] = -0.5 * (rot_ps(0,1) - rot_ps(1,0));
// The last three elements represent the position error.
// It is equivalent to the difference in the position of the two
// constraint points.
// The distance is projected on the predecessor frame to be consistent
// with the rotation.
d.block<3,1>(3,0) = rot_p.transpose() * (pos_s - pos_p);
// Project the error on the constraint axis to find the actual error.
err[lci] = CS.constraintAxis[lci].transpose() * d;
}
}
RBDL_DLLAPI
void CalcConstraintsJacobian (
Model &model,
const Math::VectorNd &Q,
ConstraintSet &CS,
Math::MatrixNd &G,
bool update_kinematics
) {
if (update_kinematics) {
UpdateKinematicsCustom (model, &Q, NULL, NULL);
}
// variables to check whether we need to recompute G.
ConstraintSet::ConstraintType prev_constraint_type
= ConstraintSet::ConstraintTypeLast;
unsigned int prev_body_id_1 = 0;
unsigned int prev_body_id_2 = 0;
SpatialTransform prev_body_X_1;
SpatialTransform prev_body_X_2;
for (unsigned int i = 0; i < CS.contactConstraintIndices.size(); i++) {
const unsigned int c = CS.contactConstraintIndices[i];
// only compute the matrix Gi if actually needed
if (prev_constraint_type != CS.constraintType[c]
|| prev_body_id_1 != CS.body[c]
|| prev_body_X_1.r != CS.point[c]) {
// Compute the jacobian for the point.
CS.Gi.setZero();
CalcPointJacobian (model, Q, CS.body[c], CS.point[c], CS.Gi, false);
prev_constraint_type = ConstraintSet::ContactConstraint;
// Update variables for optimization check.
prev_body_id_1 = CS.body[c];
prev_body_X_1 = Xtrans(CS.point[c]);
}
for(unsigned int j = 0; j < model.dof_count; j++) {
Vector3d gaxis (CS.Gi(0,j), CS.Gi(1,j), CS.Gi(2,j));
G(c,j) = gaxis.transpose() * CS.normal[c];
}
}
// Variables used for computations.
Vector3d normal;
SpatialVector axis;
Vector3d pos_p;
Matrix3d rot_p;
SpatialTransform X_0p;
for (unsigned int i = 0; i < CS.loopConstraintIndices.size(); i++) {
const unsigned int c = CS.loopConstraintIndices[i];
// Only recompute variables if necessary.
if( prev_body_id_1 != CS.body_p[c]
|| prev_body_id_2 != CS.body_s[c]
|| prev_body_X_1.r != CS.X_p[c].r
|| prev_body_X_2.r != CS.X_s[c].r
|| prev_body_X_1.E != CS.X_p[c].E
|| prev_body_X_2.E != CS.X_s[c].E) {
// Compute the 6D jacobians of the two contact points.
CS.GSpi.setZero();
CS.GSsi.setZero();
CalcPointJacobian6D(model, Q, CS.body_p[c], CS.X_p[c].r, CS.GSpi, false);
CalcPointJacobian6D(model, Q, CS.body_s[c], CS.X_s[c].r, CS.GSsi, false);
CS.GSJ = CS.GSsi - CS.GSpi;
// Compute position and rotation matrix from predecessor body to base.
pos_p = CalcBodyToBaseCoordinates (model, Q, CS.body_p[c], CS.X_p[c].r
, false);
rot_p = CalcBodyWorldOrientation (model, Q, CS.body_p[c]
, false).transpose()* CS.X_p[c].E;
X_0p = SpatialTransform (rot_p, pos_p);
// Update variables for optimization check.
prev_constraint_type = ConstraintSet::LoopConstraint;
prev_body_id_1 = CS.body_p[c];
prev_body_id_2 = CS.body_s[c];
prev_body_X_1 = CS.X_p[c];
prev_body_X_2 = CS.X_s[c];
}
// Express the constraint axis in the base frame.
axis = X_0p.apply(CS.constraintAxis[c]);
// Compute the constraint Jacobian row.
G.block(c, 0, 1, model.dof_count) = axis.transpose() * CS.GSJ;
}
}
RBDL_DLLAPI
void CalcConstraintsVelocityError (
Model& model,
const Math::VectorNd &Q,
const Math::VectorNd &QDot,
ConstraintSet &CS,
Math::VectorNd& err,
bool update_kinematics
) {
MatrixNd G(MatrixNd::Zero(CS.size(), model.dof_count));
CalcConstraintsJacobian (model, Q, CS, G, update_kinematics);
err = G * QDot;
}
RBDL_DLLAPI
void CalcConstrainedSystemVariables (
Model &model,
const Math::VectorNd &Q,
const Math::VectorNd &QDot,
const Math::VectorNd &Tau,
ConstraintSet &CS
) {
// Compute C
NonlinearEffects(model, Q, QDot, CS.C);
assert(CS.H.cols() == model.dof_count && CS.H.rows() == model.dof_count);
// Compute H
CS.H.setZero();
CompositeRigidBodyAlgorithm(model, Q, CS.H, false);
// Compute G
// We have to update model.X_base as they are not automatically computed
// by NonlinearEffects()
for (unsigned int i = 1; i < model.mBodies.size(); i++) {
model.X_base[i] = model.X_lambda[i] * model.X_base[model.lambda[i]];
}
CalcConstraintsJacobian (model, Q, CS, CS.G, false);
// Compute position error for Baumgarte Stabilization.
