protot/3rdparty/bgfx/3rdparty/glsl-optimizer/src/glsl/ast_to_hir.cpp

6125 lines
228 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file ast_to_hir.c
* Convert abstract syntax to to high-level intermediate reprensentation (HIR).
*
* During the conversion to HIR, the majority of the symantic checking is
* preformed on the program. This includes:
*
* * Symbol table management
* * Type checking
* * Function binding
*
* The majority of this work could be done during parsing, and the parser could
* probably generate HIR directly. However, this results in frequent changes
* to the parser code. Since we do not assume that every system this complier
* is built on will have Flex and Bison installed, we have to store the code
* generated by these tools in our version control system. In other parts of
* the system we've seen problems where a parser was changed but the generated
* code was not committed, merge conflicts where created because two developers
* had slightly different versions of Bison installed, etc.
*
* I have also noticed that running Bison generated parsers in GDB is very
* irritating. When you get a segfault on '$$ = $1->foo', you can't very
* well 'print $1' in GDB.
*
* As a result, my preference is to put as little C code as possible in the
* parser (and lexer) sources.
*/
#include "glsl_symbol_table.h"
#include "glsl_parser_extras.h"
#include "ast.h"
#include "glsl_types.h"
#include "program/hash_table.h"
#include "ir.h"
#include "ir_builder.h"
using namespace ir_builder;
static void
detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
exec_list *instructions);
static void
remove_per_vertex_blocks(exec_list *instructions,
_mesa_glsl_parse_state *state, ir_variable_mode mode);
void
_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
{
_mesa_glsl_initialize_variables(instructions, state);
state->symbols->separate_function_namespace = state->language_version == 110;
state->current_function = NULL;
state->toplevel_ir = instructions;
state->gs_input_prim_type_specified = false;
state->cs_input_local_size_specified = false;
/* Section 4.2 of the GLSL 1.20 specification states:
* "The built-in functions are scoped in a scope outside the global scope
* users declare global variables in. That is, a shader's global scope,
* available for user-defined functions and global variables, is nested
* inside the scope containing the built-in functions."
*
* Since built-in functions like ftransform() access built-in variables,
* it follows that those must be in the outer scope as well.
*
* We push scope here to create this nesting effect...but don't pop.
* This way, a shader's globals are still in the symbol table for use
* by the linker.
*/
state->symbols->push_scope();
foreach_list_typed (ast_node, ast, link, & state->translation_unit)
ast->hir(instructions, state);
detect_recursion_unlinked(state, instructions);
detect_conflicting_assignments(state, instructions);
state->toplevel_ir = NULL;
/* Move all of the variable declarations to the front of the IR list, and
* reverse the order. This has the (intended!) side effect that vertex
* shader inputs and fragment shader outputs will appear in the IR in the
* same order that they appeared in the shader code. This results in the
* locations being assigned in the declared order. Many (arguably buggy)
* applications depend on this behavior, and it matches what nearly all
* other drivers do.
*
* However, do not push the declarations before struct decls or precision
* statements.
*/
ir_instruction* before_node = (ir_instruction*)instructions->head;
ir_instruction* after_node = NULL;
while (before_node && (before_node->ir_type == ir_type_precision || before_node->ir_type == ir_type_typedecl))
{
after_node = before_node;
before_node = (ir_instruction*)before_node->next;
}
foreach_in_list_safe(ir_instruction, node, instructions) {
ir_variable *const var = node->as_variable();
if (var == NULL)
continue;
var->remove();
if (after_node)
after_node->insert_after(var);
else
instructions->push_head(var);
}
/* Figure out if gl_FragCoord is actually used in fragment shader */
ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
if (var != NULL)
state->fs_uses_gl_fragcoord = var->data.used;
/* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
*
* If multiple shaders using members of a built-in block belonging to
* the same interface are linked together in the same program, they
* must all redeclare the built-in block in the same way, as described
* in section 4.3.7 "Interface Blocks" for interface block matching, or
* a link error will result.
*
* The phrase "using members of a built-in block" implies that if two
* shaders are linked together and one of them *does not use* any members
* of the built-in block, then that shader does not need to have a matching
* redeclaration of the built-in block.
*
* This appears to be a clarification to the behaviour established for
* gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
* version.
*
* The definition of "interface" in section 4.3.7 that applies here is as
* follows:
*
* The boundary between adjacent programmable pipeline stages: This
* spans all the outputs in all compilation units of the first stage
* and all the inputs in all compilation units of the second stage.
*
* Therefore this rule applies to both inter- and intra-stage linking.
*
* The easiest way to implement this is to check whether the shader uses
* gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
* remove all the relevant variable declaration from the IR, so that the
* linker won't see them and complain about mismatches.
*/
remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
}
static ir_expression_operation
get_conversion_operation(const glsl_type *to, const glsl_type *from,
struct _mesa_glsl_parse_state *state)
{
switch (to->base_type) {
case GLSL_TYPE_FLOAT:
switch (from->base_type) {
case GLSL_TYPE_INT: return ir_unop_i2f;
case GLSL_TYPE_UINT: return ir_unop_u2f;
default: return (ir_expression_operation)0;
}
case GLSL_TYPE_UINT:
if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
return (ir_expression_operation)0;
switch (from->base_type) {
case GLSL_TYPE_INT: return ir_unop_i2u;
default: return (ir_expression_operation)0;
}
default: return (ir_expression_operation)0;
}
}
/**
* If a conversion is available, convert one operand to a different type
*
* The \c from \c ir_rvalue is converted "in place".
*
* \param to Type that the operand it to be converted to
* \param from Operand that is being converted
* \param state GLSL compiler state
*
* \return
* If a conversion is possible (or unnecessary), \c true is returned.
* Otherwise \c false is returned.
*/
bool
apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
if (to->base_type == from->type->base_type)
return true;
/* Prior to GLSL 1.20, there are no implicit conversions */
if (!state->is_version(120, 0))
return false;
/* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
*
* "There are no implicit array or structure conversions. For
* example, an array of int cannot be implicitly converted to an
* array of float.
*/
if (!to->is_numeric() || !from->type->is_numeric())
return false;
/* We don't actually want the specific type `to`, we want a type
* with the same base type as `to`, but the same vector width as
* `from`.
*/
to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
from->type->matrix_columns);
ir_expression_operation op = get_conversion_operation(to, from->type, state);
if (op) {
from = new(ctx) ir_expression(op, to, from, NULL);
return true;
} else {
return false;
}
}
static const struct glsl_type *
arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
bool multiply,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
const glsl_type *type_a = value_a->type;
const glsl_type *type_b = value_b->type;
/* From GLSL 1.50 spec, page 56:
*
* "The arithmetic binary operators add (+), subtract (-),
* multiply (*), and divide (/) operate on integer and
* floating-point scalars, vectors, and matrices."
*/
if (!type_a->is_numeric() || !type_b->is_numeric()) {
_mesa_glsl_error(loc, state,
"operands to arithmetic operators must be numeric");
return glsl_type::error_type;
}
/* "If one operand is floating-point based and the other is
* not, then the conversions from Section 4.1.10 "Implicit
* Conversions" are applied to the non-floating-point-based operand."
*/
if (!apply_implicit_conversion(type_a, value_b, state)
&& !apply_implicit_conversion(type_b, value_a, state)) {
_mesa_glsl_error(loc, state,
"could not implicitly convert operands to "
"arithmetic operator");
return glsl_type::error_type;
}
type_a = value_a->type;
type_b = value_b->type;
/* "If the operands are integer types, they must both be signed or
* both be unsigned."
*
* From this rule and the preceeding conversion it can be inferred that
* both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
* The is_numeric check above already filtered out the case where either
* type is not one of these, so now the base types need only be tested for
* equality.
*/
if (type_a->base_type != type_b->base_type) {
_mesa_glsl_error(loc, state,
"base type mismatch for arithmetic operator");
return glsl_type::error_type;
}
/* "All arithmetic binary operators result in the same fundamental type
* (signed integer, unsigned integer, or floating-point) as the
* operands they operate on, after operand type conversion. After
* conversion, the following cases are valid
*
* * The two operands are scalars. In this case the operation is
* applied, resulting in a scalar."
*/
if (type_a->is_scalar() && type_b->is_scalar())
return type_a;
/* "* One operand is a scalar, and the other is a vector or matrix.
* In this case, the scalar operation is applied independently to each
* component of the vector or matrix, resulting in the same size
* vector or matrix."
*/
if (type_a->is_scalar()) {
if (!type_b->is_scalar())
return type_b;
} else if (type_b->is_scalar()) {
return type_a;
}
/* All of the combinations of <scalar, scalar>, <vector, scalar>,
* <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
* handled.
*/
assert(!type_a->is_scalar());
assert(!type_b->is_scalar());
/* "* The two operands are vectors of the same size. In this case, the
* operation is done component-wise resulting in the same size
* vector."
*/
if (type_a->is_vector() && type_b->is_vector()) {
if (type_a == type_b) {
return type_a;
} else {
_mesa_glsl_error(loc, state,
"vector size mismatch for arithmetic operator");
return glsl_type::error_type;
}
}
/* All of the combinations of <scalar, scalar>, <vector, scalar>,
* <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
* <vector, vector> have been handled. At least one of the operands must
* be matrix. Further, since there are no integer matrix types, the base
* type of both operands must be float.
*/
assert(type_a->is_matrix() || type_b->is_matrix());
assert(type_a->base_type == GLSL_TYPE_FLOAT);
assert(type_b->base_type == GLSL_TYPE_FLOAT);
/* "* The operator is add (+), subtract (-), or divide (/), and the
* operands are matrices with the same number of rows and the same
* number of columns. In this case, the operation is done component-
* wise resulting in the same size matrix."
* * The operator is multiply (*), where both operands are matrices or
* one operand is a vector and the other a matrix. A right vector
* operand is treated as a column vector and a left vector operand as a
* row vector. In all these cases, it is required that the number of
* columns of the left operand is equal to the number of rows of the
* right operand. Then, the multiply (*) operation does a linear
* algebraic multiply, yielding an object that has the same number of
* rows as the left operand and the same number of columns as the right
* operand. Section 5.10 "Vector and Matrix Operations" explains in
* more detail how vectors and matrices are operated on."
*/
if (! multiply) {
if (type_a == type_b)
return type_a;
} else {
if (type_a->is_matrix() && type_b->is_matrix()) {
/* Matrix multiply. The columns of A must match the rows of B. Given
* the other previously tested constraints, this means the vector type
* of a row from A must be the same as the vector type of a column from
* B.
*/
if (type_a->row_type() == type_b->column_type()) {
/* The resulting matrix has the number of columns of matrix B and
* the number of rows of matrix A. We get the row count of A by
* looking at the size of a vector that makes up a column. The
* transpose (size of a row) is done for B.
*/
const glsl_type *const type =
glsl_type::get_instance(type_a->base_type,
type_a->column_type()->vector_elements,
type_b->row_type()->vector_elements);
assert(type != glsl_type::error_type);
return type;
}
} else if (type_a->is_matrix()) {
/* A is a matrix and B is a column vector. Columns of A must match
* rows of B. Given the other previously tested constraints, this
* means the vector type of a row from A must be the same as the
* vector the type of B.
