protot/3rdparty/fcl/test/test_fcl_collision.cpp

1098 lines
44 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2011-2014, Willow Garage, Inc.
* Copyright (c) 2014-2016, Open Source Robotics Foundation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Open Source Robotics Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** @author Jia Pan */
#include <gtest/gtest.h>
#include "fcl/math/bv/utility.h"
#include "fcl/narrowphase/collision.h"
#include "fcl/narrowphase/detail/gjk_solver_indep.h"
#include "fcl/narrowphase/detail/gjk_solver_libccd.h"
#include "fcl/narrowphase/detail/traversal/collision_node.h"
#include "test_fcl_utility.h"
#include "fcl_resources/config.h"
using namespace fcl;
template<typename BV>
bool collide_Test(const Transform3<typename BV::S>& tf,
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method, bool verbose = true);
template<typename BV>
bool collide_Test2(const Transform3<typename BV::S>& tf,
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method, bool verbose = true);
template<typename BV, typename TraversalNode>
bool collide_Test_Oriented(const Transform3<typename BV::S>& tf,
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method, bool verbose = true);
template<typename BV>
bool test_collide_func(const Transform3<typename BV::S>& tf,
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method);
int num_max_contacts = std::numeric_limits<int>::max();
bool enable_contact = true;
template<typename S>
std::vector<Contact<S>>& global_pairs()
{
static std::vector<Contact<S>> static_global_pairs;
return static_global_pairs;
}
template<typename S>
std::vector<Contact<S>>& global_pairs_now()
{
static std::vector<Contact<S>> static_global_pairs_now;
return static_global_pairs_now;
}
template <typename S>
void test_OBB_Box_test()
{
S r_extents[] = {-1000, -1000, -1000, 1000, 1000, 1000};
aligned_vector<Transform3<S>> rotate_transform;
test::generateRandomTransforms(r_extents, rotate_transform, 1);
AABB<S> aabb1;
aabb1.min_ = Vector3<S>(-600, -600, -600);
aabb1.max_ = Vector3<S>(600, 600, 600);
OBB<S> obb1;
convertBV(aabb1, rotate_transform[0], obb1);
Box<S> box1;
Transform3<S> box1_tf;
constructBox(aabb1, rotate_transform[0], box1, box1_tf);
S extents[] = {-1000, -1000, -1000, 1000, 1000, 1000};
std::size_t n = 1000;
aligned_vector<Transform3<S>> transforms;
test::generateRandomTransforms(extents, transforms, n);
for(std::size_t i = 0; i < transforms.size(); ++i)
{
AABB<S> aabb;
aabb.min_ = aabb1.min_ * 0.5;
aabb.max_ = aabb1.max_ * 0.5;
OBB<S> obb2;
convertBV(aabb, transforms[i], obb2);
Box<S> box2;
Transform3<S> box2_tf;
constructBox(aabb, transforms[i], box2, box2_tf);
detail::GJKSolver_libccd<S> solver;
bool overlap_obb = obb1.overlap(obb2);
bool overlap_box = solver.shapeIntersect(box1, box1_tf, box2, box2_tf, nullptr);
EXPECT_TRUE(overlap_obb == overlap_box);
}
}
template <typename S>
void test_OBB_shape_test()
{
S r_extents[] = {-1000, -1000, -1000, 1000, 1000, 1000};
aligned_vector<Transform3<S>> rotate_transform;
test::generateRandomTransforms(r_extents, rotate_transform, 1);
AABB<S> aabb1;
aabb1.min_ = Vector3<S>(-600, -600, -600);
aabb1.max_ = Vector3<S>(600, 600, 600);
OBB<S> obb1;
convertBV(aabb1, rotate_transform[0], obb1);
Box<S> box1;
Transform3<S> box1_tf;
constructBox(aabb1, rotate_transform[0], box1, box1_tf);
S extents[] = {-1000, -1000, -1000, 1000, 1000, 1000};
std::size_t n = 1000;
aligned_vector<Transform3<S>> transforms;
test::generateRandomTransforms(extents, transforms, n);
for(std::size_t i = 0; i < transforms.size(); ++i)
{
S len = (aabb1.max_[0] - aabb1.min_[0]) * 0.5;
OBB<S> obb2;
detail::GJKSolver_libccd<S> solver;
{
Sphere<S> sphere(len);
computeBV(sphere, transforms[i], obb2);
bool overlap_obb = obb1.overlap(obb2);
bool overlap_sphere = solver.shapeIntersect(box1, box1_tf, sphere, transforms[i], nullptr);
EXPECT_TRUE(overlap_obb >= overlap_sphere);
}
{
Ellipsoid<S> ellipsoid(len, len, len);
computeBV(ellipsoid, transforms[i], obb2);
bool overlap_obb = obb1.overlap(obb2);
bool overlap_ellipsoid = solver.shapeIntersect(box1, box1_tf, ellipsoid, transforms[i], nullptr);
EXPECT_TRUE(overlap_obb >= overlap_ellipsoid);
}
{
Capsule<S> capsule(len, 2 * len);
computeBV(capsule, transforms[i], obb2);
bool overlap_obb = obb1.overlap(obb2);
bool overlap_capsule = solver.shapeIntersect(box1, box1_tf, capsule, transforms[i], nullptr);