CalcConstraintsPositionError (model, Q, CS, CS.err, false);
// Compute velocity error for Baugarte stabilization.
CS.errd = CS.G * QDot;
// Compute gamma
unsigned int prev_body_id = 0;
Vector3d prev_body_point = Vector3d::Zero();
Vector3d gamma_i = Vector3d::Zero();
CS.QDDot_0.setZero();
UpdateKinematicsCustom(model, NULL, NULL, &CS.QDDot_0);
for (unsigned int i = 0; i < CS.contactConstraintIndices.size(); i++) {
const unsigned int c = CS.contactConstraintIndices[i];
// only compute point accelerations when necessary
if (prev_body_id != CS.body[c] || prev_body_point != CS.point[c]) {
gamma_i = CalcPointAcceleration (model, Q, QDot, CS.QDDot_0, CS.body[c]
, CS.point[c], false);
prev_body_id = CS.body[c];
prev_body_point = CS.point[c];
}
// we also substract ContactData[c].acceleration such that the contact
// point will have the desired acceleration
CS.gamma[c] = CS.acceleration[c] - CS.normal[c].dot(gamma_i);
}
for (unsigned int i = 0; i < CS.loopConstraintIndices.size(); i++) {
const unsigned int c = CS.loopConstraintIndices[i];
// Variables used for computations.
Vector3d pos_p;
Matrix3d rot_p;
SpatialVector vel_p;
SpatialVector vel_s;
SpatialVector axis;
unsigned int id_p;
unsigned int id_s;
// Force recomputation.
prev_body_id = 0;
// Express the constraint axis in the base frame.
pos_p = CalcBodyToBaseCoordinates (model, Q, CS.body_p[c], CS.X_p[c].r
, false);
rot_p = CalcBodyWorldOrientation (model, Q, CS.body_p[c], false).transpose()
* CS.X_p[c].E;
axis = SpatialTransform (rot_p, pos_p).apply(CS.constraintAxis[c]);
// Compute the spatial velocities of the two constrained bodies.
vel_p = CalcPointVelocity6D (model, Q, QDot, CS.body_p[c], CS.X_p[c].r
, false);
vel_s = CalcPointVelocity6D (model, Q, QDot, CS.body_s[c], CS.X_s[c].r
, false);
// Check if the bodies involved in the constraint are fixed. If yes, find
// their movable parent to access the right value in the a vector.
// This is needed because we access the model.a vector directly later.
id_p = GetMovableBodyId (model, CS.body_p[c]);
id_s = GetMovableBodyId (model, CS.body_s[c]);
// Problem here if one of the bodies is fixed...
// Compute the value of gamma.
CS.gamma[c]
// Right hand side term.
= - axis.transpose() * (model.a[id_s] - model.a[id_p]
+ crossm(vel_s, vel_p))
// Baumgarte stabilization term.
- 2. * CS.T_stab_inv[c] * CS.errd[c]
- CS.T_stab_inv[c] * CS.T_stab_inv[c] * CS.err[c];
}
}
RBDL_DLLAPI
bool CalcAssemblyQ (
Model &model,
Math::VectorNd QInit, // Note: passed by value intentionally
ConstraintSet &cs,
Math::VectorNd &Q,
const Math::VectorNd &weights,
double tolerance,
unsigned int max_iter
) {
if(Q.size() != model.q_size) {
std::cerr << "Incorrect Q vector size." << std::endl;
assert(false);
abort();
}
if(QInit.size() != model.q_size) {
std::cerr << "Incorrect QInit vector size." << std::endl;
assert(false);
abort();
}
if(weights.size() != model.dof_count) {
std::cerr << "Incorrect weights vector size." << std::endl;
assert(false);
abort();
}
// Initialize variables.
MatrixNd constraintJac (cs.size(), model.dof_count);
MatrixNd A = MatrixNd::Zero (cs.size() + model.dof_count, cs.size()
+ model.dof_count);
VectorNd b = VectorNd::Zero (cs.size() + model.dof_count);
VectorNd x = VectorNd::Zero (cs.size() + model.dof_count);
VectorNd d = VectorNd::Zero (model.dof_count);
VectorNd e = VectorNd::Zero (cs.size());
// The top-left block is the weight matrix and is constant.
for(unsigned int i = 0; i < weights.size(); ++i) {
A(i,i) = weights[i];
}
// Check if the error is small enough already. If so, just return the initial
// guess as the solution.
CalcConstraintsPositionError (model, QInit, cs, e);
if (e.norm() < tolerance) {
Q = QInit;
return true;
}
// We solve the linearized problem iteratively.