*/
if (type_a->row_type() == type_b) {
/* The resulting vector has a number of elements equal to
* the number of rows of matrix A. */
const glsl_type *const type =
glsl_type::get_instance(type_a->base_type,
type_a->column_type()->vector_elements,
1);
assert(type != glsl_type::error_type);
return type;
}
} else {
assert(type_b->is_matrix());
/* A is a row vector and B is a matrix. Columns of A must match rows
* of B. Given the other previously tested constraints, this means
* the type of A must be the same as the vector type of a column from
* B.
*/
if (type_a == type_b->column_type()) {
/* The resulting vector has a number of elements equal to
* the number of columns of matrix B. */
const glsl_type *const type =
glsl_type::get_instance(type_a->base_type,
type_b->row_type()->vector_elements,
1);
assert(type != glsl_type::error_type);
return type;
}
}
_mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
return glsl_type::error_type;
}
/* "All other cases are illegal."
*/
_mesa_glsl_error(loc, state, "type mismatch");
return glsl_type::error_type;
}
static const struct glsl_type *
unary_arithmetic_result_type(const struct glsl_type *type,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
/* From GLSL 1.50 spec, page 57:
*
* "The arithmetic unary operators negate (-), post- and pre-increment
* and decrement (-- and ++) operate on integer or floating-point
* values (including vectors and matrices). All unary operators work
* component-wise on their operands. These result with the same type
* they operated on."
*/
if (!type->is_numeric()) {
_mesa_glsl_error(loc, state,
"operands to arithmetic operators must be numeric");
return glsl_type::error_type;
}
return type;
}
/**
* \brief Return the result type of a bit-logic operation.
*
* If the given types to the bit-logic operator are invalid, return
* glsl_type::error_type.
*
* \param type_a Type of LHS of bit-logic op
* \param type_b Type of RHS of bit-logic op
*/
static const struct glsl_type *
bit_logic_result_type(const struct glsl_type *type_a,
const struct glsl_type *type_b,
ast_operators op,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
if (!state->check_bitwise_operations_allowed(loc)) {
return glsl_type::error_type;
}
/* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
*
* "The bitwise operators and (&), exclusive-or (^), and inclusive-or
* (|). The operands must be of type signed or unsigned integers or
* integer vectors."
*/
if (!type_a->is_integer()) {
_mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
ast_expression::operator_string(op));
return glsl_type::error_type;
}
if (!type_b->is_integer()) {
_mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* "The fundamental types of the operands (signed or unsigned) must
* match,"
*/
if (type_a->base_type != type_b->base_type) {
_mesa_glsl_error(loc, state, "operands of `%s' must have the same "
"base type", ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* "The operands cannot be vectors of differing size." */
if (type_a->is_vector() &&
type_b->is_vector() &&
type_a->vector_elements != type_b->vector_elements) {
_mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
"different sizes", ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* "If one operand is a scalar and the other a vector, the scalar is
* applied component-wise to the vector, resulting in the same type as
* the vector. The fundamental types of the operands [...] will be the
* resulting fundamental type."
*/
if (type_a->is_scalar())
return type_b;
else
return type_a;
}
static const struct glsl_type *
modulus_result_type(const struct glsl_type *type_a,
const struct glsl_type *type_b,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
return glsl_type::error_type;
}
/* From GLSL 1.50 spec, page 56:
* "The operator modulus (%) operates on signed or unsigned integers or
* integer vectors. The operand types must both be signed or both be
* unsigned."
*/
if (!type_a->is_integer()) {
_mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
return glsl_type::error_type;
}
if (!type_b->is_integer()) {
_mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
return glsl_type::error_type;
}
if (type_a->base_type != type_b->base_type) {
_mesa_glsl_error(loc, state,
"operands of %% must have the same base type");
return glsl_type::error_type;
}
/* "The operands cannot be vectors of differing size. If one operand is
* a scalar and the other vector, then the scalar is applied component-
* wise to the vector, resulting in the same type as the vector. If both
* are vectors of the same size, the result is computed component-wise."
*/
if (type_a->is_vector()) {
if (!type_b->is_vector()
|| (type_a->vector_elements == type_b->vector_elements))
return type_a;
} else
return type_b;
/* "The operator modulus (%) is not defined for any other data types
* (non-integer types)."
*/
_mesa_glsl_error(loc, state, "type mismatch");
return glsl_type::error_type;
}
static const struct glsl_type *
relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
const glsl_type *type_a = value_a->type;
const glsl_type *type_b = value_b->type;
/* From GLSL 1.50 spec, page 56:
* "The relational operators greater than (>), less than (<), greater
* than or equal (>=), and less than or equal (<=) operate only on
* scalar integer and scalar floating-point expressions."
*/
if (!type_a->is_numeric()
|| !type_b->is_numeric()
|| !type_a->is_scalar()
|| !type_b->is_scalar()) {
_mesa_glsl_error(loc, state,
"operands to relational operators must be scalar and "
"numeric");
return glsl_type::error_type;
}
/* "Either the operands' types must match, or the conversions from
* Section 4.1.10 "Implicit Conversions" will be applied to the integer
* operand, after which the types must match."
*/
if (!apply_implicit_conversion(type_a, value_b, state)
&& !apply_implicit_conversion(type_b, value_a, state)) {
_mesa_glsl_error(loc, state,
"could not implicitly convert operands to "
"relational operator");
return glsl_type::error_type;
}
type_a = value_a->type;
type_b = value_b->type;
if (type_a->base_type != type_b->base_type) {
_mesa_glsl_error(loc, state, "base type mismatch");
return glsl_type::error_type;
}
/* "The result is scalar Boolean."
*/
return glsl_type::bool_type;
}
/**
* \brief Return the result type of a bit-shift operation.
*
* If the given types to the bit-shift operator are invalid, return
* glsl_type::error_type.
*
* \param type_a Type of LHS of bit-shift op
* \param type_b Type of RHS of bit-shift op
*/
static const struct glsl_type *
shift_result_type(const struct glsl_type *type_a,
const struct glsl_type *type_b,
ast_operators op,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
if (!state->check_bitwise_operations_allowed(loc)) {
return glsl_type::error_type;
}
/* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
*
* "The shift operators (<<) and (>>). For both operators, the operands
* must be signed or unsigned integers or integer vectors. One operand
* can be signed while the other is unsigned."
*/
if (!type_a->is_integer()) {
_mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
"integer vector", ast_expression::operator_string(op));
return glsl_type::error_type;
}
if (!type_b->is_integer()) {
_mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
"integer vector", ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* "If the first operand is a scalar, the second operand has to be
* a scalar as well."
*/
if (type_a->is_scalar() && !type_b->is_scalar()) {
_mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
"second must be scalar as well",
ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* If both operands are vectors, check that they have same number of
* elements.
*/
if (type_a->is_vector() &&
type_b->is_vector() &&
type_a->vector_elements != type_b->vector_elements) {
_mesa_glsl_error(loc, state, "vector operands to operator %s must "
"have same number of elements",
ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* "In all cases, the resulting type will be the same type as the left
* operand."
*/
return type_a;
}
/**
* Validates that a value can be assigned to a location with a specified type
*
* Validates that \c rhs can be assigned to some location. If the types are
* not an exact match but an automatic conversion is possible, \c rhs will be
* converted.
*
* \return
* \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
* Otherwise the actual RHS to be assigned will be returned. This may be
* \c rhs, or it may be \c rhs after some type conversion.
*
* \note
* In addition to being used for assignments, this function is used to
* type-check return values.
*/
ir_rvalue *
validate_assignment(struct _mesa_glsl_parse_state *state,
YYLTYPE loc, const glsl_type *lhs_type,
ir_rvalue *rhs, bool is_initializer)
{
/* If there is already some error in the RHS, just return it. Anything
* else will lead to an avalanche of error message back to the user.
*/
if (rhs->type->is_error())
return rhs;
/* If the types are identical, the assignment can trivially proceed.
*/
if (rhs->type == lhs_type)
return rhs;
/* If the array element types are the same and the LHS is unsized,
* the assignment is okay for initializers embedded in variable
* declarations.
*
* Note: Whole-array assignments are not permitted in GLSL 1.10, but this
* is handled by ir_dereference::is_lvalue.
*/
if (lhs_type->is_unsized_array() && rhs->type->is_array()
&& (lhs_type->element_type() == rhs->type->element_type())) {
if (is_initializer) {
return rhs;
} else {
_mesa_glsl_error(&loc, state,
"implicitly sized arrays cannot be assigned");
return NULL;
}
}
/* Check for implicit conversion in GLSL 1.20 */
if (apply_implicit_conversion(lhs_type, rhs, state)) {
if (rhs->type == lhs_type)
return rhs;
}
_mesa_glsl_error(&loc, state,
"%s of type %s cannot be assigned to "
"variable of type %s",
is_initializer ? "initializer" : "value",
rhs->type->name, lhs_type->name);
return NULL;
}
static void
mark_whole_array_access(ir_rvalue *access)
{
ir_dereference_variable *deref = access->as_dereference_variable();
if (deref && deref->var) {
deref->var->data.max_array_access = deref->type->length - 1;
}
}
static bool
do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
const char *non_lvalue_description,
ir_rvalue *lhs, ir_rvalue *rhs,
ir_rvalue **out_rvalue, bool needs_rvalue,
bool is_initializer,
YYLTYPE lhs_loc)
{
void *ctx = state;
bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
ir_rvalue *extract_channel = NULL;
/* If the assignment LHS comes back as an ir_binop_vector_extract
* expression, move it to the RHS as an ir_triop_vector_insert.
*/
if (lhs->ir_type == ir_type_expression) {
ir_expression *const lhs_expr = lhs->as_expression();
if (unlikely(lhs_expr->operation == ir_binop_vector_extract)) {
ir_rvalue *new_rhs =
validate_assignment(state, lhs_loc, lhs->type,
rhs, is_initializer);
if (new_rhs == NULL) {
return lhs;
} else {
/* This converts:
* - LHS: (expression float vector_extract <vec> <channel>)
* - RHS: <scalar>
* into:
* - LHS: <vec>
* - RHS: (expression vec2 vector_insert <vec> <channel> <scalar>)
*
* The LHS type is now a vector instead of a scalar. Since GLSL
* allows assignments to be used as rvalues, we need to re-extract
* the channel from assignment_temp when returning the rvalue.
*/
extract_channel = lhs_expr->operands[1];
rhs = new(ctx) ir_expression(ir_triop_vector_insert,
lhs_expr->operands[0]->type,
lhs_expr->operands[0],
new_rhs,
extract_channel);
lhs = lhs_expr->operands[0]->clone(ctx, NULL);
}
}
}
ir_variable *lhs_var = lhs->variable_referenced();
if (lhs_var)
lhs_var->data.assigned = true;
if (!error_emitted) {
if (non_lvalue_description != NULL) {
_mesa_glsl_error(&lhs_loc, state,
"assignment to %s",
non_lvalue_description);
error_emitted = true;
} else if (lhs_var != NULL && lhs_var->data.read_only) {
_mesa_glsl_error(&lhs_loc, state,
"assignment to read-only variable '%s'",
lhs_var->name);
error_emitted = true;
} else if (lhs->type->is_array() &&
!state->check_version(120, 300, &lhs_loc,
"whole array assignment forbidden")) {
/* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
*
* "Other binary or unary expressions, non-dereferenced
* arrays, function names, swizzles with repeated fields,
* and constants cannot be l-values."