EXPECT_TRUE(overlap_obb >= overlap_capsule);
}
{
Cone<S> cone(len, 2 * len);
computeBV(cone, transforms[i], obb2);
bool overlap_obb = obb1.overlap(obb2);
bool overlap_cone = solver.shapeIntersect(box1, box1_tf, cone, transforms[i], nullptr);
EXPECT_TRUE(overlap_obb >= overlap_cone);
}
{
Cylinder<S> cylinder(len, 2 * len);
computeBV(cylinder, transforms[i], obb2);
bool overlap_obb = obb1.overlap(obb2);
bool overlap_cylinder = solver.shapeIntersect(box1, box1_tf, cylinder, transforms[i], nullptr);
EXPECT_TRUE(overlap_obb >= overlap_cylinder);
}
}
}
template <typename S>
void test_OBB_AABB_test()
{
S extents[] = {-1000, -1000, -1000, 1000, 1000, 1000};
std::size_t n = 1000;
aligned_vector<Transform3<S>> transforms;
test::generateRandomTransforms(extents, transforms, n);
AABB<S> aabb1;
aabb1.min_ = Vector3<S>(-600, -600, -600);
aabb1.max_ = Vector3<S>(600, 600, 600);
OBB<S> obb1;
convertBV(aabb1, Transform3<S>::Identity(), obb1);
for(std::size_t i = 0; i < transforms.size(); ++i)
{
AABB<S> aabb;
aabb.min_ = aabb1.min_ * 0.5;
aabb.max_ = aabb1.max_ * 0.5;
AABB<S> aabb2 = translate(aabb, transforms[i].translation());
OBB<S> obb2;
convertBV(aabb, Transform3<S>(Translation3<S>(transforms[i].translation())), obb2);
bool overlap_aabb = aabb1.overlap(aabb2);
bool overlap_obb = obb1.overlap(obb2);
if(overlap_aabb != overlap_obb)
{
std::cout << aabb1.min_.transpose() << " " << aabb1.max_.transpose() << std::endl;
std::cout << aabb2.min_.transpose() << " " << aabb2.max_.transpose() << std::endl;
std::cout << obb1.To.transpose() << " " << obb1.extent.transpose() << " " << obb1.axis.col(0).transpose() << " " << obb1.axis.col(1).transpose() << " " << obb1.axis.col(2).transpose() << std::endl;
std::cout << obb2.To.transpose() << " " << obb2.extent.transpose() << " " << obb2.axis.col(0).transpose() << " " << obb2.axis.col(1).transpose() << " " << obb2.axis.col(2).transpose() << std::endl;
}
EXPECT_TRUE(overlap_aabb == overlap_obb);
}
std::cout << std::endl;
}
template <typename S>
void test_mesh_mesh()
{
std::vector<Vector3<S>> p1, p2;
std::vector<Triangle> t1, t2;
test::loadOBJFile(TEST_RESOURCES_DIR"/env.obj", p1, t1);
test::loadOBJFile(TEST_RESOURCES_DIR"/rob.obj", p2, t2);
aligned_vector<Transform3<S>> transforms;
S extents[] = {-3000, -3000, 0, 3000, 3000, 3000};
#ifdef NDEBUG
std::size_t n = 10;
#else
std::size_t n = 1;
#endif
bool verbose = false;
test::generateRandomTransforms(extents, transforms, n);
// collision
for(std::size_t i = 0; i < transforms.size(); ++i)
{
global_pairs<S>().clear();
global_pairs_now<S>().clear();
collide_Test<OBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
collide_Test<OBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<OBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<AABB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<AABB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<AABB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<KDOP<S, 24> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<KDOP<S, 24> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<KDOP<S, 24> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<KDOP<S, 18> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<KDOP<S, 18> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<KDOP<S, 18> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<KDOP<S, 16> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<KDOP<S, 16> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<KDOP<S, 16> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<OBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<OBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<OBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<AABB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<AABB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<AABB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<KDOP<S, 24> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<KDOP<S, 24> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<KDOP<S, 24> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<KDOP<S, 18> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<KDOP<S, 18> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<KDOP<S, 18> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<KDOP<S, 16> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<KDOP<S, 16> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<KDOP<S, 16> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test_Oriented<OBB<S>, detail::MeshCollisionTraversalNodeOBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test_Oriented<OBB<S>, detail::MeshCollisionTraversalNodeOBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test_Oriented<OBB<S>, detail::MeshCollisionTraversalNodeOBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test_Oriented<RSS<S>, detail::MeshCollisionTraversalNodeRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test_Oriented<RSS<S>, detail::MeshCollisionTraversalNodeRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test_Oriented<RSS<S>, detail::MeshCollisionTraversalNodeRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
test_collide_func<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
test_collide_func<OBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
test_collide_func<AABB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test_Oriented<kIOS<S>, detail::MeshCollisionTraversalNodekIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test_Oriented<kIOS<S>, detail::MeshCollisionTraversalNodekIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test_Oriented<kIOS<S>, detail::MeshCollisionTraversalNodekIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
test_collide_func<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
test_collide_func<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
test_collide_func<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test2<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test_Oriented<OBBRSS<S>, detail::MeshCollisionTraversalNodeOBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test_Oriented<OBBRSS<S>, detail::MeshCollisionTraversalNodeOBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
collide_Test_Oriented<OBBRSS<S>, detail::MeshCollisionTraversalNodeOBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
test_collide_func<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
test_collide_func<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
test_collide_func<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER);
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
{
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
}
}
}
GTEST_TEST(FCL_COLLISION, OBB_Box_test)
{
// test_OBB_Box_test<float>();
// Disabled for particular configurations: macOS + release + double (see #202)
#if !defined(FCL_OS_MACOS) || !defined(NDEBUG)
test_OBB_Box_test<double>();
#endif
}
GTEST_TEST(FCL_COLLISION, OBB_shape_test)
{
// test_OBB_shape_test<float>();
test_OBB_shape_test<double>();
}
GTEST_TEST(FCL_COLLISION, OBB_AABB_test)
{
// test_OBB_AABB_test<float>();
test_OBB_AABB_test<double>();
}
GTEST_TEST(FCL_COLLISION, mesh_mesh)
{
// test_mesh_mesh<float>();
test_mesh_mesh<double>();
}
template<typename BV>
bool collide_Test2(const Transform3<typename BV::S>& tf,
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method, bool verbose)
{
using S = typename BV::S;
BVHModel<BV> m1;
BVHModel<BV> m2;
m1.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
m2.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
std::vector<Vector3<S>> vertices1_new(vertices1.size());
for(unsigned int i = 0; i < vertices1_new.size(); ++i)
{
vertices1_new[i] = tf * vertices1[i];
}
m1.beginModel();
m1.addSubModel(vertices1_new, triangles1);
m1.endModel();
m2.beginModel();
m2.addSubModel(vertices2, triangles2);
m2.endModel();
Transform3<S> pose1 = Transform3<S>::Identity();
Transform3<S> pose2 = Transform3<S>::Identity();
CollisionResult<S> local_result;
detail::MeshCollisionTraversalNode<BV> node;
if(!detail::initialize<BV>(node, m1, pose1, m2, pose2,
CollisionRequest<S>(num_max_contacts, enable_contact), local_result))
std::cout << "initialize error" << std::endl;
node.enable_statistics = verbose;
collide(&node);
if(local_result.numContacts() > 0)
{
if(global_pairs<S>().size() == 0)
{
local_result.getContacts(global_pairs<S>());
std::sort(global_pairs<S>().begin(), global_pairs<S>().end());
}
else
{
local_result.getContacts(global_pairs_now<S>());
std::sort(global_pairs_now<S>().begin(), global_pairs_now<S>().end());
}
if(verbose)
std::cout << "in collision " << local_result.numContacts() << ": " << std::endl;
if(verbose) std::cout << node.num_bv_tests << " " << node.num_leaf_tests << std::endl;
return true;
}
else
{
if(verbose) std::cout << "collision free " << std::endl;