// Iterations are stopped if the maximum is reached.
for(unsigned int it = 0; it < max_iter; ++it) {
// Compute the constraint jacobian and build A and b.
constraintJac.setZero();
CalcConstraintsJacobian (model, QInit, cs, constraintJac);
A.block (model.dof_count, 0, cs.size(), model.dof_count) = constraintJac;
A.block (0, model.dof_count, model.dof_count, cs.size())
= constraintJac.transpose();
b.block (model.dof_count, 0, cs.size(), 1) = -e;
// Solve the sistem A*x = b.
SolveLinearSystem (A, b, x, cs.linear_solver);
// Extract the d = (Q - QInit) vector from x.
d = x.block (0, 0, model.dof_count, 1);
// Update solution.
for (size_t i = 0; i < model.mJoints.size(); ++i) {
// If the joint is spherical, translate the corresponding components
// of d into a modification in the joint quaternion.
if (model.mJoints[i].mJointType == JointTypeSpherical) {
Quaternion quat = model.GetQuaternion(i, QInit);
Vector3d omega = d.block<3,1>(model.mJoints[i].q_index,0);
// Convert the 3d representation of the displacement to 4d and sum it
// to the components of the quaternion.
quat += quat.omegaToQDot(omega);
// The quaternion needs to be normalized after the previous sum.
quat /= quat.norm();
model.SetQuaternion(i, quat, QInit);
}
// If the current joint is not spherical, simply add the corresponding
// components of d to QInit.
else {
unsigned int qIdx = model.mJoints[i].q_index;
for(size_t j = 0; j < model.mJoints[i].mDoFCount; ++j) {
QInit[qIdx + j] += d[qIdx + j];
}
// QInit.block(qIdx, 0, model.mJoints[i].mDoFCount, 1)
// += d.block(model.mJoints[i].q_index, 0, model.mJoints[i].mDoFCount, 1);
}
}
// Update the errors.
CalcConstraintsPositionError (model, QInit, cs, e);
// Check if the error and the step are small enough to end.
if (e.norm() < tolerance && d.norm() < tolerance){
Q = QInit;
return true;
}
}
// Return false if maximum number of iterations is exceeded.
Q = QInit;
return false;
}
RBDL_DLLAPI
void CalcAssemblyQDot (
Model &model,
const Math::VectorNd &Q,
const Math::VectorNd &QDotInit,
ConstraintSet &cs,
Math::VectorNd &QDot,
const Math::VectorNd &weights
) {
if(QDot.size() != model.dof_count) {
std::cerr << "Incorrect QDot vector size." << std::endl;
assert(false);
abort();
}
if(Q.size() != model.q_size) {
std::cerr << "Incorrect Q vector size." << std::endl;
assert(false);
abort();
}
if(QDotInit.size() != QDot.size()) {
std::cerr << "Incorrect QDotInit vector size." << std::endl;
assert(false);
abort();
}
if(weights.size() != QDot.size()) {
std::cerr << "Incorrect weight vector size." << std::endl;
assert(false);
abort();
}
// Initialize variables.
MatrixNd constraintJac = MatrixNd::Zero(cs.size(), model.dof_count);
MatrixNd A = MatrixNd::Zero(cs.size() + model.dof_count, cs.size()
+ model.dof_count);
VectorNd b = VectorNd::Zero(cs.size() + model.dof_count);
VectorNd x = VectorNd::Zero(cs.size() + model.dof_count);
// The top-left block is the weight matrix and is constant.
for(unsigned int i = 0; i < weights.size(); ++i) {
A(i,i) = weights[i];
b[i] = weights[i] * QDotInit[i];
}
CalcConstraintsJacobian (model, Q, cs, constraintJac);
A.block (model.dof_count, 0, cs.size(), model.dof_count) = constraintJac;
A.block (0, model.dof_count, model.dof_count, cs.size())
= constraintJac.transpose();
// Solve the sistem A*x = b.
SolveLinearSystem (A, b, x, cs.linear_solver);
// Copy the result to the output variable.
