protot/3rdparty/fcl/test/test_fcl_box_box.cpp

471 lines
20 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2018. Toyota Research Institute
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of CNRS-LAAS and AIST nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** @author Sean Curtis */
#include <functional>
#include <map>
#include <memory>
#include <utility>
#include <vector>
#include <gtest/gtest.h>
#include <Eigen/Dense>
#include "fcl/math/constants.h"
#include "fcl/narrowphase/collision.h"
#include "fcl/narrowphase/collision_object.h"
using std::map;
using std::pair;
using std::string;
using std::vector;
// Simple specification for defining a box collision object. Specifies the
// dimensions and pose of the box in some frame F (X_FB). For an explanation
// of the notation X_FB, see:
// http://drake.mit.edu/doxygen_cxx/group__multibody__spatial__pose.html
template <typename S> struct BoxSpecification {
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
fcl::Vector3<S> size;
fcl::Transform3<S> X_FB;
};
// Class for executing and evaluating various box-box tests.
// The class is initialized with two box specifications (size and pose).
// The test performs a collision test between the two boxes in 12 permutations:
// One axis is the order (box 1 vs box 2 and box 2 vs box 1).
// The other axis is the orientation box 2. Given that box 2 must be a cube, it
// can be oriented in six different configurations and still produced the same
// answer.
// The 12 permutations are the two orderings crossed with the six orientations.
template <typename S>
class BoxBoxTest {
public:
// Construct the test scenario with the given box specifications. Box 2
// must be a *cube* (all sides equal).
BoxBoxTest(const BoxSpecification<S>& box_spec_1,
const BoxSpecification<S>& box_spec_2)
: box_spec_1_(box_spec_1), box_spec_2_(box_spec_2) {
using fcl::AngleAxis;
using fcl::Transform3;
using fcl::Vector3;
// Confirm box 2 is a cube
EXPECT_EQ(box_spec_2.size(0), box_spec_2.size(1));
EXPECT_EQ(box_spec_2.size(0), box_spec_2.size(2));
const S pi = fcl::constants<S>::pi();
// Initialize isomorphic rotations of box 2.
iso_poses_["top"] = Transform3<S>::Identity();
iso_poses_["bottom"] =
Transform3<S>{AngleAxis<S>(pi, Vector3<S>::UnitX())};
iso_poses_["back"] =
Transform3<S>{AngleAxis<S>(pi / 2, Vector3<S>::UnitX())};
iso_poses_["front"] =
Transform3<S>{AngleAxis<S>(3 * pi / 2, Vector3<S>::UnitX())};
iso_poses_["left"] =
Transform3<S>{AngleAxis<S>(pi / 2, Vector3<S>::UnitY())};
iso_poses_["right"] =
Transform3<S>{AngleAxis<S>(3 * pi / 2, Vector3<S>::UnitY())};
}
// Runs the 12 tests for the two specified boxes.
//
// @param solver_type The solver type to use for computing collision.
// @param test_tolerance The tolerance to which the collision contact
// results will be compared to the results.
// @param expected_normal The expected normal for the (1, 2) query order.
// @param expected_depth The expected penetration depth.
// @param contact_pos_test A function to evaluate the reported contact
// position for validity; this should be written to
// account for the possibility of the contact
// position lying on some manifold (e.g., an edge, or
// face). This function should invoke googletest
// EXPECT_* methods.
// @param origin_name A string which is appended to error message to
// more easily parse failures and which test failed.
void
RunTests(fcl::GJKSolverType solver_type, S test_tolerance,
const fcl::Vector3<S>& expected_normal, S expected_depth,
std::function<void(const fcl::Vector3<S> &, S, const std::string &)>
contact_pos_test,
const std::string& origin_name) {
fcl::Contact<S> expected_contact;
expected_contact.penetration_depth = expected_depth;
for (const auto& reorient_pair : iso_poses_) {
const std::string& top_face = reorient_pair.first;
const fcl::Transform3<S>& pre_pose = reorient_pair.second;
BoxSpecification<S> box_2_posed{
box_spec_2_.size,
box_spec_2_.X_FB * pre_pose
};
// Collide (1, 2)
expected_contact.normal = expected_normal;
RunSingleTest(box_spec_1_,
box_2_posed,
solver_type,
test_tolerance,
expected_contact,
contact_pos_test,
origin_name + " (1, 2) - " + top_face);
// Collide (2, 1)
expected_contact.normal = -expected_normal;
RunSingleTest(box_2_posed,
box_spec_1_,
solver_type,
test_tolerance,
expected_contact,
contact_pos_test,
origin_name + " (2, 1) - " + top_face);
}
}
private:
// Performs a collision test between two boxes and tests the *single* contact
// result against given expectations.