*
* The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
*/
error_emitted = true;
} else if (!lhs->is_lvalue()) {
_mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
error_emitted = true;
}
}
ir_rvalue *new_rhs =
validate_assignment(state, lhs_loc, lhs->type, rhs, is_initializer);
if (new_rhs != NULL) {
rhs = new_rhs;
/* If the LHS array was not declared with a size, it takes it size from
* the RHS. If the LHS is an l-value and a whole array, it must be a
* dereference of a variable. Any other case would require that the LHS
* is either not an l-value or not a whole array.
*/
if (lhs->type->is_unsized_array()) {
ir_dereference *const d = lhs->as_dereference();
assert(d != NULL);
ir_variable *const var = d->variable_referenced();
assert(var != NULL);
if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
/* FINISHME: This should actually log the location of the RHS. */
_mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
"previous access",
var->data.max_array_access);
}
var->type = glsl_type::get_array_instance(lhs->type->element_type(),
rhs->type->array_size());
d->type = var->type;
}
if (lhs->type->is_array()) {
mark_whole_array_access(rhs);
mark_whole_array_access(lhs);
}
}
if (lhs->get_precision() == glsl_precision_undefined)
{
glsl_precision prec = precision_from_ir (rhs);
ir_dereference *const d = lhs->as_dereference();
if (d)
{
ir_variable *const var = d->variable_referenced();
if (var)
var->data.precision = prec;
}
}
/* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
* but not post_inc) need the converted assigned value as an rvalue
* to handle things like:
*
* i = j += 1;
*/
if (needs_rvalue) {
ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
ir_var_temporary, precision_from_ir(rhs));
instructions->push_tail(var);
instructions->push_tail(assign(var, rhs));
if (!error_emitted) {
ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
}
ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
if (extract_channel) {
rvalue = new(ctx) ir_expression(ir_binop_vector_extract,
rvalue,
extract_channel->clone(ctx, NULL));
}
*out_rvalue = rvalue;
} else {
if (!error_emitted)
instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
*out_rvalue = NULL;
}
return error_emitted;
}
static ir_rvalue *
get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
{
void *ctx = ralloc_parent(lvalue);
ir_variable *var;
var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
ir_var_temporary, precision_from_ir(lvalue));
instructions->push_tail(var);
instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
lvalue));
return new(ctx) ir_dereference_variable(var);
}
ir_rvalue *
ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
{
(void) instructions;
(void) state;
return NULL;
}
void
ast_function_expression::hir_no_rvalue(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
(void)hir(instructions, state);
}
void
ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
(void)hir(instructions, state);
}
static ir_rvalue *
do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
{
int join_op;
ir_rvalue *cmp = NULL;
if (operation == ir_binop_all_equal)
join_op = ir_binop_logic_and;
else
join_op = ir_binop_logic_or;
switch (op0->type->base_type) {
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_BOOL:
return new(mem_ctx) ir_expression(operation, op0, op1);
case GLSL_TYPE_ARRAY: {
for (unsigned int i = 0; i < op0->type->length; i++) {
ir_rvalue *e0, *e1, *result;
e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
new(mem_ctx) ir_constant(i));
e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
new(mem_ctx) ir_constant(i));
result = do_comparison(mem_ctx, operation, e0, e1);
if (cmp) {
cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
} else {
cmp = result;
}
}
mark_whole_array_access(op0);
mark_whole_array_access(op1);
break;
}
case GLSL_TYPE_STRUCT: {
for (unsigned int i = 0; i < op0->type->length; i++) {
ir_rvalue *e0, *e1, *result;
const char *field_name = op0->type->fields.structure[i].name;
e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
field_name);
e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
field_name);
result = do_comparison(mem_ctx, operation, e0, e1);
if (cmp) {
cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
} else {
cmp = result;
}
}
break;
}
case GLSL_TYPE_ERROR:
case GLSL_TYPE_VOID:
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_IMAGE:
case GLSL_TYPE_INTERFACE:
case GLSL_TYPE_ATOMIC_UINT:
/* I assume a comparison of a struct containing a sampler just
* ignores the sampler present in the type.
*/
break;
}
if (cmp == NULL)
cmp = new(mem_ctx) ir_constant(true);
return cmp;
}
/* For logical operations, we want to ensure that the operands are
* scalar booleans. If it isn't, emit an error and return a constant
* boolean to avoid triggering cascading error messages.
*/
ir_rvalue *
get_scalar_boolean_operand(exec_list *instructions,
struct _mesa_glsl_parse_state *state,
ast_expression *parent_expr,
int operand,
const char *operand_name,
bool *error_emitted)
{
ast_expression *expr = parent_expr->subexpressions[operand];
void *ctx = state;
ir_rvalue *val = expr->hir(instructions, state);
if (val->type->is_boolean() && val->type->is_scalar())
return val;
if (!*error_emitted) {
YYLTYPE loc = expr->get_location();
_mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
operand_name,
parent_expr->operator_string(parent_expr->oper));
*error_emitted = true;
}
return new(ctx) ir_constant(true);
}
/**
* If name refers to a builtin array whose maximum allowed size is less than
* size, report an error and return true. Otherwise return false.
*/
void
check_builtin_array_max_size(const char *name, unsigned size,
YYLTYPE loc, struct _mesa_glsl_parse_state *state)
{
if ((strcmp("gl_TexCoord", name) == 0)
&& (size > state->Const.MaxTextureCoords)) {
/* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
*
* "The size [of gl_TexCoord] can be at most
* gl_MaxTextureCoords."
*/
_mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
"be larger than gl_MaxTextureCoords (%u)",
state->Const.MaxTextureCoords);
} else if (strcmp("gl_ClipDistance", name) == 0
&& size > state->Const.MaxClipPlanes) {
/* From section 7.1 (Vertex Shader Special Variables) of the
* GLSL 1.30 spec:
*
* "The gl_ClipDistance array is predeclared as unsized and
* must be sized by the shader either redeclaring it with a
* size or indexing it only with integral constant
* expressions. ... The size can be at most
* gl_MaxClipDistances."
*/
_mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
"be larger than gl_MaxClipDistances (%u)",
state->Const.MaxClipPlanes);
}
}
/**
* Create the constant 1, of a which is appropriate for incrementing and
* decrementing values of the given GLSL type. For example, if type is vec4,
* this creates a constant value of 1.0 having type float.
*
* If the given type is invalid for increment and decrement operators, return
* a floating point 1--the error will be detected later.
*/
static ir_rvalue *
constant_one_for_inc_dec(void *ctx, const glsl_type *type)
{
switch (type->base_type) {
case GLSL_TYPE_UINT:
return new(ctx) ir_constant((unsigned) 1);
case GLSL_TYPE_INT:
return new(ctx) ir_constant(1);
default:
case GLSL_TYPE_FLOAT:
return new(ctx) ir_constant(1.0f);
}
}
ir_rvalue *
ast_expression::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
return do_hir(instructions, state, true);
}
void
ast_expression::hir_no_rvalue(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
do_hir(instructions, state, false);
}
ir_rvalue *
ast_expression::do_hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state,
bool needs_rvalue)
{
void *ctx = state;
static const int operations[AST_NUM_OPERATORS] = {
-1, /* ast_assign doesn't convert to ir_expression. */
-1, /* ast_plus doesn't convert to ir_expression. */
ir_unop_neg,
ir_binop_add,
ir_binop_sub,
ir_binop_mul,
ir_binop_div,
ir_binop_mod,
ir_binop_lshift,
ir_binop_rshift,
ir_binop_less,
ir_binop_greater,
ir_binop_lequal,
ir_binop_gequal,
ir_binop_all_equal,
ir_binop_any_nequal,
ir_binop_bit_and,
ir_binop_bit_xor,
ir_binop_bit_or,
ir_unop_bit_not,
ir_binop_logic_and,
ir_binop_logic_xor,
ir_binop_logic_or,
ir_unop_logic_not,
/* Note: The following block of expression types actually convert
* to multiple IR instructions.
*/
ir_binop_mul, /* ast_mul_assign */
ir_binop_div, /* ast_div_assign */
ir_binop_mod, /* ast_mod_assign */
ir_binop_add, /* ast_add_assign */
ir_binop_sub, /* ast_sub_assign */
ir_binop_lshift, /* ast_ls_assign */
ir_binop_rshift, /* ast_rs_assign */
ir_binop_bit_and, /* ast_and_assign */
ir_binop_bit_xor, /* ast_xor_assign */
ir_binop_bit_or, /* ast_or_assign */
-1, /* ast_conditional doesn't convert to ir_expression. */
ir_binop_add, /* ast_pre_inc. */
ir_binop_sub, /* ast_pre_dec. */
ir_binop_add, /* ast_post_inc. */
ir_binop_sub, /* ast_post_dec. */
-1, /* ast_field_selection doesn't conv to ir_expression. */
-1, /* ast_array_index doesn't convert to ir_expression. */
-1, /* ast_function_call doesn't conv to ir_expression. */
-1, /* ast_identifier doesn't convert to ir_expression. */
-1, /* ast_int_constant doesn't convert to ir_expression. */
-1, /* ast_uint_constant doesn't conv to ir_expression. */
-1, /* ast_float_constant doesn't conv to ir_expression. */
-1, /* ast_bool_constant doesn't conv to ir_expression. */
-1, /* ast_sequence doesn't convert to ir_expression. */
};
ir_rvalue *result = NULL;
ir_rvalue *op[3];
const struct glsl_type *type; /* a temporary variable for switch cases */
bool error_emitted = false;
YYLTYPE loc;
loc = this->get_location();
switch (this->oper) {
case ast_aggregate:
assert(!"ast_aggregate: Should never get here.");
break;
case ast_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
error_emitted =
do_assignment(instructions, state,
this->subexpressions[0]->non_lvalue_description,
op[0], op[1], &result, needs_rvalue, false,
this->subexpressions[0]->get_location());
break;
}
case ast_plus:
op[0] = this->subexpressions[0]->hir(instructions, state);
type = unary_arithmetic_result_type(op[0]->type, state, & loc);
error_emitted = type->is_error();
result = op[0];
break;
case ast_neg:
op[0] = this->subexpressions[0]->hir(instructions, state);
type = unary_arithmetic_result_type(op[0]->type, state, & loc);
error_emitted = type->is_error();
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], NULL);
break;
case ast_add:
case ast_sub:
case ast_mul:
case ast_div:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = arithmetic_result_type(op[0], op[1],
(this->oper == ast_mul),
state, & loc);
error_emitted = type->is_error();
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
break;
case ast_mod:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
assert(operations[this->oper] == ir_binop_mod);
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted = type->is_error();
break;
case ast_lshift:
case ast_rshift:
if (!state->check_bitwise_operations_allowed(&loc)) {
error_emitted = true;
}
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
&loc);
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
break;
case ast_less:
case ast_greater:
case ast_lequal:
case ast_gequal:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = relational_result_type(op[0], op[1], state, & loc);
/* The relational operators must either generate an error or result
* in a scalar boolean. See page 57 of the GLSL 1.50 spec.
*/
assert(type->is_error()
|| ((type->base_type == GLSL_TYPE_BOOL)
&& type->is_scalar()));
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted = type->is_error();
break;
case ast_nequal:
case ast_equal:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
/* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
*
* "The equality operators equal (==), and not equal (!=)
* operate on all types. They result in a scalar Boolean. If
* the operand types do not match, then there must be a
* conversion from Section 4.1.10 "Implicit Conversions"
* applied to one operand that can make them match, in which
* case this conversion is done."