QDot = x.block (0, 0, model.dof_count, 1);
}
RBDL_DLLAPI
void ForwardDynamicsConstraintsDirect (
Model &model,
const VectorNd &Q,
const VectorNd &QDot,
const VectorNd &Tau,
ConstraintSet &CS,
VectorNd &QDDot
) {
LOG << "-------- " << __func__ << " --------" << std::endl;
CalcConstrainedSystemVariables (model, Q, QDot, Tau, CS);
SolveConstrainedSystemDirect (CS.H, CS.G, Tau - CS.C, CS.gamma, QDDot
, CS.force, CS.A, CS.b, CS.x, CS.linear_solver);
// Copy back QDDot
for (unsigned int i = 0; i < model.dof_count; i++)
QDDot[i] = CS.x[i];
// Copy back contact forces
for (unsigned int i = 0; i < CS.size(); i++) {
CS.force[i] = -CS.x[model.dof_count + i];
}
}
RBDL_DLLAPI
void ForwardDynamicsConstraintsRangeSpaceSparse (
Model &model,
const Math::VectorNd &Q,
const Math::VectorNd &QDot,
const Math::VectorNd &Tau,
ConstraintSet &CS,
Math::VectorNd &QDDot
) {
CalcConstrainedSystemVariables (model, Q, QDot, Tau, CS);
SolveConstrainedSystemRangeSpaceSparse (model, CS.H, CS.G, Tau - CS.C
, CS.gamma, QDDot, CS.force, CS.K, CS.a, CS.linear_solver);
}
RBDL_DLLAPI
void ForwardDynamicsConstraintsNullSpace (
Model &model,
const VectorNd &Q,
const VectorNd &QDot,
const VectorNd &Tau,
ConstraintSet &CS,
VectorNd &QDDot
) {
LOG << "-------- " << __func__ << " --------" << std::endl;
CalcConstrainedSystemVariables (model, Q, QDot, Tau, CS);
CS.GT_qr.compute (CS.G.transpose());
#ifdef RBDL_USE_SIMPLE_MATH
CS.GT_qr_Q = CS.GT_qr.householderQ();
#else
CS.GT_qr.householderQ().evalTo (CS.GT_qr_Q);
#endif
CS.Y = CS.GT_qr_Q.block (0,0,QDot.rows(), CS.G.rows());
CS.Z = CS.GT_qr_Q.block (0,CS.G.rows(),QDot.rows(), QDot.rows() - CS.G.rows());
SolveConstrainedSystemNullSpace (CS.H, CS.G, Tau - CS.C, CS.gamma, QDDot
, CS.force, CS.Y, CS.Z, CS.qddot_y, CS.qddot_z, CS.linear_solver);
}
RBDL_DLLAPI
void ComputeConstraintImpulsesDirect (
Model &model,
const Math::VectorNd &Q,
const Math::VectorNd &QDotMinus,
ConstraintSet &CS,
Math::VectorNd &QDotPlus
) {
// Compute H
UpdateKinematicsCustom (model, &Q, NULL, NULL);
CompositeRigidBodyAlgorithm (model, Q, CS.H, false);
// Compute G
CalcConstraintsJacobian (model, Q, CS, CS.G, false);
SolveConstrainedSystemDirect (CS.H, CS.G, CS.H * QDotMinus, CS.v_plus
, QDotPlus, CS.impulse, CS.A, CS.b, CS.x, CS.linear_solver);
// Copy back QDotPlus
for (unsigned int i = 0; i < model.dof_count; i++)
QDotPlus[i] = CS.x[i];
// Copy back constraint impulses
for (unsigned int i = 0; i < CS.size(); i++) {
CS.impulse[i] = CS.x[model.dof_count + i];
}
}
RBDL_DLLAPI
void ComputeConstraintImpulsesRangeSpaceSparse (
Model &model,
const Math::VectorNd &Q,
const Math::VectorNd &QDotMinus,
ConstraintSet &CS,
Math::VectorNd &QDotPlus
) {
// Compute H
UpdateKinematicsCustom (model, &Q, NULL, NULL);
CompositeRigidBodyAlgorithm (model, Q, CS.H, false);
// Compute G
CalcConstraintsJacobian (model, Q, CS, CS.G, false);
SolveConstrainedSystemRangeSpaceSparse (model, CS.H, CS.G, CS.H * QDotMinus
, CS.v_plus, QDotPlus, CS.impulse, CS.K, CS.a, CS.linear_solver);
}
RBDL_DLLAPI
void ComputeConstraintImpulsesNullSpace (
Model &model,
const Math::VectorNd &Q,
const Math::VectorNd &QDotMinus,
ConstraintSet &CS,
Math::VectorNd &QDotPlus
) {
// Compute H
UpdateKinematicsCustom (model, &Q, NULL, NULL);
CompositeRigidBodyAlgorithm (model, Q, CS.H, false);
// Compute G
CalcConstraintsJacobian (model, Q, CS, CS.G, false);
CS.GT_qr.compute(CS.G.transpose());
CS.GT_qr_Q = CS.GT_qr.householderQ();
CS.Y = CS.GT_qr_Q.block (0,0,QDotMinus.rows(), CS.G.rows());
CS.Z = CS.GT_qr_Q.block (0,CS.G.rows(),QDotMinus.rows(), QDotMinus.rows()
- CS.G.rows());
SolveConstrainedSystemNullSpace (CS.H, CS.G, CS.H * QDotMinus, CS.v_plus
, QDotPlus, CS.impulse, CS.Y, CS.Z, CS.qddot_y, CS.qddot_z
, CS.linear_solver);
}
/** \brief Compute only the effects of external forces on the generalized accelerations
*
* This function is a reduced version of ForwardDynamics() which only
* computes the effects of the external forces on the generalized
* accelerations.
