protot/3rdparty/fcl/test/test_fcl_sphere_cylinder.cpp

230 lines
10 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2018. Toyota Research Institute
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of CNRS-LAAS and AIST nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** @author Sean Curtis <sean@tri.global> (2018) */
#include <memory>
#include <gtest/gtest.h>
#include <Eigen/Dense>
#include "eigen_matrix_compare.h"
#include "fcl/narrowphase/collision_object.h"
#include "fcl/narrowphase/distance.h"
// TODO(SeanCurtis-TRI): Modify this test so it can be re-used for the distance
// query -- such that the sphere is slightly separated instead of slightly
// penetrating. See test_sphere_cylinder.cpp for an example.
// This collides a cylinder with a sphere. The cylinder is disk-like with a
// large radius (r_c) and small height (h_c) and its geometric frame is aligned
// with the world frame. The sphere has radius r_s and is positioned at
// (sx, sy, sz) with an identity orientation. In this configuration, the sphere
// penetrates the cylinder slightly on the top face near the edge. The contact
// is *fully* contained in that face. (As illustrated below.)
//
// Side view
// z small sphere
// ┆ ↓
// ┏━━━━━━━━━━━━┿━━━━◯━━━━━━┓ ┬
// ┄┄┄┄┄┄╂┄┄┄┄┄┄┄┄┄┄┄┄┼┄┄┄┄┄┄┄┄┄┄┄╂┄ x h_c
// ┗━━━━━━━━━━━━┿━━━━━━━━━━━┛ ┴
// ┆
//
// ├──── r_c───┤
//
// Top view
// y
// ┆
// ******* small sphere ┬
// ** ┆ **
// * ┆ ◯ * │
// * ┆ * │
// * ┆ * r_c
// * ┆ * │
// * ┆ * │
// * ┆ * │
// ┄┄┄┄┄┄┄*┄┄┄┄┄┄┄┄┄┄┼┄┄┄┄┄┄┄┄┄┄*┄┄┄┄ x ┴
// * ┆ *
// * ┆ *
// * ┆ *
// * ┆ *
// * ┆ *
// * ┆ *
// ** ┆ **
// *******
// ┆
// Properties of expected outcome:
// - One contact *should* be reported,
// - Penetration depth δ should be: r_s - (sz - h_c / 2),
// - Contact point should be at: [sx, sy, h_c / 2 - δ / 2], and
// - Contact normal should be [0, 0, -1] (pointing from sphere into cylinder).
//
// NOTE: Orientation of the sphere should *not* make a difference and is not
// tested here; it relies on the sphere-cylinder primitive algorithm unit tests
// to have robustly tested that.
//
// This test *fails* if GJK is used to evaluate the collision. It passes if the
// custom sphere-cylinder algorithm is used, and, therefore, its purpose is to
// confirm that the custom algorithm is being applied. It doesn't exhaustively
// test sphere-cylinder collision. It merely confirms the tested primitive
// algorithm has been wired up correctly.
template <typename S>
void LargeCylinderSmallSphereTest(fcl::GJKSolverType solver_type) {
using fcl::Vector3;
using Real = typename fcl::constants<S>::Real;
const Real eps = fcl::constants<S>::eps();
// Configure geometry.
// Cylinder and sphere dimensions.
const Real r_c = 9;
const Real h_c = 0.0025;
const Real r_s = 0.0015;
auto sphere_geometry = std::make_shared<fcl::Sphere<S>>(r_s);
auto cylinder_geometry = std::make_shared<fcl::Cylinder<S>>(r_c, h_c);
// Pose of the cylinder in the world frame.
const fcl::Transform3<S> X_WC = fcl::Transform3<S>::Identity();
// Compute multiple sphere locations. All at the same height to produce a
// fixed, expected penetration depth of half of its radius. The reported
// position of the contact will have the x- and y- values of the sphere
// center, but be half the target_depth below the +z face, i.e.,
// pz = (h_c / 2) - (target_depth / 2)
const Real target_depth = r_s * 0.5;
// Sphere center's height (position in z).
const Real sz = h_c / 2 + r_s - target_depth;
const Real pz = h_c / 2 - target_depth / 2;
// This transform will get repeatedly modified in the nested for loop below.
fcl::Transform3<S> X_WS = fcl::Transform3<S>::Identity();
fcl::CollisionObject<S> sphere(sphere_geometry, X_WS);
fcl::CollisionObject<S> cylinder(cylinder_geometry, X_WC);
// Expected results. (Expected position is defined inside the for loop as it
// changes with each new position of the sphere.)
const S expected_depth = target_depth;
// This normal direction assumes the *sphere* is the first collision object.