*/
if ((!apply_implicit_conversion(op[0]->type, op[1], state)
&& !apply_implicit_conversion(op[1]->type, op[0], state))
|| (op[0]->type != op[1]->type)) {
_mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
"type", (this->oper == ast_equal) ? "==" : "!=");
error_emitted = true;
} else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
!state->check_version(120, 300, &loc,
"array comparisons forbidden")) {
error_emitted = true;
} else if ((op[0]->type->contains_opaque() ||
op[1]->type->contains_opaque())) {
_mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
error_emitted = true;
}
if (error_emitted) {
result = new(ctx) ir_constant(false);
} else {
result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
assert(result->type == glsl_type::bool_type);
}
break;
case ast_bit_and:
case ast_bit_xor:
case ast_bit_or:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
state, &loc);
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
break;
case ast_bit_not:
op[0] = this->subexpressions[0]->hir(instructions, state);
if (!state->check_bitwise_operations_allowed(&loc)) {
error_emitted = true;
}
if (!op[0]->type->is_integer()) {
_mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
error_emitted = true;
}
type = error_emitted ? glsl_type::error_type : op[0]->type;
result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
break;
case ast_logic_and: {
exec_list rhs_instructions;
op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
"LHS", &error_emitted);
op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
"RHS", &error_emitted);
if (rhs_instructions.is_empty()) {
result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
type = result->type;
} else {
ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
"and_tmp",
ir_var_temporary, glsl_precision_low);
instructions->push_tail(tmp);
ir_if *const stmt = new(ctx) ir_if(op[0]);
instructions->push_tail(stmt);
stmt->then_instructions.append_list(&rhs_instructions);
ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
ir_assignment *const then_assign =
new(ctx) ir_assignment(then_deref, op[1]);
stmt->then_instructions.push_tail(then_assign);
ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
ir_assignment *const else_assign =
new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
stmt->else_instructions.push_tail(else_assign);
result = new(ctx) ir_dereference_variable(tmp);
type = tmp->type;
}
break;
}
case ast_logic_or: {
exec_list rhs_instructions;
op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
"LHS", &error_emitted);
op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
"RHS", &error_emitted);
if (rhs_instructions.is_empty()) {
result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
type = result->type;
} else {
ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
"or_tmp",
ir_var_temporary, glsl_precision_low);
instructions->push_tail(tmp);
ir_if *const stmt = new(ctx) ir_if(op[0]);
instructions->push_tail(stmt);
ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
ir_assignment *const then_assign =
new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
stmt->then_instructions.push_tail(then_assign);
stmt->else_instructions.append_list(&rhs_instructions);
ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
ir_assignment *const else_assign =
new(ctx) ir_assignment(else_deref, op[1]);
stmt->else_instructions.push_tail(else_assign);
result = new(ctx) ir_dereference_variable(tmp);
type = tmp->type;
}
break;
}
case ast_logic_xor:
/* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
*
* "The logical binary operators and (&&), or ( | | ), and
* exclusive or (^^). They operate only on two Boolean
* expressions and result in a Boolean expression."
*/
op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
&error_emitted);
op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
&error_emitted);
result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
op[0], op[1]);
break;
case ast_logic_not:
op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
"operand", &error_emitted);
result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
op[0], NULL);
break;
case ast_mul_assign:
case ast_div_assign:
case ast_add_assign:
case ast_sub_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = arithmetic_result_type(op[0], op[1],
(this->oper == ast_mul_assign),
state, & loc);
ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted =
do_assignment(instructions, state,
this->subexpressions[0]->non_lvalue_description,
op[0]->clone(ctx, NULL), temp_rhs,
&result, needs_rvalue, false,
this->subexpressions[0]->get_location());
/* GLSL 1.10 does not allow array assignment. However, we don't have to
* explicitly test for this because none of the binary expression
* operators allow array operands either.
*/
break;
}
case ast_mod_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
assert(operations[this->oper] == ir_binop_mod);
ir_rvalue *temp_rhs;
temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted =
do_assignment(instructions, state,
this->subexpressions[0]->non_lvalue_description,
op[0]->clone(ctx, NULL), temp_rhs,
&result, needs_rvalue, false,
this->subexpressions[0]->get_location());
break;
}
case ast_ls_assign:
case ast_rs_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
&loc);
ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
type, op[0], op[1]);
error_emitted =
do_assignment(instructions, state,
this->subexpressions[0]->non_lvalue_description,
op[0]->clone(ctx, NULL), temp_rhs,
&result, needs_rvalue, false,
this->subexpressions[0]->get_location());
break;
}
case ast_and_assign:
case ast_xor_assign:
case ast_or_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
state, &loc);
ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
type, op[0], op[1]);
error_emitted =
do_assignment(instructions, state,
this->subexpressions[0]->non_lvalue_description,
op[0]->clone(ctx, NULL), temp_rhs,
&result, needs_rvalue, false,
this->subexpressions[0]->get_location());
break;
}
case ast_conditional: {
/* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
*
* "The ternary selection operator (?:). It operates on three
* expressions (exp1 ? exp2 : exp3). This operator evaluates the
* first expression, which must result in a scalar Boolean."
*/
op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
"condition", &error_emitted);
/* The :? operator is implemented by generating an anonymous temporary
* followed by an if-statement. The last instruction in each branch of
* the if-statement assigns a value to the anonymous temporary. This
* temporary is the r-value of the expression.
*/
exec_list then_instructions;
exec_list else_instructions;
op[1] = this->subexpressions[1]->hir(&then_instructions, state);
op[2] = this->subexpressions[2]->hir(&else_instructions, state);
/* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
*
* "The second and third expressions can be any type, as
* long their types match, or there is a conversion in
* Section 4.1.10 "Implicit Conversions" that can be applied
* to one of the expressions to make their types match. This
* resulting matching type is the type of the entire
* expression."
*/
if ((!apply_implicit_conversion(op[1]->type, op[2], state)
&& !apply_implicit_conversion(op[2]->type, op[1], state))
|| (op[1]->type != op[2]->type)) {
YYLTYPE loc = this->subexpressions[1]->get_location();
_mesa_glsl_error(& loc, state, "second and third operands of ?: "
"operator must have matching types");
error_emitted = true;
type = glsl_type::error_type;
} else {
type = op[1]->type;
}
/* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
*
* "The second and third expressions must be the same type, but can
* be of any type other than an array."
*/
if (type->is_array() &&
!state->check_version(120, 300, &loc,
"second and third operands of ?: operator "
"cannot be arrays")) {
error_emitted = true;
}
ir_constant *cond_val = op[0]->constant_expression_value();
ir_constant *then_val = op[1]->constant_expression_value();
ir_constant *else_val = op[2]->constant_expression_value();
if (then_instructions.is_empty()
&& else_instructions.is_empty()
&& (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
result = (cond_val->value.b[0]) ? then_val : else_val;
} else {
ir_variable *const tmp =
new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary, higher_precision(op[1], op[2]));
instructions->push_tail(tmp);
ir_if *const stmt = new(ctx) ir_if(op[0]);
instructions->push_tail(stmt);
then_instructions.move_nodes_to(& stmt->then_instructions);
ir_dereference *const then_deref =
new(ctx) ir_dereference_variable(tmp);
ir_assignment *const then_assign =
new(ctx) ir_assignment(then_deref, op[1]);
stmt->then_instructions.push_tail(then_assign);
else_instructions.move_nodes_to(& stmt->else_instructions);
ir_dereference *const else_deref =
new(ctx) ir_dereference_variable(tmp);
ir_assignment *const else_assign =
new(ctx) ir_assignment(else_deref, op[2]);
stmt->else_instructions.push_tail(else_assign);
result = new(ctx) ir_dereference_variable(tmp);
}
break;
}
case ast_pre_inc:
case ast_pre_dec: {
this->non_lvalue_description = (this->oper == ast_pre_inc)
? "pre-increment operation" : "pre-decrement operation";
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
type = arithmetic_result_type(op[0], op[1], false, state, & loc);
ir_rvalue *temp_rhs;
temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted =
do_assignment(instructions, state,
this->subexpressions[0]->non_lvalue_description,
op[0]->clone(ctx, NULL), temp_rhs,
&result, needs_rvalue, false,
this->subexpressions[0]->get_location());
break;
}
case ast_post_inc:
case ast_post_dec: {
this->non_lvalue_description = (this->oper == ast_post_inc)
? "post-increment operation" : "post-decrement operation";
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
type = arithmetic_result_type(op[0], op[1], false, state, & loc);
ir_rvalue *temp_rhs;
temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
/* Get a temporary of a copy of the lvalue before it's modified.
* This may get thrown away later.
*/
result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
ir_rvalue *junk_rvalue;
error_emitted =
do_assignment(instructions, state,
this->subexpressions[0]->non_lvalue_description,
op[0]->clone(ctx, NULL), temp_rhs,
&junk_rvalue, false, false,
this->subexpressions[0]->get_location());
break;
}
case ast_field_selection:
result = _mesa_ast_field_selection_to_hir(this, instructions, state);
break;
case ast_array_index: {
YYLTYPE index_loc = subexpressions[1]->get_location();
op[0] = subexpressions[0]->hir(instructions, state);
op[1] = subexpressions[1]->hir(instructions, state);
result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
loc, index_loc);
if (result->type->is_error())
error_emitted = true;
break;
}
case ast_function_call:
/* Should *NEVER* get here. ast_function_call should always be handled
* by ast_function_expression::hir.
*/
assert(0);
break;
case ast_identifier: {
/* ast_identifier can appear several places in a full abstract syntax
* tree. This particular use must be at location specified in the grammar
* as 'variable_identifier'.
*/
ir_variable *var =
state->symbols->get_variable(this->primary_expression.identifier);
if (var != NULL) {
var->data.used = true;
result = new(ctx) ir_dereference_variable(var);
} else {
_mesa_glsl_error(& loc, state, "`%s' undeclared",
this->primary_expression.identifier);
result = ir_rvalue::error_value(ctx);
error_emitted = true;
}
break;
}
case ast_int_constant:
result = new(ctx) ir_constant(this->primary_expression.int_constant);
break;
case ast_uint_constant:
result = new(ctx) ir_constant(this->primary_expression.uint_constant);
break;
case ast_float_constant:
result = new(ctx) ir_constant(this->primary_expression.float_constant);
break;
case ast_bool_constant:
result = new(ctx) ir_constant(bool(!!this->primary_expression.bool_constant));
break;
case ast_sequence: {
/* It should not be possible to generate a sequence in the AST without
* any expressions in it.
*/
assert(!this->expressions.is_empty());
/* The r-value of a sequence is the last expression in the sequence. If
* the other expressions in the sequence do not have side-effects (and
* therefore add instructions to the instruction list), they get dropped
* on the floor.
*/
exec_node *previous_tail_pred = NULL;
YYLTYPE previous_operand_loc = loc;
foreach_list_typed (ast_node, ast, link, &this->expressions) {
/* If one of the operands of comma operator does not generate any
* code, we want to emit a warning. At each pass through the loop
* previous_tail_pred will point to the last instruction in the
* stream *before* processing the previous operand. Naturally,
* instructions->tail_pred will point to the last instruction in the
* stream *after* processing the previous operand. If the two
* pointers match, then the previous operand had no effect.
