protot/data/shaders/fs_deferred_lighting.glsl

121 lines
3.5 KiB
GLSL

#version 150 core
uniform sampler2D uColor;
uniform sampler2D uNormal;
uniform sampler2D uDepth;
uniform sampler2D uAmbientOcclusion;
#define USE_SAMPLER2D_SHADOW 1
#ifdef USE_SAMPLER2D_SHADOW
uniform sampler2DShadow uShadowMap;
#else
uniform sampler2D uShadowMap;
#endif
uniform sampler2D uPosition;
uniform vec3 uLightDirection;
uniform mat4 uLightSpaceMatrix;
uniform mat4 uViewToLightSpaceMatrix;
uniform float uShadowBias;
in vec2 ioFragTexCoords;
out vec3 outColor;
float ShadowCalculationPCF(vec4 frag_pos_light_space, vec3 frag_normal_light_space) {
vec3 projected_coordinates = frag_pos_light_space.xyz / frag_pos_light_space.w;
projected_coordinates = projected_coordinates * 0.5 + 0.5;
if (abs(projected_coordinates.z) > 1.0 ) {
return 0.0;
}
float current_depth = projected_coordinates.z;
float bias = 0.00;
bias = max(0.001 * (1.0 - dot(frag_normal_light_space, uLightDirection)), uShadowBias);
float shadow = 0.0;
vec2 texel_size = 1.0 / textureSize(uShadowMap, 0);
for (int x = -1; x <= 1; ++x) {
for (int y = -1; y <= 1; ++y) {
#ifdef USE_SAMPLER2D_SHADOW
vec2 coordinate = projected_coordinates.xy + vec2(x, y) * texel_size;
float pcf_depth = texture(uShadowMap, vec3(coordinate, current_depth - bias));
#else
float pcf_depth = texture(uShadowMap, projected_coordinates.xy).r;
#endif
shadow += current_depth - bias > pcf_depth ? 1.0 : 0.0;
}
}
shadow /= 9.0;
return shadow;
}
float ShadowCalculation(vec4 frag_pos_light_space, vec3 frag_normal_light_space) {
vec3 projected_coordinates = frag_pos_light_space.xyz / frag_pos_light_space.w;
projected_coordinates = projected_coordinates * 0.5 + 0.5;
float current_depth = projected_coordinates.z;
float bias = 0.01;
#ifdef USE_SAMPLER2D_SHADOW
float closest_depth = texture(uShadowMap, vec3(projected_coordinates.xy, current_depth - bias));
#else
float closest_depth = texture(uShadowMap, projected_coordinates.xy).r;
bias = max(0.005 * (1.0 - dot(frag_normal_light_space, uLightDirection)), 0.003);
#endif
return current_depth - bias > closest_depth ? 1.0 : 0.0;
}
vec3 get_cascade_color (float depth) {
if (depth < 0.97) {
return vec3 (1.0, 0.0, 0.0);
} else if (depth < 0.99) {
return vec3 (0.0, 1.0, 0.0);
}
return vec3 (0.0, 0.0, 1.0);
}
void main() {
vec3 color = texture(uColor, ioFragTexCoords).rgb;
vec3 normal = texture (uNormal, ioFragTexCoords).xyz;
float depth = texture (uDepth, ioFragTexCoords).r;
vec3 position = texture (uPosition, ioFragTexCoords).xyz;
float ambient_occlusion = texture(uAmbientOcclusion, ioFragTexCoords).r;
// ambient lighting
float ambient_strength = 0.2;
vec3 ambient = ambient_strength * color;
vec3 light_dir = -uLightDirection;
// diffuse lighting
float diff = max(dot(normal, light_dir), 0.0);
vec3 diffuse = diff * color;
// specular lighting
vec3 view_dir = normalize(-position);
vec3 halfway_dir = normalize(light_dir + view_dir);
float spec = pow(max(dot(normal, halfway_dir), 0.0), 32);
vec3 specular = spec * vec3(0.5);
// shadow (need to transform position and normal to light space)
vec4 position_light_space = uViewToLightSpaceMatrix * vec4(position, 1.0);
vec3 normal_light_space = (transpose(inverse(uViewToLightSpaceMatrix)) * vec4(normal, 1.0)).xyz;
float shadow = ShadowCalculationPCF(position_light_space, normal);
// vec3 cascade = get_cascade_color(depth);
// ambient = cascade;
outColor = (ambient + (1.0 - shadow) * (diffuse + specular)) * ambient_occlusion;
// outColor = (ambient + (diffuse + specular)) * ambient_occlusion;
}