//
// @param box_spec_A A specification of the first box (treated as object
// 1 in the query).
// @param box_spec_B A specification of the second box (treated as object
// 2 in the query).
// @param solver_type The solver type to use for computing collision.
// @param test_tolerance The tolerance to which the collision contact results
// will be compared to the results.
// @param expected_contact The expected contact details (only penetration depth
// and normal are used).
// @param contact_pos_test A function to evaluate the reported contact position
// for validity; this should be written to account for
// the possibility of the contact position lying on
// some manifold (e.g., an edge, or face). This
// function should invoke googletest EXPECT_* methods.
// @param origin_name A string which is appended to error message to more
// easily parse failures and which test failed.
void RunSingleTest(
const BoxSpecification<S>& box_spec_A,
const BoxSpecification<S>& box_spec_B, fcl::GJKSolverType solver_type,
S test_tolerance, const fcl::Contact<S>& expected_contact,
std::function<void(const fcl::Vector3<S>&, S, const std::string&)>
contact_pos_test,
const std::string& origin_name) {
using CollisionGeometryPtr_t = std::shared_ptr<fcl::CollisionGeometry<S>>;
CollisionGeometryPtr_t box_geometry_A(new fcl::Box<S>(box_spec_A.size));
CollisionGeometryPtr_t box_geometry_B(new fcl::Box<S>(box_spec_B.size));
fcl::CollisionObject<S> box_A(box_geometry_A, box_spec_A.X_FB);
fcl::CollisionObject<S> box_B(box_geometry_B, box_spec_B.X_FB);
// Compute collision - single contact and enable contact.
fcl::CollisionRequest<S> collisionRequest(1, true);
collisionRequest.gjk_solver_type = solver_type;
fcl::CollisionResult<S> collisionResult;
fcl::collide(&box_A, &box_B, collisionRequest, collisionResult);
EXPECT_TRUE(collisionResult.isCollision()) << origin_name;
std::vector<fcl::Contact<S>> contacts;
collisionResult.getContacts(contacts);
GTEST_ASSERT_EQ(contacts.size(), 1u) << origin_name;
const fcl::Contact<S>& contact = contacts[0];
EXPECT_NEAR(expected_contact.penetration_depth, contact.penetration_depth,
test_tolerance)
<< origin_name;
EXPECT_TRUE(expected_contact.normal.isApprox(contact.normal,
test_tolerance))
<< origin_name << ":\n\texpected: "
<< expected_contact.normal.transpose()
<< "\n\tcontact.normal: " << contact.normal.transpose();
contact_pos_test(contact.pos, test_tolerance, origin_name);
}
const BoxSpecification<S> box_spec_1_;
const BoxSpecification<S> box_spec_2_;
map<string, fcl::Transform3<S>, std::less<string>,
Eigen::aligned_allocator<std::pair<const string, fcl::Transform3<S>>>>
iso_poses_;
};
// This test exercises the case of face-something contact. In the language of
// boxBox2() (in box_box-inl.h) it is for codes 1-6.
//
// More particularly it is designed to exercise the case where no contact points
// need be culled. It assumes that boxBox2() is invoked with a maximum contact
// count of 4. The collision produces a manifold that is a four-sided polygon.
//
// The test looks like this:
//
// z
// │
// │
// ╱│╲
// │ ╲ Box1
// ──┲━━━━O━━╲━━┱─── x
// ┃ ╲ │
// ┃ ╲ │
// ┃ ╲│╱ ┃
// ┃ │ ┃ Box2
// ┃ │ ┃
// ┗━━━━━┿━━━━━┛
// │
//
// There are two boxes:
// Box 1: A cube with side length of 1, centered on the world origin (O) and
// rotated 45 degrees around the y-axis.
// Box 2: A cube with side length of 3, moved in the negative z-direction such
// that it's top face lies on the z = 0 plane.
//
// The penetration depth should be sqrt(2) / 2.
// The normal should be parallel with the z-axis. We test both the collision of
// 1 with 2 and 2 with 1. In those cases, the normal would be -z and +z,
// respectively.