// If the order is reversed, the normal must be likewise reversed.
const Vector3<S> expected_normal = -Vector3<S>::UnitZ();
// Set up the collision request.
fcl::CollisionRequest<S> collision_request(1 /* num contacts */,
true /* enable_contact */);
collision_request.gjk_solver_type = solver_type;
// Sample around the surface of the +z face on the disk for a fixed
// penetration depth. Note: the +z face is a disk with radius r_c. Notes on
// the selected samples:
// - We've picked positions such that the *whole* sphere projects onto the
// +z face. This *guarantees* that the contact is completely contained in
// the +z face so there is no possible ambiguity in the results.
// - We've picked points out near the boundaries, in the middle, and *near*
// zero without being zero. The GJK algorithm can actually provide the
// correct result at the (eps, eps) sample points. We leave those sample
// points in to confirm no degradation.
const std::vector<Real> r_values{0, eps, r_c / 2, r_c - r_s};
const S pi = fcl::constants<S>::pi();
const std::vector<Real> theta_values{0, pi/2, pi, 3 * pi / 4};
for (const Real r : r_values) {
for (const Real theta : theta_values ) {
// Don't just evaluate at nice, axis-aligned directions. Pick some number
// that can't be perfectly represented.
const Real angle = theta + pi / 7;
const Real sx = cos(angle) * r;
const Real sy = sin(angle) * r;
// Repose the sphere.
X_WS.translation() << sx, sy, sz;
sphere.setTransform(X_WS);
auto evaluate_collision = [&collision_request, &X_WS](
const fcl::CollisionObject<S>* s1, const fcl::CollisionObject<S>* s2,
S expected_depth, const Vector3<S>& expected_normal,
const Vector3<S>& expected_pos, Real eps) {
// Compute collision.
fcl::CollisionResult<S> collision_result;
std::size_t contact_count =
fcl::collide(s1, s2, collision_request, collision_result);
// Test answers
if (contact_count == collision_request.num_max_contacts) {
std::vector<fcl::Contact<S>> contacts;
collision_result.getContacts(contacts);
GTEST_ASSERT_EQ(contacts.size(), collision_request.num_max_contacts);
const fcl::Contact<S>& contact = contacts[0];
EXPECT_NEAR(contact.penetration_depth, expected_depth, eps)
<< "Sphere at: " << X_WS.translation().transpose();
EXPECT_TRUE(fcl::CompareMatrices(contact.normal,
expected_normal,
eps,
fcl::MatrixCompareType::absolute))
<< "Sphere at: " << X_WS.translation().transpose();
EXPECT_TRUE(fcl::CompareMatrices(
contact.pos, expected_pos, eps, fcl::MatrixCompareType::absolute))
<< "Sphere at: " << X_WS.translation().transpose();
} else {
EXPECT_TRUE(false) << "No contacts reported for sphere at: "
<< X_WS.translation().transpose();
}
};
Vector3<S> expected_pos{sx, sy, pz};
evaluate_collision(&sphere, &cylinder, expected_depth, expected_normal,
expected_pos, eps);
evaluate_collision(&cylinder, &sphere, expected_depth, -expected_normal,
expected_pos, eps);
}
}
}
GTEST_TEST(FCL_SPHERE_CYLINDER, LargCylinderSmallSphere_ccd) {
LargeCylinderSmallSphereTest<double>(fcl::GJKSolverType::GST_LIBCCD);
LargeCylinderSmallSphereTest<float>(fcl::GJKSolverType::GST_LIBCCD);
}
GTEST_TEST(FCL_SPHERE_CYLINDER, LargBoxSmallSphere_indep) {
LargeCylinderSmallSphereTest<double>(fcl::GJKSolverType::GST_INDEP);
LargeCylinderSmallSphereTest<float>(fcl::GJKSolverType::GST_INDEP);
}
//==============================================================================
int main(int argc, char* argv[]) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}