*
* The warning behavior here differs slightly from GCC. GCC will
* only emit a warning if none of the left-hand operands have an
* effect. However, it will emit a warning for each. I believe that
* there are some cases in C (especially with GCC extensions) where
* it is useful to have an intermediate step in a sequence have no
* effect, but I don't think these cases exist in GLSL. Either way,
* it would be a giant hassle to replicate that behavior.
*/
if (previous_tail_pred == instructions->tail_pred) {
_mesa_glsl_warning(&previous_operand_loc, state,
"left-hand operand of comma expression has "
"no effect");
}
/* tail_pred is directly accessed instead of using the get_tail()
* method for performance reasons. get_tail() has extra code to
* return NULL when the list is empty. We don't care about that
* here, so using tail_pred directly is fine.
*/
previous_tail_pred = instructions->tail_pred;
previous_operand_loc = ast->get_location();
result = ast->hir(instructions, state);
}
/* Any errors should have already been emitted in the loop above.
*/
error_emitted = true;
break;
}
}
type = NULL; /* use result->type, not type. */
assert(result != NULL || !needs_rvalue);
if (result && result->type->is_error() && !error_emitted)
_mesa_glsl_error(& loc, state, "type mismatch");
return result;
}
ir_rvalue *
ast_expression_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
/* It is possible to have expression statements that don't have an
* expression. This is the solitary semicolon:
*
* for (i = 0; i < 5; i++)
* ;
*
* In this case the expression will be NULL. Test for NULL and don't do
* anything in that case.
*/
if (expression != NULL)
expression->hir_no_rvalue(instructions, state);
/* Statements do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_compound_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
if (new_scope)
state->symbols->push_scope();
foreach_list_typed (ast_node, ast, link, &this->statements)
ast->hir(instructions, state);
if (new_scope)
state->symbols->pop_scope();
/* Compound statements do not have r-values.
*/
return NULL;
}
/**
* Evaluate the given exec_node (which should be an ast_node representing
* a single array dimension) and return its integer value.
*/
static unsigned
process_array_size(exec_node *node,
struct _mesa_glsl_parse_state *state)
{
exec_list dummy_instructions;
ast_node *array_size = exec_node_data(ast_node, node, link);
ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
YYLTYPE loc = array_size->get_location();
if (ir == NULL) {
_mesa_glsl_error(& loc, state,
"array size could not be resolved");
return 0;
}
if (!ir->type->is_integer()) {
_mesa_glsl_error(& loc, state,
"array size must be integer type");
return 0;
}
if (!ir->type->is_scalar()) {
_mesa_glsl_error(& loc, state,
"array size must be scalar type");
return 0;
}
ir_constant *const size = ir->constant_expression_value();
if (size == NULL) {
_mesa_glsl_error(& loc, state, "array size must be a "
"constant valued expression");
return 0;
}
if (size->value.i[0] <= 0) {
_mesa_glsl_error(& loc, state, "array size must be > 0");
return 0;
}
assert(size->type == ir->type);
/* If the array size is const (and we've verified that
* it is) then no instructions should have been emitted
* when we converted it to HIR. If they were emitted,
* then either the array size isn't const after all, or
* we are emitting unnecessary instructions.
*/
assert(dummy_instructions.is_empty());
return size->value.u[0];
}
static const glsl_type *
process_array_type(YYLTYPE *loc, const glsl_type *base,
ast_array_specifier *array_specifier,
struct _mesa_glsl_parse_state *state)
{
const glsl_type *array_type = base;
if (array_specifier != NULL) {
if (base->is_array()) {
/* From page 19 (page 25) of the GLSL 1.20 spec:
*
* "Only one-dimensional arrays may be declared."
*/
if (!state->ARB_arrays_of_arrays_enable) {
_mesa_glsl_error(loc, state,
"invalid array of `%s'"
"GL_ARB_arrays_of_arrays "
"required for defining arrays of arrays",
base->name);
return glsl_type::error_type;
}
if (base->length == 0) {
_mesa_glsl_error(loc, state,
"only the outermost array dimension can "
"be unsized",
base->name);
return glsl_type::error_type;
}
}
for (exec_node *node = array_specifier->array_dimensions.tail_pred;
!node->is_head_sentinel(); node = node->prev) {
unsigned array_size = process_array_size(node, state);
array_type = glsl_type::get_array_instance(array_type, array_size);
}
if (array_specifier->is_unsized_array)
array_type = glsl_type::get_array_instance(array_type, 0);
}
return array_type;
}
const glsl_type *
ast_type_specifier::glsl_type(const char **name,
struct _mesa_glsl_parse_state *state) const
{
const struct glsl_type *type;
type = state->symbols->get_type(this->type_name);
*name = this->type_name;
YYLTYPE loc = this->get_location();
type = process_array_type(&loc, type, this->array_specifier, state);
return type;
}
const glsl_type *
ast_fully_specified_type::glsl_type(const char **name,
struct _mesa_glsl_parse_state *state) const
{
const struct glsl_type *type = this->specifier->glsl_type(name, state);
if (type == NULL)
return NULL;
/* GLSL Optimizer change: do allow unspecified precision; hlsl2glsl
produces a bunch of wrapper functions without precision specified.
if (type->base_type == GLSL_TYPE_FLOAT
&& state->es_shader
&& state->stage == MESA_SHADER_FRAGMENT
&& this->qualifier.precision == ast_precision_none
&& state->symbols->get_variable("#default precision") == NULL) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state,
"no precision specified this scope for type `%s'",
type->name);
}
*/
return type;
}
/**
* Determine whether a toplevel variable declaration declares a varying. This
* function operates by examining the variable's mode and the shader target,
* so it correctly identifies linkage variables regardless of whether they are
* declared using the deprecated "varying" syntax or the new "in/out" syntax.
*
* Passing a non-toplevel variable declaration (e.g. a function parameter) to
* this function will produce undefined results.
*/
static bool
is_varying_var(ir_variable *var, gl_shader_stage target)
{
switch (target) {
case MESA_SHADER_VERTEX:
return var->data.mode == ir_var_shader_out;
case MESA_SHADER_FRAGMENT:
return var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_inout;
default:
return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
}
}
/**
* Matrix layout qualifiers are only allowed on certain types
*/
static void
validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
YYLTYPE *loc,
const glsl_type *type,
ir_variable *var)
{
if (var && !var->is_in_uniform_block()) {
/* Layout qualifiers may only apply to interface blocks and fields in
* them.
*/
_mesa_glsl_error(loc, state,
"uniform block layout qualifiers row_major and "
"column_major may not be applied to variables "
"outside of uniform blocks");
} else if (!type->is_matrix()) {
/* The OpenGL ES 3.0 conformance tests did not originally allow
* matrix layout qualifiers on non-matrices. However, the OpenGL
* 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
* amended to specifically allow these layouts on all types. Emit
* a warning so that people know their code may not be portable.
*/
_mesa_glsl_warning(loc, state,
"uniform block layout qualifiers row_major and "
"column_major applied to non-matrix types may "
"be rejected by older compilers");
} else if (type->is_record()) {
/* We allow 'layout(row_major)' on structure types because it's the only
* way to get row-major layouts on matrices contained in structures.
*/
_mesa_glsl_warning(loc, state,
"uniform block layout qualifiers row_major and "
"column_major applied to structure types is not "
"strictly conformant and may be rejected by other "
"compilers");
}
}
static bool
validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
YYLTYPE *loc,
ir_variable *var,
const ast_type_qualifier *qual)
{
if (var->data.mode != ir_var_uniform) {
_mesa_glsl_error(loc, state,
"the \"binding\" qualifier only applies to uniforms");
return false;
}
if (qual->binding < 0) {
_mesa_glsl_error(loc, state, "binding values must be >= 0");
return false;
}
const struct gl_context *const ctx = state->ctx;
unsigned elements = var->type->is_array() ? var->type->length : 1;
unsigned max_index = qual->binding + elements - 1;
if (var->type->is_interface()) {
/* UBOs. From page 60 of the GLSL 4.20 specification:
* "If the binding point for any uniform block instance is less than zero,
* or greater than or equal to the implementation-dependent maximum
* number of uniform buffer bindings, a compilation error will occur.
* When the binding identifier is used with a uniform block instanced as
* an array of size N, all elements of the array from binding through
* binding + N 1 must be within this range."
*
* The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
*/
if (max_index >= ctx->Const.MaxUniformBufferBindings) {
_mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
"the maximum number of UBO binding points (%d)",
qual->binding, elements,
ctx->Const.MaxUniformBufferBindings);
return false;
}
} else if (var->type->is_sampler() ||
(var->type->is_array() && var->type->fields.array->is_sampler())) {
/* Samplers. From page 63 of the GLSL 4.20 specification:
* "If the binding is less than zero, or greater than or equal to the
* implementation-dependent maximum supported number of units, a
* compilation error will occur. When the binding identifier is used
* with an array of size N, all elements of the array from binding
* through binding + N - 1 must be within this range."
*/
unsigned limit = ctx->Const.Program[state->stage].MaxTextureImageUnits;
if (max_index >= limit) {
_mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
"exceeds the maximum number of texture image units "
"(%d)", qual->binding, elements, limit);
return false;
}
} else if (var->type->contains_atomic()) {
assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
_mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
" maximum number of atomic counter buffer bindings"
"(%d)", qual->binding,
ctx->Const.MaxAtomicBufferBindings);
return false;
}
} else {
_mesa_glsl_error(loc, state,
"the \"binding\" qualifier only applies to uniform "
"blocks, samplers, atomic counters, or arrays thereof");
return false;
}
return true;
}
static glsl_interp_qualifier
interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
ir_variable_mode mode,
struct _mesa_glsl_parse_state *state,
YYLTYPE *loc)
{
glsl_interp_qualifier interpolation;
if (qual->flags.q.flat)
interpolation = INTERP_QUALIFIER_FLAT;
else if (qual->flags.q.noperspective)
interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
else if (qual->flags.q.smooth)
interpolation = INTERP_QUALIFIER_SMOOTH;
else
interpolation = INTERP_QUALIFIER_NONE;
if (interpolation != INTERP_QUALIFIER_NONE) {
if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
_mesa_glsl_error(loc, state,
"interpolation qualifier `%s' can only be applied to "
"shader inputs or outputs.",
interpolation_string(interpolation));
}
if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
(state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
_mesa_glsl_error(loc, state,
"interpolation qualifier `%s' cannot be applied to "
"vertex shader inputs or fragment shader outputs",
interpolation_string(interpolation));
}
}
return interpolation;
}
static void
validate_explicit_location(const struct ast_type_qualifier *qual,
ir_variable *var,
struct _mesa_glsl_parse_state *state,
YYLTYPE *loc)
{
bool fail = false;
/* Checks for GL_ARB_explicit_uniform_location. */
if (qual->flags.q.uniform) {
if (!state->check_explicit_uniform_location_allowed(loc, var))
return;
const struct gl_context *const ctx = state->ctx;
unsigned max_loc = qual->location + var->type->uniform_locations() - 1;
/* ARB_explicit_uniform_location specification states:
*
* "The explicitly defined locations and the generated locations
* must be in the range of 0 to MAX_UNIFORM_LOCATIONS minus one."
*
* "Valid locations for default-block uniform variable locations
* are in the range of 0 to the implementation-defined maximum
* number of uniform locations."