*
*/
RBDL_DLLAPI
void ForwardDynamicsApplyConstraintForces (
Model &model,
const VectorNd &Tau,
ConstraintSet &CS,
VectorNd &QDDot
) {
LOG << "-------- " << __func__ << " --------" << std::endl;
assert (QDDot.size() == model.dof_count);
unsigned int i = 0;
for (i = 1; i < model.mBodies.size(); i++) {
model.IA[i] = model.I[i].toMatrix();;
model.pA[i] = crossf(model.v[i],model.I[i] * model.v[i]);
if (CS.f_ext_constraints[i] != SpatialVector::Zero()) {
LOG << "External force (" << i << ") = " << model.X_base[i].toMatrixAdjoint() * CS.f_ext_constraints[i] << std::endl;
model.pA[i] -= model.X_base[i].toMatrixAdjoint() * CS.f_ext_constraints[i];
}
}
// ClearLogOutput();
LOG << "--- first loop ---" << std::endl;
for (i = model.mBodies.size() - 1; i > 0; i--) {
unsigned int q_index = model.mJoints[i].q_index;
if (model.mJoints[i].mDoFCount == 3
&& model.mJoints[i].mJointType != JointTypeCustom) {
unsigned int lambda = model.lambda[i];
model.multdof3_u[i] = Vector3d (Tau[q_index],
Tau[q_index + 1],
Tau[q_index + 2])
- model.multdof3_S[i].transpose() * model.pA[i];
if (lambda != 0) {
SpatialMatrix Ia = model.IA[i] - (model.multdof3_U[i]
* model.multdof3_Dinv[i]
* model.multdof3_U[i].transpose());
SpatialVector pa = model.pA[i] + Ia * model.c[i]
+ model.multdof3_U[i] * model.multdof3_Dinv[i] * model.multdof3_u[i];
#ifdef EIGEN_CORE_H
model.IA[lambda].noalias() += (model.X_lambda[i].toMatrixTranspose()
* Ia * model.X_lambda[i].toMatrix());
model.pA[lambda].noalias() += model.X_lambda[i].applyTranspose(pa);
#else
model.IA[lambda] += (model.X_lambda[i].toMatrixTranspose()
* Ia * model.X_lambda[i].toMatrix());
model.pA[lambda] += model.X_lambda[i].applyTranspose(pa);
#endif
LOG << "pA[" << lambda << "] = " << model.pA[lambda].transpose()
<< std::endl;
}
} else if (model.mJoints[i].mDoFCount == 1
&& model.mJoints[i].mJointType != JointTypeCustom) {
model.u[i] = Tau[q_index] - model.S[i].dot(model.pA[i]);
unsigned int lambda = model.lambda[i];
if (lambda != 0) {
SpatialMatrix Ia = model.IA[i]
- model.U[i] * (model.U[i] / model.d[i]).transpose();
SpatialVector pa = model.pA[i] + Ia * model.c[i]
+ model.U[i] * model.u[i] / model.d[i];
#ifdef EIGEN_CORE_H
model.IA[lambda].noalias() += (model.X_lambda[i].toMatrixTranspose()
* Ia * model.X_lambda[i].toMatrix());
model.pA[lambda].noalias() += model.X_lambda[i].applyTranspose(pa);
#else
model.IA[lambda] += (model.X_lambda[i].toMatrixTranspose()
* Ia * model.X_lambda[i].toMatrix());
model.pA[lambda] += model.X_lambda[i].applyTranspose(pa);
#endif
LOG << "pA[" << lambda << "] = "
<< model.pA[lambda].transpose() << std::endl;
}
} else if(model.mJoints[i].mJointType == JointTypeCustom) {
unsigned int kI = model.mJoints[i].custom_joint_index;
unsigned int dofI = model.mCustomJoints[kI]->mDoFCount;
unsigned int lambda = model.lambda[i];
VectorNd tau_temp = VectorNd::Zero(dofI);
for(int z=0; z<dofI;++z){
tau_temp[z] = Tau[q_index+z];
}
model.mCustomJoints[kI]->u = tau_temp
- (model.mCustomJoints[kI]->S.transpose()
* model.pA[i]);
if (lambda != 0) {
SpatialMatrix Ia = model.IA[i]
- ( model.mCustomJoints[kI]->U
* model.mCustomJoints[kI]->Dinv
* model.mCustomJoints[kI]->U.transpose());
SpatialVector pa = model.pA[i] + Ia * model.c[i]
+ ( model.mCustomJoints[kI]->U
* model.mCustomJoints[kI]->Dinv
* model.mCustomJoints[kI]->u);
#ifdef EIGEN_CORE_H
model.IA[lambda].noalias() += model.X_lambda[i].toMatrixTranspose()
* Ia * model.X_lambda[i].toMatrix();
model.pA[lambda].noalias() += model.X_lambda[i].applyTranspose(pa);
#else
model.IA[lambda] += model.X_lambda[i].toMatrixTranspose()
* Ia * model.X_lambda[i].toMatrix();
model.pA[lambda] += model.X_lambda[i].applyTranspose(pa);
#endif
LOG << "pA[" << lambda << "] = " << model.pA[lambda].transpose()
<< std::endl;
}
}
}
model.a[0] = SpatialVector (0., 0., 0., -model.gravity[0], -model.gravity[1], -model.gravity[2]);
for (i = 1; i < model.mBodies.size(); i++) {
unsigned int q_index = model.mJoints[i].q_index;
unsigned int lambda = model.lambda[i];
SpatialTransform X_lambda = model.X_lambda[i];
model.a[i] = X_lambda.apply(model.a[lambda]) + model.c[i];
LOG << "a'[" << i << "] = " << model.a[i].transpose() << std::endl;
if (model.mJoints[i].mDoFCount == 3
&& model.mJoints[i].mJointType != JointTypeCustom) {
Vector3d qdd_temp = model.multdof3_Dinv[i] *
(model.multdof3_u[i]
- model.multdof3_U[i].transpose() * model.a[i]);
QDDot[q_index] = qdd_temp[0];
QDDot[q_index + 1] = qdd_temp[1];
QDDot[q_index + 2] = qdd_temp[2];
model.a[i] = model.a[i] + model.multdof3_S[i] * qdd_temp;
} else if (model.mJoints[i].mDoFCount == 1
&& model.mJoints[i].mJointType != JointTypeCustom) {
QDDot[q_index] = (1./model.d[i]) * (model.u[i] - model.U[i].dot(model.a[i]));
model.a[i] = model.a[i] + model.S[i] * QDDot[q_index];
} else if (model.mJoints[i].mJointType == JointTypeCustom){
unsigned int kI = model.mJoints[i].custom_joint_index;
unsigned int dofI = model.mCustomJoints[kI]->mDoFCount;
VectorNd qdd_temp = VectorNd::Zero(dofI);
qdd_temp = model.mCustomJoints[kI]->Dinv
* (model.mCustomJoints[kI]->u
- model.mCustomJoints[kI]->U.transpose()
* model.a[i]);
for(int z=0; z<dofI;++z){
QDDot[q_index+z] = qdd_temp[z];
}
model.a[i] = model.a[i] + (model.mCustomJoints[kI]->S * qdd_temp);
}
}
LOG << "QDDot = " << QDDot.transpose() << std::endl;
}
/** \brief Computes the effect of external forces on the generalized accelerations.