if(verbose) std::cout << node.num_bv_tests << " " << node.num_leaf_tests << std::endl;
return false;
}
}
template<typename BV>
bool collide_Test(const Transform3<typename BV::S>& tf,
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method, bool verbose)
{
using S = typename BV::S;
BVHModel<BV> m1;
BVHModel<BV> m2;
m1.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
m2.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
m1.beginModel();
m1.addSubModel(vertices1, triangles1);
m1.endModel();
m2.beginModel();
m2.addSubModel(vertices2, triangles2);
m2.endModel();
Transform3<S> pose1(tf);
Transform3<S> pose2 = Transform3<S>::Identity();
CollisionResult<S> local_result;
detail::MeshCollisionTraversalNode<BV> node;
if(!detail::initialize<BV>(node, m1, pose1, m2, pose2,
CollisionRequest<S>(num_max_contacts, enable_contact), local_result))
std::cout << "initialize error" << std::endl;
node.enable_statistics = verbose;
collide(&node);
if(local_result.numContacts() > 0)
{
if(global_pairs<S>().size() == 0)
{
local_result.getContacts(global_pairs<S>());
std::sort(global_pairs<S>().begin(), global_pairs<S>().end());
}
else
{
local_result.getContacts(global_pairs_now<S>());
std::sort(global_pairs_now<S>().begin(), global_pairs_now<S>().end());
}
if(verbose)
std::cout << "in collision " << local_result.numContacts() << ": " << std::endl;
if(verbose) std::cout << node.num_bv_tests << " " << node.num_leaf_tests << std::endl;
return true;
}
else
{
if(verbose) std::cout << "collision free " << std::endl;
if(verbose) std::cout << node.num_bv_tests << " " << node.num_leaf_tests << std::endl;
return false;
}
}
template<typename BV, typename TraversalNode>
bool collide_Test_Oriented(const Transform3<typename BV::S>& tf,
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method, bool verbose)
{
using S = typename BV::S;
BVHModel<BV> m1;
BVHModel<BV> m2;
m1.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
m2.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
m1.beginModel();
m1.addSubModel(vertices1, triangles1);
m1.endModel();
m2.beginModel();
m2.addSubModel(vertices2, triangles2);
m2.endModel();
Transform3<S> pose1(tf);
Transform3<S> pose2 = Transform3<S>::Identity();
CollisionResult<S> local_result;
TraversalNode node;
if(!initialize(node, (const BVHModel<BV>&)m1, pose1, (const BVHModel<BV>&)m2, pose2,
CollisionRequest<S>(num_max_contacts, enable_contact), local_result))
std::cout << "initialize error" << std::endl;
node.enable_statistics = verbose;
collide(&node);
if(local_result.numContacts() > 0)
{
if(global_pairs<S>().size() == 0)
{
local_result.getContacts(global_pairs<S>());
std::sort(global_pairs<S>().begin(), global_pairs<S>().end());
}
else
{
local_result.getContacts(global_pairs_now<S>());
std::sort(global_pairs_now<S>().begin(), global_pairs_now<S>().end());
}
if(verbose)
std::cout << "in collision " << local_result.numContacts() << ": " << std::endl;
if(verbose) std::cout << node.num_bv_tests << " " << node.num_leaf_tests << std::endl;
return true;
}
else
{
if(verbose) std::cout << "collision free " << std::endl;
if(verbose) std::cout << node.num_bv_tests << " " << node.num_leaf_tests << std::endl;
return false;
}
}
template<typename BV>
bool test_collide_func(const Transform3<typename BV::S>& tf,
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method)
{
using S = typename BV::S;
BVHModel<BV> m1;
BVHModel<BV> m2;
m1.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
m2.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
m1.beginModel();
m1.addSubModel(vertices1, triangles1);
m1.endModel();
m2.beginModel();
m2.addSubModel(vertices2, triangles2);
m2.endModel();
Transform3<S> pose1(tf);
Transform3<S> pose2 = Transform3<S>::Identity();
std::vector<Contact<S>> contacts;
CollisionRequest<S> request(num_max_contacts, enable_contact);
CollisionResult<S> result;
int num_contacts = collide(&m1, pose1, &m2, pose2, request, result);
result.getContacts(contacts);
global_pairs_now<S>().resize(num_contacts);
for(int i = 0; i < num_contacts; ++i)
{
global_pairs_now<S>()[i].b1 = contacts[i].b1;
global_pairs_now<S>()[i].b2 = contacts[i].b2;
}
std::sort(global_pairs_now<S>().begin(), global_pairs_now<S>().end());
if(num_contacts > 0) return true;
else return false;
}
//==============================================================================
int main(int argc, char* argv[])
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}