*/
if (qual->location < 0) {
_mesa_glsl_error(loc, state,
"explicit location < 0 for uniform %s", var->name);
return;
}
if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
_mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
ctx->Const.MaxUserAssignableUniformLocations);
return;
}
var->data.explicit_location = true;
var->data.location = qual->location;
return;
}
/* Between GL_ARB_explicit_attrib_location an
* GL_ARB_separate_shader_objects, the inputs and outputs of any shader
* stage can be assigned explicit locations. The checking here associates
* the correct extension with the correct stage's input / output:
*
* input output
* ----- ------
* vertex explicit_loc sso
* geometry sso sso
* fragment sso explicit_loc
*/
switch (state->stage) {
case MESA_SHADER_VERTEX:
if (var->data.mode == ir_var_shader_in) {
if (!state->check_explicit_attrib_location_allowed(loc, var))
return;
break;
}
if (var->data.mode == ir_var_shader_out) {
if (!state->check_separate_shader_objects_allowed(loc, var))
return;
break;
}
fail = true;
break;
case MESA_SHADER_GEOMETRY:
if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
if (!state->check_separate_shader_objects_allowed(loc, var))
return;
break;
}
fail = true;
break;
case MESA_SHADER_FRAGMENT:
if (var->data.mode == ir_var_shader_in) {
if (!state->check_separate_shader_objects_allowed(loc, var))
return;
break;
}
if (var->data.mode == ir_var_shader_out) {
if (!state->check_explicit_attrib_location_allowed(loc, var))
return;
break;
}
// EXT_shader_framebuffer_fetch:
// ability to use the inout qualifier at global scope
// in a fragment shader, is optional and must be enabled by
// #extension GL_EXT_shader_framebuffer_fetch
if (var->data.mode == ir_var_shader_inout && state->EXT_shader_framebuffer_fetch_enable) {
break;
}
fail = true;
break;
case MESA_SHADER_COMPUTE:
_mesa_glsl_error(loc, state,
"compute shader variables cannot be given "
"explicit locations");
return;
};
if (fail) {
_mesa_glsl_error(loc, state,
"%s cannot be given an explicit location in %s shader",
mode_string(var),
_mesa_shader_stage_to_string(state->stage));
} else {
var->data.explicit_location = true;
/* This bit of silliness is needed because invalid explicit locations
* are supposed to be flagged during linking. Small negative values
* biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
* built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
* The linker needs to be able to differentiate these cases. This
* ensures that negative values stay negative.
*/
if (qual->location >= 0) {
switch (state->stage) {
case MESA_SHADER_VERTEX:
var->data.location = (var->data.mode == ir_var_shader_in)
? (qual->location + VERT_ATTRIB_GENERIC0)
: (qual->location + VARYING_SLOT_VAR0);
break;
case MESA_SHADER_GEOMETRY:
var->data.location = qual->location + VARYING_SLOT_VAR0;
break;
case MESA_SHADER_FRAGMENT:
var->data.location = (var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_inout)
? (qual->location + FRAG_RESULT_DATA0)
: (qual->location + VARYING_SLOT_VAR0);
break;
case MESA_SHADER_COMPUTE:
assert(!"Unexpected shader type");
break;
}
} else {
var->data.location = qual->location;
}
if (qual->flags.q.explicit_index) {
/* From the GLSL 4.30 specification, section 4.4.2 (Output
* Layout Qualifiers):
*
* "It is also a compile-time error if a fragment shader
* sets a layout index to less than 0 or greater than 1."
*
* Older specifications don't mandate a behavior; we take
* this as a clarification and always generate the error.
*/
if (qual->index < 0 || qual->index > 1) {
_mesa_glsl_error(loc, state,
"explicit index may only be 0 or 1");
} else {
var->data.explicit_index = true;
var->data.index = qual->index;
}
}
}
}
static void
apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
ir_variable *var,
struct _mesa_glsl_parse_state *state,
YYLTYPE *loc)
{
const glsl_type *base_type =
(var->type->is_array() ? var->type->element_type() : var->type);
if (base_type->is_image()) {
if (var->data.mode != ir_var_uniform &&
var->data.mode != ir_var_function_in) {
_mesa_glsl_error(loc, state, "image variables may only be declared as "
"function parameters or uniform-qualified "
"global variables");
}
var->data.image_read_only |= qual->flags.q.read_only;
var->data.image_write_only |= qual->flags.q.write_only;
var->data.image_coherent |= qual->flags.q.coherent;
var->data.image_volatile |= qual->flags.q._volatile;
var->data.image_restrict |= qual->flags.q.restrict_flag;
var->data.read_only = true;
if (qual->flags.q.explicit_image_format) {
if (var->data.mode == ir_var_function_in) {
_mesa_glsl_error(loc, state, "format qualifiers cannot be "
"used on image function parameters");
}
if (qual->image_base_type != base_type->sampler_type) {
_mesa_glsl_error(loc, state, "format qualifier doesn't match the "
"base data type of the image");
}
var->data.image_format = qual->image_format;
} else {
if (var->data.mode == ir_var_uniform && !qual->flags.q.write_only) {
_mesa_glsl_error(loc, state, "uniforms not qualified with "
"`writeonly' must have a format layout "
"qualifier");
}
var->data.image_format = GL_NONE;
}
}
}
static inline const char*
get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
{
if (origin_upper_left && pixel_center_integer)
return "origin_upper_left, pixel_center_integer";
else if (origin_upper_left)
return "origin_upper_left";
else if (pixel_center_integer)
return "pixel_center_integer";
else
return " ";
}
static inline bool
is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
const struct ast_type_qualifier *qual)
{
/* If gl_FragCoord was previously declared, and the qualifiers were
* different in any way, return true.
*/
if (state->fs_redeclares_gl_fragcoord) {
return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
|| state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
}
return false;
}
static void
apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
ir_variable *var,
struct _mesa_glsl_parse_state *state,
YYLTYPE *loc,
bool is_parameter)
{
STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
if (qual->flags.q.invariant) {
if (var->data.used) {
_mesa_glsl_error(loc, state,
"variable `%s' may not be redeclared "
"`invariant' after being used",
var->name);
} else {
var->data.invariant = 1;
}
}
if (qual->flags.q.precise) {
if (var->data.used) {
_mesa_glsl_error(loc, state,
"variable `%s' may not be redeclared "
"`precise' after being used",
var->name);
} else {
var->data.precise = 1;
}
}
if (qual->flags.q.constant || qual->flags.q.attribute
|| qual->flags.q.uniform
|| (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
var->data.read_only = 1;
if (qual->flags.q.centroid)
var->data.centroid = 1;
if (qual->flags.q.sample)
var->data.sample = 1;
if (state->stage == MESA_SHADER_GEOMETRY &&
qual->flags.q.out && qual->flags.q.stream) {
var->data.stream = qual->stream;
}
if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
var->type = glsl_type::error_type;
_mesa_glsl_error(loc, state,
"`attribute' variables may not be declared in the "
"%s shader",
_mesa_shader_stage_to_string(state->stage));
}
/* Disallow layout qualifiers which may only appear on layout declarations. */
if (qual->flags.q.prim_type) {
_mesa_glsl_error(loc, state,
"Primitive type may only be specified on GS input or output "
"layout declaration, not on variables.");
}
/* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
*
* "However, the const qualifier cannot be used with out or inout."
*
* The same section of the GLSL 4.40 spec further clarifies this saying:
*
* "The const qualifier cannot be used with out or inout, or a
* compile-time error results."
*/
if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
_mesa_glsl_error(loc, state,
"`const' may not be applied to `out' or `inout' "
"function parameters");
}
/* If there is no qualifier that changes the mode of the variable, leave
* the setting alone.
*/
assert(var->data.mode != ir_var_temporary);
if (qual->flags.q.in && qual->flags.q.out)
{
if (!is_parameter && (state->stage == MESA_SHADER_FRAGMENT))
var->data.mode = ir_var_shader_inout;
else
var->data.mode = ir_var_function_inout;
}
else if (qual->flags.q.in)
var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
else if (qual->flags.q.attribute
|| (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
var->data.mode = ir_var_shader_in;
else if (qual->flags.q.out)
var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
var->data.mode = ir_var_shader_out;
else if (qual->flags.q.uniform)
var->data.mode = ir_var_uniform;
if (!is_parameter && is_varying_var(var, state->stage)) {
/* User-defined ins/outs are not permitted in compute shaders. */
if (state->stage == MESA_SHADER_COMPUTE) {
_mesa_glsl_error(loc, state,
"user-defined input and output variables are not "
"permitted in compute shaders");
}
/* This variable is being used to link data between shader stages (in
* pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
* that is allowed for such purposes.
*
* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
*
* "The varying qualifier can be used only with the data types
* float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
* these."
*
* This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
* page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
*
* "Fragment inputs can only be signed and unsigned integers and
* integer vectors, float, floating-point vectors, matrices, or
* arrays of these. Structures cannot be input.
*
* Similar text exists in the section on vertex shader outputs.
*
* Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
* 3.00 spec allows structs as well. Varying structs are also allowed
* in GLSL 1.50.
*/
switch (var->type->get_scalar_type()->base_type) {
case GLSL_TYPE_FLOAT:
/* Ok in all GLSL versions */
break;
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
if (state->is_version(130, 300))
break;
_mesa_glsl_error(loc, state,
"varying variables must be of base type float in %s",
state->get_version_string());
break;
case GLSL_TYPE_STRUCT:
if (state->is_version(150, 300))
break;
_mesa_glsl_error(loc, state,
"varying variables may not be of type struct");
break;
default:
_mesa_glsl_error(loc, state, "illegal type for a varying variable");
break;
}
}
if (state->all_invariant && (state->current_function == NULL)) {
switch (state->stage) {
case MESA_SHADER_VERTEX:
if (var->data.mode == ir_var_shader_out)
var->data.invariant = true;
break;
case MESA_SHADER_GEOMETRY:
if ((var->data.mode == ir_var_shader_in)
|| (var->data.mode == ir_var_shader_out))
var->data.invariant = true;
break;
case MESA_SHADER_FRAGMENT:
if (var->data.mode == ir_var_shader_in)
var->data.invariant = true;
break;
case MESA_SHADER_COMPUTE:
/* Invariance isn't meaningful in compute shaders. */
break;
}
}
var->data.interpolation =
interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
state, loc);
var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
var->data.origin_upper_left = qual->flags.q.origin_upper_left;
if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
&& (strcmp(var->name, "gl_FragCoord") != 0)) {
const char *const qual_string = (qual->flags.q.origin_upper_left)
? "origin_upper_left" : "pixel_center_integer";
_mesa_glsl_error(loc, state,
"layout qualifier `%s' can only be applied to "
"fragment shader input `gl_FragCoord'",
qual_string);
}
if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
/* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
*
* "Within any shader, the first redeclarations of gl_FragCoord
* must appear before any use of gl_FragCoord."
*
* Generate a compiler error if above condition is not met by the
* fragment shader.
*/
ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
if (earlier != NULL &&
earlier->data.used &&
!state->fs_redeclares_gl_fragcoord) {
_mesa_glsl_error(loc, state,
"gl_FragCoord used before its first redeclaration "
"in fragment shader");
}
/* Make sure all gl_FragCoord redeclarations specify the same layout
* qualifiers.