*
* This function is essentially similar to ForwardDynamics() except that it
* tries to only perform computations of variables that change due to
* external forces defined in f_t.
*/
RBDL_DLLAPI
void ForwardDynamicsAccelerationDeltas (
Model &model,
ConstraintSet &CS,
VectorNd &QDDot_t,
const unsigned int body_id,
const std::vector<SpatialVector> &f_t
) {
LOG << "-------- " << __func__ << " ------" << std::endl;
assert (CS.d_pA.size() == model.mBodies.size());
assert (CS.d_a.size() == model.mBodies.size());
assert (CS.d_u.size() == model.mBodies.size());
// TODO reset all values (debug)
for (unsigned int i = 0; i < model.mBodies.size(); i++) {
CS.d_pA[i].setZero();
CS.d_a[i].setZero();
CS.d_u[i] = 0.;
CS.d_multdof3_u[i].setZero();
}
for(unsigned int i=0; i<model.mCustomJoints.size();i++){
model.mCustomJoints[i]->d_u.setZero();
}
for (unsigned int i = body_id; i > 0; i--) {
if (i == body_id) {
CS.d_pA[i] = -model.X_base[i].applyAdjoint(f_t[i]);
}
if (model.mJoints[i].mDoFCount == 3
&& model.mJoints[i].mJointType != JointTypeCustom) {
CS.d_multdof3_u[i] = - model.multdof3_S[i].transpose() * (CS.d_pA[i]);
unsigned int lambda = model.lambda[i];
if (lambda != 0) {
CS.d_pA[lambda] = CS.d_pA[lambda]
+ model.X_lambda[i].applyTranspose (
CS.d_pA[i] + (model.multdof3_U[i]
* model.multdof3_Dinv[i]
* CS.d_multdof3_u[i]));
}
} else if(model.mJoints[i].mDoFCount == 1
&& model.mJoints[i].mJointType != JointTypeCustom) {
CS.d_u[i] = - model.S[i].dot(CS.d_pA[i]);
unsigned int lambda = model.lambda[i];
if (lambda != 0) {
CS.d_pA[lambda] = CS.d_pA[lambda]
+ model.X_lambda[i].applyTranspose (
CS.d_pA[i] + model.U[i] * CS.d_u[i] / model.d[i]);
}
} else if (model.mJoints[i].mJointType == JointTypeCustom){
unsigned int kI = model.mJoints[i].custom_joint_index;
unsigned int dofI = model.mCustomJoints[kI]->mDoFCount;
//CS.