// The contact position, should lie on an edge parallel with the y-axis at x = 0
// and z = sqrt(2) / 4.
template <typename S>
void test_collision_box_box_all_contacts(fcl::GJKSolverType solver_type,
S test_tolerance)
{
const S pi = fcl::constants<S>::pi();
const S size_1 = 1;
BoxSpecification<S> box_1{
fcl::Vector3<S>{size_1, size_1, size_1},
fcl::Transform3<S>{fcl::AngleAxis<S>(pi / 4, fcl::Vector3<S>::UnitY())}};
const S size_2 = 3;
BoxSpecification<S> box_2{fcl::Vector3<S>{size_2, size_2, size_2},
fcl::Transform3<S>{fcl::Translation3<S>(
fcl::Vector3<S>(0, 0, -size_2 / 2))}};
fcl::Vector3<S> expected_normal{0, 0, -1};
S expected_depth = size_1 * sqrt(2) / 2;
auto contact_pos_test = [size_1](const fcl::Vector3<S> &pos, S tolerance,
const std::string& origin_name) {
const double expected_pos_z = -size_1 * std::sqrt(2) / 4;
EXPECT_NEAR(expected_pos_z, pos(2), tolerance) << origin_name;
EXPECT_NEAR(0, pos(0), tolerance) << origin_name;
EXPECT_LE(pos(1), 0.5) << origin_name;
EXPECT_GE(pos(1), -0.5) << origin_name;
};
BoxBoxTest<S> tests(box_1, box_2);
tests.RunTests(solver_type, test_tolerance, expected_normal, expected_depth,
contact_pos_test, "test_colliion_box_box_all_contacts");
}
GTEST_TEST(FCL_BOX_BOX, collision_box_box_all_contacts_ccd)
{
test_collision_box_box_all_contacts<double>(fcl::GJKSolverType::GST_LIBCCD,
1e-14);
}
GTEST_TEST(FCL_BOX_BOX, collision_box_box_all_contacts_indep)
{
test_collision_box_box_all_contacts<double>(fcl::GJKSolverType::GST_INDEP,
1e-12);
}
// This test exercises the case of face-something contact. In the language of
// boxBox2() (in box_box-inl.h) it is for codes 1-6.
//
// In contrast with the previous test (test_collision_box_box_all_contacts),
// the contact manifold is an eight-sided polygon and contacts will need to be
// culled.
//
// The test looks like this:
//
// Top view Side view
//
// +y +z
// │ ┆
// ╱│╲ __━━━━━┓ Box1
// ┏━━━╱━━┿━━╲━━━┓ ┏━━━━━━━ ┆ ┃
// ┣━╱━━━━┿━━━━╲━┫ ┃ ┆ ┃
// │ ╲ ┃ ┆ ┃
// ____┃______│______┃_╲__ +x ┄┄┸┰┄┄┄┄┄┄─┼┄─┄─┄┸┰┄┄┄┄ +y
// ╲ ┃ │ ┃ ┃ ┆ ┃
// ╲ │ ┌─┨ ┏━━━┿━━━┓ ┠──┐
// ┃ ╲ │ ┃ │ ┃ ┃ │ ┖━━┛ │
// ┗━━━●━━┿━━●━━━┛ │ ┗━━━┛ │ │
// ╲│╱ │ │ │ Box2
// │ │ │ │
// │ │ │ │
// └─────────┴─────────┘
//
//
// There are two boxes:
// Box 1: A cube with side length of 1, centered on the world origin and
// rotated θ = 22.5 degrees around the x-axis
// Box 2: A cube with side length of 1, rotated 45 degrees around the z-axis
// and centered on the point [0, 0, -0.75].
//
// The penetration depth should be √2/2 * cos(π/4 - θ) - 0.25 ≊ 0.4032814.
// The normal should be parallel with the z-axis. We test both the collision of
// 1 with 2 and 2 with 1. In those cases, the normal would be -z and +z,
// respectively.
// The contact position, should lie alone the line segment illustrated
// in the top view (indicated by the two points '●') at z = -0.25 - depth / 2.