*/
if (is_conflicting_fragcoord_redeclaration(state, qual)) {
const char *const qual_string =
get_layout_qualifier_string(qual->flags.q.origin_upper_left,
qual->flags.q.pixel_center_integer);
const char *const state_string =
get_layout_qualifier_string(state->fs_origin_upper_left,
state->fs_pixel_center_integer);
_mesa_glsl_error(loc, state,
"gl_FragCoord redeclared with different layout "
"qualifiers (%s) and (%s) ",
state_string,
qual_string);
}
state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
!qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
state->fs_redeclares_gl_fragcoord =
state->fs_origin_upper_left ||
state->fs_pixel_center_integer ||
state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
}
if (qual->flags.q.explicit_location) {
validate_explicit_location(qual, var, state, loc);
} else if (qual->flags.q.explicit_index) {
_mesa_glsl_error(loc, state, "explicit index requires explicit location");
}
if (qual->flags.q.explicit_binding &&
validate_binding_qualifier(state, loc, var, qual)) {
var->data.explicit_binding = true;
var->data.binding = qual->binding;
}
if (var->type->contains_atomic()) {
if (var->data.mode == ir_var_uniform) {
if (var->data.explicit_binding) {
unsigned *offset =
&state->atomic_counter_offsets[var->data.binding];
if (*offset % ATOMIC_COUNTER_SIZE)
_mesa_glsl_error(loc, state,
"misaligned atomic counter offset");
var->data.atomic.offset = *offset;
*offset += var->type->atomic_size();
} else {
_mesa_glsl_error(loc, state,
"atomic counters require explicit binding point");
}
} else if (var->data.mode != ir_var_function_in) {
_mesa_glsl_error(loc, state, "atomic counters may only be declared as "
"function parameters or uniform-qualified "
"global variables");
}
}
/* Does the declaration use the deprecated 'attribute' or 'varying'
* keywords?
*/
const bool uses_deprecated_qualifier = qual->flags.q.attribute
|| qual->flags.q.varying;
/* Validate auxiliary storage qualifiers */
/* From section 4.3.4 of the GLSL 1.30 spec:
* "It is an error to use centroid in in a vertex shader."
*
* From section 4.3.4 of the GLSL ES 3.00 spec:
* "It is an error to use centroid in or interpolation qualifiers in
* a vertex shader input."
*/
/* Section 4.3.6 of the GLSL 1.30 specification states:
* "It is an error to use centroid out in a fragment shader."
*
* The GL_ARB_shading_language_420pack extension specification states:
* "It is an error to use auxiliary storage qualifiers or interpolation
* qualifiers on an output in a fragment shader."
*/
if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
_mesa_glsl_error(loc, state,
"sample qualifier may only be used on `in` or `out` "
"variables between shader stages");
}
if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
_mesa_glsl_error(loc, state,
"centroid qualifier may only be used with `in', "
"`out' or `varying' variables between shader stages");
}
/* Is the 'layout' keyword used with parameters that allow relaxed checking.
* Many implementations of GL_ARB_fragment_coord_conventions_enable and some
* implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
* allowed the layout qualifier to be used with 'varying' and 'attribute'.
* These extensions and all following extensions that add the 'layout'
* keyword have been modified to require the use of 'in' or 'out'.
*
* The following extension do not allow the deprecated keywords:
*
* GL_AMD_conservative_depth
* GL_ARB_conservative_depth
* GL_ARB_gpu_shader5
* GL_ARB_separate_shader_objects
* GL_ARB_tesselation_shader
* GL_ARB_transform_feedback3
* GL_ARB_uniform_buffer_object
*
* It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
* allow layout with the deprecated keywords.
*/
const bool relaxed_layout_qualifier_checking =
state->ARB_fragment_coord_conventions_enable;
if (qual->has_layout() && uses_deprecated_qualifier) {
if (relaxed_layout_qualifier_checking) {
_mesa_glsl_warning(loc, state,
"`layout' qualifier may not be used with "
"`attribute' or `varying'");
} else {
_mesa_glsl_error(loc, state,
"`layout' qualifier may not be used with "
"`attribute' or `varying'");
}
}
/* Layout qualifiers for gl_FragDepth, which are enabled by extension
* AMD_conservative_depth.
*/
int depth_layout_count = qual->flags.q.depth_any
+ qual->flags.q.depth_greater
+ qual->flags.q.depth_less
+ qual->flags.q.depth_unchanged;
if (depth_layout_count > 0
&& !state->AMD_conservative_depth_enable
&& !state->ARB_conservative_depth_enable) {
_mesa_glsl_error(loc, state,
"extension GL_AMD_conservative_depth or "
"GL_ARB_conservative_depth must be enabled "
"to use depth layout qualifiers");
} else if (depth_layout_count > 0
&& strcmp(var->name, "gl_FragDepth") != 0) {
_mesa_glsl_error(loc, state,
"depth layout qualifiers can be applied only to "
"gl_FragDepth");
} else if (depth_layout_count > 1
&& strcmp(var->name, "gl_FragDepth") == 0) {
_mesa_glsl_error(loc, state,
"at most one depth layout qualifier can be applied to "
"gl_FragDepth");
}
if (qual->flags.q.depth_any)
var->data.depth_layout = ir_depth_layout_any;
else if (qual->flags.q.depth_greater)
var->data.depth_layout = ir_depth_layout_greater;
else if (qual->flags.q.depth_less)
var->data.depth_layout = ir_depth_layout_less;
else if (qual->flags.q.depth_unchanged)
var->data.depth_layout = ir_depth_layout_unchanged;
else
var->data.depth_layout = ir_depth_layout_none;
if (qual->flags.q.std140 ||
qual->flags.q.packed ||
qual->flags.q.shared) {
_mesa_glsl_error(loc, state,
"uniform block layout qualifiers std140, packed, and "
"shared can only be applied to uniform blocks, not "
"members");
}
if (qual->flags.q.row_major || qual->flags.q.column_major) {
validate_matrix_layout_for_type(state, loc, var->type, var);
}
if (var->type->contains_image())
apply_image_qualifier_to_variable(qual, var, state, loc);
}
/**
* Get the variable that is being redeclared by this declaration
*
* Semantic checks to verify the validity of the redeclaration are also
* performed. If semantic checks fail, compilation error will be emitted via
* \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
*
* \returns
* A pointer to an existing variable in the current scope if the declaration
* is a redeclaration, \c NULL otherwise.
*/
static ir_variable *
get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
struct _mesa_glsl_parse_state *state,
bool allow_all_redeclarations)
{
/* Check if this declaration is actually a re-declaration, either to
* resize an array or add qualifiers to an existing variable.
*
* This is allowed for variables in the current scope, or when at
* global scope (for built-ins in the implicit outer scope).
*/
ir_variable *earlier = state->symbols->get_variable(var->name);
if (earlier == NULL ||
(state->current_function != NULL &&
!state->symbols->name_declared_this_scope(var->name))) {
return NULL;
}
/* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
*
* "It is legal to declare an array without a size and then
* later re-declare the same name as an array of the same
* type and specify a size."
*/
if (earlier->type->is_unsized_array() && var->type->is_array()
&& (var->type->element_type() == earlier->type->element_type())) {
/* FINISHME: This doesn't match the qualifiers on the two
* FINISHME: declarations. It's not 100% clear whether this is
* FINISHME: required or not.
*/
const unsigned size = unsigned(var->type->array_size());
check_builtin_array_max_size(var->name, size, loc, state);
if ((size > 0) && (size <= earlier->data.max_array_access)) {
_mesa_glsl_error(& loc, state, "array size must be > %u due to "
"previous access",
earlier->data.max_array_access);
}
earlier->type = var->type;
delete var;
var = NULL;
} else if ((state->ARB_fragment_coord_conventions_enable ||
state->is_version(150, 0))
&& strcmp(var->name, "gl_FragCoord") == 0
&& earlier->type == var->type
&& earlier->data.mode == var->data.mode) {
/* Allow redeclaration of gl_FragCoord for ARB_fcc layout
* qualifiers.
*/
earlier->data.origin_upper_left = var->data.origin_upper_left;
earlier->data.pixel_center_integer = var->data.pixel_center_integer;
/* According to section 4.3.7 of the GLSL 1.30 spec,
* the following built-in varaibles can be redeclared with an
* interpolation qualifier:
* * gl_FrontColor
* * gl_BackColor
* * gl_FrontSecondaryColor
* * gl_BackSecondaryColor
* * gl_Color
* * gl_SecondaryColor
*/
} else if (state->is_version(130, 0)
&& (strcmp(var->name, "gl_FrontColor") == 0
|| strcmp(var->name, "gl_BackColor") == 0
|| strcmp(var->name, "gl_FrontSecondaryColor") == 0
|| strcmp(var->name, "gl_BackSecondaryColor") == 0
|| strcmp(var->name, "gl_Color") == 0
|| strcmp(var->name, "gl_SecondaryColor") == 0)
&& earlier->type == var->type
&& earlier->data.mode == var->data.mode) {
earlier->data.interpolation = var->data.interpolation;
/* Layout qualifiers for gl_FragDepth. */
} else if ((state->AMD_conservative_depth_enable ||
state->ARB_conservative_depth_enable)
&& strcmp(var->name, "gl_FragDepth") == 0
&& earlier->type == var->type
&& earlier->data.mode == var->data.mode) {
/** From the AMD_conservative_depth spec:
* Within any shader, the first redeclarations of gl_FragDepth
* must appear before any use of gl_FragDepth.
*/
if (earlier->data.used) {
_mesa_glsl_error(&loc, state,
"the first redeclaration of gl_FragDepth "
"must appear before any use of gl_FragDepth");
}
/* Prevent inconsistent redeclaration of depth layout qualifier. */
if (earlier->data.depth_layout != ir_depth_layout_none
&& earlier->data.depth_layout != var->data.depth_layout) {
_mesa_glsl_error(&loc, state,
"gl_FragDepth: depth layout is declared here "
"as '%s, but it was previously declared as "
"'%s'",
depth_layout_string(var->data.depth_layout),
depth_layout_string(earlier->data.depth_layout));
}
earlier->data.depth_layout = var->data.depth_layout;
} else if (allow_all_redeclarations) {
if (earlier->data.mode != var->data.mode) {
_mesa_glsl_error(&loc, state,
"redeclaration of `%s' with incorrect qualifiers",
var->name);
} else if (earlier->type != var->type) {
_mesa_glsl_error(&loc, state,
"redeclaration of `%s' has incorrect type",
var->name);
}
} else {
_mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
}
return earlier;
}
/**
* Generate the IR for an initializer in a variable declaration
*/
ir_rvalue *
process_initializer(ir_variable *var, ast_declaration *decl,
ast_fully_specified_type *type,
exec_list *initializer_instructions,
struct _mesa_glsl_parse_state *state)
{
ir_rvalue *result = NULL;
YYLTYPE initializer_loc = decl->initializer->get_location();
/* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
*
* "All uniform variables are read-only and are initialized either
* directly by an application via API commands, or indirectly by
* OpenGL."
*/
if (var->data.mode == ir_var_uniform) {
state->check_version(120, 0, &initializer_loc,
"cannot initialize uniforms");
}
/* From section 4.1.7 of the GLSL 4.40 spec:
*
* "Opaque variables [...] are initialized only through the
* OpenGL API; they cannot be declared with an initializer in a
* shader."