model.mCustomJoints[kI]->d_u =
- model.mCustomJoints[kI]->S.transpose() * (CS.d_pA[i]);
unsigned int lambda = model.lambda[i];
if (lambda != 0) {
CS.d_pA[lambda] =
CS.d_pA[lambda]
+ model.X_lambda[i].applyTranspose (
CS.d_pA[i] + ( model.mCustomJoints[kI]->U
* model.mCustomJoints[kI]->Dinv
* model.mCustomJoints[kI]->d_u)
);
}
}
}
for (unsigned int i = 0; i < f_t.size(); i++) {
LOG << "f_t[" << i << "] = " << f_t[i].transpose() << std::endl;
}
for (unsigned int i = 0; i < model.mBodies.size(); i++) {
LOG << "i = " << i << ": d_pA[i] " << CS.d_pA[i].transpose() << std::endl;
}
for (unsigned int i = 0; i < model.mBodies.size(); i++) {
LOG << "i = " << i << ": d_u[i] = " << CS.d_u[i] << std::endl;
}
QDDot_t[0] = 0.;
CS.d_a[0] = model.a[0];
for (unsigned int i = 1; i < model.mBodies.size(); i++) {
unsigned int q_index = model.mJoints[i].q_index;
unsigned int lambda = model.lambda[i];
SpatialVector Xa = model.X_lambda[i].apply(CS.d_a[lambda]);
if (model.mJoints[i].mDoFCount == 3
&& model.mJoints[i].mJointType != JointTypeCustom) {
Vector3d qdd_temp = model.multdof3_Dinv[i]
* (CS.d_multdof3_u[i] - model.multdof3_U[i].transpose() * Xa);
QDDot_t[q_index] = qdd_temp[0];
QDDot_t[q_index + 1] = qdd_temp[1];
QDDot_t[q_index + 2] = qdd_temp[2];
model.a[i] = model.a[i] + model.multdof3_S[i] * qdd_temp;
CS.d_a[i] = Xa + model.multdof3_S[i] * qdd_temp;
} else if (model.mJoints[i].mDoFCount == 1
&& model.mJoints[i].mJointType != JointTypeCustom){
QDDot_t[q_index] = (CS.d_u[i] - model.U[i].dot(Xa) ) / model.d[i];
CS.d_a[i] = Xa + model.S[i] * QDDot_t[q_index];
} else if (model.mJoints[i].mJointType == JointTypeCustom){
unsigned int kI = model.mJoints[i].custom_joint_index;
unsigned int dofI = model.mCustomJoints[kI]->mDoFCount;
VectorNd qdd_temp = VectorNd::Zero(dofI);
qdd_temp = model.mCustomJoints[kI]->Dinv
* (model.mCustomJoints[kI]->d_u
- model.mCustomJoints[kI]->U.transpose() * Xa);
for(int z=0; z<dofI;++z){
QDDot_t[q_index+z] = qdd_temp[z];
}
model.a[i] = model.a[i] + model.mCustomJoints[kI]->S * qdd_temp;
CS.d_a[i] = Xa + model.mCustomJoints[kI]->S * qdd_temp;
}
LOG << "QDDot_t[" << i - 1 << "] = " << QDDot_t[i - 1] << std::endl;
LOG << "d_a[i] = " << CS.d_a[i].transpose() << std::endl;
}
}
inline void set_zero (std::vector<SpatialVector> &spatial_values) {
for (unsigned int i = 0; i < spatial_values.size(); i++)
spatial_values[i].setZero();
}
RBDL_DLLAPI
void ForwardDynamicsContactsKokkevis (
Model &model,
const VectorNd &Q,
const VectorNd &QDot,
const VectorNd &Tau,
ConstraintSet &CS,
VectorNd &QDDot
) {
LOG << "-------- " << __func__ << " ------" << std::endl;
assert (CS.f_ext_constraints.size() == model.mBodies.size());
assert (CS.QDDot_0.size() == model.dof_count);
assert (CS.QDDot_t.size() == model.dof_count);
assert (CS.f_t.size() == CS.size());
assert (CS.point_accel_0.size() == CS.size());
assert (CS.K.rows() == CS.size());
assert (CS.K.cols() == CS.size());
assert (CS.force.size() == CS.size());
assert (CS.a.size() == CS.size());
Vector3d point_accel_t;
unsigned int ci = 0;
// The default acceleration only needs to be computed once
{
SUPPRESS_LOGGING;
ForwardDynamics(model, Q, QDot, Tau, CS.QDDot_0);
}
LOG << "=== Initial Loop Start ===" << std::endl;
// we have to compute the standard accelerations first as we use them to
// compute the effects of each test force
for(ci = 0; ci < CS.size(); ci++) {
{
SUPPRESS_LOGGING;
UpdateKinematicsCustom(model, NULL, NULL, &CS.QDDot_0);
}
if(CS.constraintType[ci] == ConstraintSet::ContactConstraint)
{
LOG << "body_id = " << CS.body[ci] << std::endl;
LOG << "point = " << CS.point[ci] << std::endl;
LOG << "normal = " << CS.normal[ci] << std::endl;
LOG << "QDDot_0 = " << CS.QDDot_0.transpose() << std::endl;
{
SUPPRESS_LOGGING;
CS.point_accel_0[ci] = CalcPointAcceleration (model, Q, QDot
, CS.QDDot_0, CS.body[ci], CS.point[ci], false);
CS.a[ci] = - CS.acceleration[ci]
+ CS.normal[ci].dot(CS.point_accel_0[ci]);
}
LOG << "point_accel_0 = " << CS.point_accel_0[ci].transpose();
}
else
{
std::cerr << "Forward Dynamic Contact Kokkevis: unsupported constraint \
type." << std::endl;
assert(false);
abort();
}
}
// Now we can compute and apply the test forces and use their net effect
// to compute the inverse articlated inertia to fill K.
for (ci = 0; ci < CS.size(); ci++) {
LOG << "=== Testforce Loop Start ===" << std::endl;
unsigned int movable_body_id = 0;
Vector3d point_global;
switch (CS.constraintType[ci]) {
case ConstraintSet::ContactConstraint:
movable_body_id = GetMovableBodyId(model, CS.body[ci]);
// assemble the test force
LOG << "normal = " << CS.normal[ci].transpose() << std::endl;
point_global = CalcBodyToBaseCoordinates(model, Q, CS.body[ci]
, CS.point[ci], false);
LOG << "point_global = " << point_global.transpose() << std::endl;
CS.f_t[ci] = SpatialTransform(Matrix3d::Identity(), -point_global)
.applyAdjoint(SpatialVector (0., 0., 0.