template <typename S>
void test_collision_box_box_cull_contacts(fcl::GJKSolverType solver_type,
S test_tolerance)
{
const S pi = fcl::constants<S>::pi();
const S size = 1;
const S tilt = pi / 8;
BoxSpecification<S> box_1{
fcl::Vector3<S>{size, size, size},
fcl::Transform3<S>{fcl::AngleAxis<S>(tilt, fcl::Vector3<S>::UnitX())}};
BoxSpecification<S> box_2{fcl::Vector3<S>{size, size, size},
fcl::Transform3<S>{fcl::AngleAxis<S>(
pi / 4, fcl::Vector3<S>::UnitZ())}};
box_2.X_FB.translation() << 0, 0, -0.75;
fcl::Vector3<S> expected_normal{0, 0, -1};
const S expected_depth{sqrt(2) / 2 * cos(pi / 4 - tilt) - 0.25};
auto contact_pos_test = [expected_depth, tilt, pi](
const fcl::Vector3<S> &pos, S tolerance, const std::string& origin_name) {
// Edge is parallel to the x-axis at
// z = expected_z = -0.25 - depth / 2
// y = expected_y = -√2/2 * sin(π/4 - θ)
// x = lines in the range [-x_e, x_e] where
// x_e = √2/2 + expected_y
const S expected_z{-0.25 - expected_depth / 2};
const S expected_y{-sqrt(2) / 2 * sin(pi / 4 - tilt)};
const S expected_x{sqrt(2) / 2 + expected_y +
std::numeric_limits<S>::epsilon()};
EXPECT_NEAR(expected_z, pos(2), tolerance) << origin_name;
EXPECT_NEAR(expected_y, pos(1), tolerance) << origin_name;
EXPECT_GE(pos(0), -expected_x);
EXPECT_LE(pos(0), expected_x);
};
BoxBoxTest<S> tests(box_1, box_2);
tests.RunTests(solver_type, test_tolerance, expected_normal, expected_depth,
contact_pos_test, "test_collision_box_box_cull_contacts");
}
GTEST_TEST(FCL_BOX_BOX, collision_box_box_cull_contacts_ccd)
{
test_collision_box_box_cull_contacts<double>(fcl::GJKSolverType::GST_LIBCCD,
1e-14);
}
GTEST_TEST(FCL_BOX_BOX, collision_box_box_cull_contacts_indep)
{
test_collision_box_box_cull_contacts<double>(fcl::GJKSolverType::GST_INDEP,
1e-14);
}
// This test exercises the case where the contact is between edges (rather than
// face-something as in previous tests).
//
// The test looks like this.
//
// ╱╲
// ╲ Box1
// +z 1 ╲
// ╱╲ ╲
// ┆
// ┆╱ ╲
// ┏━━━━━╲━━━━┓ ╲
// ┃ ┆ ╲ ┃
// ┃ ┆ ╲┃
// ┄┄┄┄┄┃┄┄┄┄┼┄┄┄┄┄┃╲╱┄┄┄┄┄┄┄┄ +x
// ┃ ┆ ┃
// ┃ ┆ ┃ Box2
// ┗━━━━━━━━━━┛
// ┆
//
// There are two boxes:
// Box 1: A cube with side length of 1. It is rotated 45° around the world's
// z-axis and then -45° around the world's y-axis. Given a target
// penetration depth of 0.1, it's center is finally moved along the
// vector <√2/2, √2/2> a distance of `1 * √2 - 0.1`.
// Box 2: A cube with side length of 1. It is aligned with and centered on
// the world frame.
//
template <typename S>
void test_collision_box_box_edge_contact(fcl::GJKSolverType solver_type,
S test_tolerance) {
const S pi = fcl::constants<S>::pi();
const S size = 1;
BoxSpecification<S> box_1{
fcl::Vector3<S>{size, size, size},
fcl::Transform3<S>{fcl::AngleAxis<S>(-pi / 4, fcl::Vector3<S>::UnitY())} *
fcl::Transform3<S>{fcl::AngleAxis<S>(pi / 4, fcl::Vector3<S>::UnitZ())}};
const fcl::Vector3<S> dir{sqrt(2) / 2, 0, sqrt(2) / 2};
const S expected_depth = 0.1;
box_1.X_FB.translation() = dir * (size * sqrt(2) - expected_depth);
BoxSpecification<S> box_2{fcl::Vector3<S>{size, size, size},
fcl::Transform3<S>::Identity()};
auto contact_pos_test = [expected_depth, size, dir](
const fcl::Vector3<S> &pos, S tolerance, const std::string& origin_name) {
// The contact point should unambiguously be a single point.
const S dist = size * sqrt(2) / 2 - expected_depth / 2;
const fcl::Vector3<S> expected_pos{dir * dist};
EXPECT_TRUE(expected_pos.isApprox(pos, tolerance)) << origin_name
<< "\n\texpected: " << expected_pos.transpose()
<< "\n\tpos: " << pos.transpose();
};
BoxBoxTest<S> tests(box_1, box_2);
tests.RunTests(solver_type, test_tolerance, -dir, expected_depth,
contact_pos_test, "test_collision_box_box_edge_contact");
}
GTEST_TEST(FCL_BOX_BOX, collision_box_box_edge_contact_ccd)
{
test_collision_box_box_edge_contact<double>(fcl::GJKSolverType::GST_LIBCCD,
1e-14);
}
GTEST_TEST(FCL_BOX_BOX, collision_box_box_edge_contact_indep)
{
test_collision_box_box_edge_contact<double>(fcl::GJKSolverType::GST_INDEP,
1e-14);
}
//==============================================================================
int main(int argc, char* argv[])
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}