, -CS.normal[ci][0], -CS.normal[ci][1], -CS.normal[ci][2]));
CS.f_ext_constraints[movable_body_id] = CS.f_t[ci];
LOG << "f_t[" << movable_body_id << "] = " << CS.f_t[ci].transpose()
<< std::endl;
{
ForwardDynamicsAccelerationDeltas(model, CS, CS.QDDot_t
, movable_body_id, CS.f_ext_constraints);
LOG << "QDDot_0 = " << CS.QDDot_0.transpose() << std::endl;
LOG << "QDDot_t = " << (CS.QDDot_t + CS.QDDot_0).transpose()
<< std::endl;
LOG << "QDDot_t - QDDot_0 = " << (CS.QDDot_t).transpose() << std::endl;
}
CS.f_ext_constraints[movable_body_id].setZero();
CS.QDDot_t += CS.QDDot_0;
// compute the resulting acceleration
{
SUPPRESS_LOGGING;
UpdateKinematicsCustom(model, NULL, NULL, &CS.QDDot_t);
}
for(unsigned int cj = 0; cj < CS.size(); cj++) {
{
SUPPRESS_LOGGING;
point_accel_t = CalcPointAcceleration(model, Q, QDot, CS.QDDot_t
, CS.body[cj], CS.point[cj], false);
}
LOG << "point_accel_0 = " << CS.point_accel_0[ci].transpose()
<< std::endl;
LOG << "point_accel_t = " << point_accel_t.transpose() << std::endl;
CS.K(ci,cj) = CS.normal[cj].dot(point_accel_t - CS.point_accel_0[cj]);
}
break;
default:
std::cerr << "Forward Dynamic Contact Kokkevis: unsupported constraint \
type." << std::endl;
assert(false);
abort();
break;
}
}
LOG << "K = " << std::endl << CS.K << std::endl;
LOG << "a = " << std::endl << CS.a << std::endl;
#ifndef RBDL_USE_SIMPLE_MATH
switch (CS.linear_solver) {
case (LinearSolverPartialPivLU) :
CS.force = CS.K.partialPivLu().solve(CS.a);
break;
case (LinearSolverColPivHouseholderQR) :
CS.force = CS.K.colPivHouseholderQr().solve(CS.a);
break;
case (LinearSolverHouseholderQR) :
CS.force = CS.K.householderQr().solve(CS.a);
break;
default:
LOG << "Error: Invalid linear solver: " << CS.linear_solver << std::endl;
assert (0);
break;
}
#else
bool solve_successful = LinSolveGaussElimPivot (CS.K, CS.a, CS.force);
assert (solve_successful);
#endif
LOG << "f = " << CS.force.transpose() << std::endl;
for (ci = 0; ci < CS.size(); ci++) {
unsigned int body_id = CS.body[ci];
unsigned int movable_body_id = body_id;
if (model.IsFixedBodyId(body_id)) {
unsigned int fbody_id = body_id - model.fixed_body_discriminator;
movable_body_id = model.mFixedBodies[fbody_id].mMovableParent;
}
CS.f_ext_constraints[movable_body_id] -= CS.f_t[ci] * CS.force[ci];
LOG << "f_ext[" << movable_body_id << "] = " << CS.f_ext_constraints[movable_body_id].transpose() << std::endl;
}
{
SUPPRESS_LOGGING;
ForwardDynamicsApplyConstraintForces (model, Tau, CS, QDDot);
}
LOG << "QDDot after applying f_ext: " << QDDot.transpose() << std::endl;
}
void SolveLinearSystem (
const MatrixNd& A,
const VectorNd& b,
VectorNd& x,
LinearSolver ls
) {
if(A.rows() != b.size() || A.cols() != x.size()) {
std::cerr << "Mismatching sizes." << std::endl;
assert(false);
abort();
}
// Solve the sistem A*x = b.
switch (ls) {
case (LinearSolverPartialPivLU) :
#ifdef RBDL_USE_SIMPLE_MATH
// SimpleMath does not have a LU solver so just use its QR solver
x = A.householderQr().solve(b);
#else
x = A.partialPivLu().solve(b);
#endif
break;
case (LinearSolverColPivHouseholderQR) :
x = A.colPivHouseholderQr().solve(b);
break;
case (LinearSolverHouseholderQR) :
x = A.householderQr().solve(b);
break;
default:
std::cerr << "Error: Invalid linear solver: " << ls << std::endl;
assert(false);
abort();
break;
}
}
unsigned int GetMovableBodyId (Model& model, unsigned int id) {
if(model.IsFixedBodyId(id)) {
unsigned int fbody_id = id - model.fixed_body_discriminator;
return model.mFixedBodies[fbody_id].mMovableParent;
}
else {
return id;
}
}
} /* namespace RigidBodyDynamics */