*/
if (var->type->contains_opaque()) {
_mesa_glsl_error(& initializer_loc, state,
"cannot initialize opaque variable");
}
if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
_mesa_glsl_error(& initializer_loc, state,
"cannot initialize %s shader input / %s",
_mesa_shader_stage_to_string(state->stage),
(state->stage == MESA_SHADER_VERTEX)
? "attribute" : "varying");
}
/* If the initializer is an ast_aggregate_initializer, recursively store
* type information from the LHS into it, so that its hir() function can do
* type checking.
*/
if (decl->initializer->oper == ast_aggregate)
_mesa_ast_set_aggregate_type(var->type, decl->initializer);
ir_dereference *const lhs = new(state) ir_dereference_variable(var);
ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
/* Propagate precision qualifier for constant value */
if (type->qualifier.flags.q.constant) {
ir_constant *constant_value = rhs->constant_expression_value();
if (NULL != constant_value) {
constant_value->set_precision((glsl_precision)type->qualifier.precision);
if (constant_value->type->is_array()) {
for (unsigned i = 0; i < constant_value->type->length; i++) {
constant_value->get_array_element(i)->set_precision((glsl_precision)type->qualifier.precision);
}
}
}
}
/* Calculate the constant value if this is a const or uniform
* declaration.
*/
if (type->qualifier.flags.q.constant
|| type->qualifier.flags.q.uniform) {
ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
var->type, rhs, true);
if (new_rhs != NULL) {
rhs = new_rhs;
ir_constant *constant_value = rhs->constant_expression_value();
if (!constant_value) {
/* If ARB_shading_language_420pack is enabled, initializers of
* const-qualified local variables do not have to be constant
* expressions. Const-qualified global variables must still be
* initialized with constant expressions.
*/
if (!state->ARB_shading_language_420pack_enable
|| state->current_function == NULL) {
_mesa_glsl_error(& initializer_loc, state,
"initializer of %s variable `%s' must be a "
"constant expression",
(type->qualifier.flags.q.constant)
? "const" : "uniform",
decl->identifier);
if (var->type->is_numeric()) {
/* Reduce cascading errors. */
var->constant_value = ir_constant::zero(state, var->type);
}
}
} else {
rhs = constant_value;
var->constant_value = constant_value;
}
} else {
if (var->type->is_numeric()) {
/* Reduce cascading errors. */
var->constant_value = ir_constant::zero(state, var->type);
}
}
}
if (rhs && !rhs->type->is_error()) {
bool temp = var->data.read_only;
if (type->qualifier.flags.q.constant)
var->data.read_only = false;
/* Never emit code to initialize a uniform.
*/
const glsl_type *initializer_type;
if (!type->qualifier.flags.q.uniform) {
do_assignment(initializer_instructions, state,
NULL,
lhs, rhs,
&result, true,
true,
type->get_location());
initializer_type = result->type;
} else
initializer_type = rhs->type;
var->constant_initializer = rhs->constant_expression_value();
var->data.has_initializer = true;
/* If the declared variable is an unsized array, it must inherrit
* its full type from the initializer. A declaration such as
*
* uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
*
* becomes
*
* uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
*
* The assignment generated in the if-statement (below) will also
* automatically handle this case for non-uniforms.
*
* If the declared variable is not an array, the types must
* already match exactly. As a result, the type assignment
* here can be done unconditionally. For non-uniforms the call
* to do_assignment can change the type of the initializer (via
* the implicit conversion rules). For uniforms the initializer
* must be a constant expression, and the type of that expression
* was validated above.
*/
var->type = initializer_type;
var->data.read_only = temp;
}
return result;
}
static void
apply_precision_to_variable(const struct ast_type_qualifier& qual,
ir_variable *var, bool function_param,
struct _mesa_glsl_parse_state *state)
{
if (!state->es_shader)
return;
if (var->type->is_sampler() && qual.precision == ast_precision_none && !function_param)
var->data.precision = ast_precision_low; // samplers default to low precision (outside of function arguments)
else
var->data.precision = qual.precision;
}
/**
* Do additional processing necessary for geometry shader input declarations
* (this covers both interface blocks arrays and bare input variables).
*/
static void
handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
YYLTYPE loc, ir_variable *var)
{
unsigned num_vertices = 0;
if (state->gs_input_prim_type_specified) {
num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
}
/* Geometry shader input variables must be arrays. Caller should have
* reported an error for this.
*/
if (!var->type->is_array()) {
assert(state->error);
/* To avoid cascading failures, short circuit the checks below. */
return;
}
if (var->type->is_unsized_array()) {
/* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
*
* All geometry shader input unsized array declarations will be
* sized by an earlier input layout qualifier, when present, as per
* the following table.
*
* Followed by a table mapping each allowed input layout qualifier to
* the corresponding input length.
*/
if (num_vertices != 0)
var->type = glsl_type::get_array_instance(var->type->fields.array,
num_vertices);
} else {
/* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
* includes the following examples of compile-time errors:
*
* // code sequence within one shader...
* in vec4 Color1[]; // size unknown
* ...Color1.length()...// illegal, length() unknown
* in vec4 Color2[2]; // size is 2
* ...Color1.length()...// illegal, Color1 still has no size
* in vec4 Color3[3]; // illegal, input sizes are inconsistent
* layout(lines) in; // legal, input size is 2, matching
* in vec4 Color4[3]; // illegal, contradicts layout
* ...
*
* To detect the case illustrated by Color3, we verify that the size of
* an explicitly-sized array matches the size of any previously declared
* explicitly-sized array. To detect the case illustrated by Color4, we
* verify that the size of an explicitly-sized array is consistent with
* any previously declared input layout.
*/
if (num_vertices != 0 && var->type->length != num_vertices) {
_mesa_glsl_error(&loc, state,
"geometry shader input size contradicts previously"
" declared layout (size is %u, but layout requires a"
" size of %u)", var->type->length, num_vertices);
} else if (state->gs_input_size != 0 &&
var->type->length != state->gs_input_size) {
_mesa_glsl_error(&loc, state,
"geometry shader input sizes are "
"inconsistent (size is %u, but a previous "
"declaration has size %u)",
var->type->length, state->gs_input_size);
} else {
state->gs_input_size = var->type->length;
}
}
}
void
validate_identifier(const char *identifier, YYLTYPE loc,
struct _mesa_glsl_parse_state *state)
{
/* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
*
* "Identifiers starting with "gl_" are reserved for use by
* OpenGL, and may not be declared in a shader as either a
* variable or a function."
*/
if (is_gl_identifier(identifier)) {
_mesa_glsl_error(&loc, state,
"identifier `%s' uses reserved `gl_' prefix",
identifier);
} else if (strstr(identifier, "__")) {
/* From page 14 (page 20 of the PDF) of the GLSL 1.10
* spec:
*
* "In addition, all identifiers containing two
* consecutive underscores (__) are reserved as
* possible future keywords."
*
* The intention is that names containing __ are reserved for internal
* use by the implementation, and names prefixed with GL_ are reserved
* for use by Khronos. Names simply containing __ are dangerous to use,
* but should be allowed.
*
* A future version of the GLSL specification will clarify this.
*/
_mesa_glsl_warning(&loc, state,
"identifier `%s' uses reserved `__' string",
identifier);
}
}
static bool
precision_qualifier_allowed(const glsl_type *type)
{
/* Precision qualifiers apply to floating point, integer and sampler
* types.
*
* Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
* "Any floating point or any integer declaration can have the type
* preceded by one of these precision qualifiers [...] Literal
* constants do not have precision qualifiers. Neither do Boolean
* variables.
*
* Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
* spec also says:
*
* "Precision qualifiers are added for code portability with OpenGL
* ES, not for functionality. They have the same syntax as in OpenGL
* ES."
*
* Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
*
* "uniform lowp sampler2D sampler;
* highp vec2 coord;
* ...
* lowp vec4 col = texture2D (sampler, coord);
* // texture2D returns lowp"
*
* From this, we infer that GLSL 1.30 (and later) should allow precision
* qualifiers on sampler types just like float and integer types.
*/
return type->is_float()
|| type->is_integer()
|| type->is_record()
|| type->is_sampler();
}
ir_rvalue *
ast_declarator_list::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
const struct glsl_type *decl_type;
const char *type_name = NULL;
ir_rvalue *result = NULL;
YYLTYPE loc = this->get_location();
/* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
*
* "To ensure that a particular output variable is invariant, it is
* necessary to use the invariant qualifier. It can either be used to
* qualify a previously declared variable as being invariant
*
* invariant gl_Position; // make existing gl_Position be invariant"
*
* In these cases the parser will set the 'invariant' flag in the declarator
* list, and the type will be NULL.
*/
if (this->invariant) {
assert(this->type == NULL);
if (state->current_function != NULL) {
_mesa_glsl_error(& loc, state,
"all uses of `invariant' keyword must be at global "
"scope");
}
foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
assert(decl->array_specifier == NULL);
assert(decl->initializer == NULL);
ir_variable *const earlier =
state->symbols->get_variable(decl->identifier);
if (earlier == NULL) {
_mesa_glsl_error(& loc, state,
"undeclared variable `%s' cannot be marked "
"invariant", decl->identifier);
} else if (!is_varying_var(earlier, state->stage)) {
_mesa_glsl_error(&loc, state,
"`%s' cannot be marked invariant; interfaces between "
"shader stages only.", decl->identifier);
} else if (earlier->data.used) {
_mesa_glsl_error(& loc, state,
"variable `%s' may not be redeclared "
"`invariant' after being used",
earlier->name);
} else {
earlier->data.invariant = true;
}
}
/* Invariant redeclarations do not have r-values.
*/
return NULL;
}
if (this->precise) {
assert(this->type == NULL);
foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
assert(decl->array_specifier == NULL);
assert(decl->initializer == NULL);
ir_variable *const earlier =
state->symbols->get_variable(decl->identifier);
if (earlier == NULL) {
_mesa_glsl_error(& loc, state,
"undeclared variable `%s' cannot be marked "
"precise", decl->identifier);
} else if (state->current_function != NULL &&
!state->symbols->name_declared_this_scope(decl->identifier)) {
/* Note: we have to check if we're in a function, since
* builtins are treated as having come from another scope.
*/
_mesa_glsl_error(& loc, state,
"variable `%s' from an outer scope may not be "
"redeclared `precise' in this scope",
earlier->name);
} else if (earlier->data.used) {
_mesa_glsl_error(& loc, state,
"variable `%s' may not be redeclared "
"`precise' after being used",
earlier->name);
} else {
earlier->data.precise = true;
}
}
/* Precise redeclarations do not have r-values either. */
return NULL;
}
assert(this->type != NULL);
assert(!this->invariant);
assert(!this->precise);
/* The type specifier may contain a structure definition. Process that
* before any of the variable declarations.
*/
(void) this->type->specifier->hir(instructions, state);
decl_type = this->type->glsl_type(& type_name, state);
/* An offset-qualified atomic counter declaration sets the default
* offset for the next declaration within the same atomic counter
* buffer.
*/
if (decl_type && decl_type->contains_atomic()) {
if (type->qualifier.flags.q.explicit_binding &&
type->qualifier.flags.q.explicit_offset)
state->atomic_counter_offsets[type->qualifier.binding] =
type->qualifier.offset;
}
if (this->declarations.is_empty()) {
/* If there is no structure involved in the program text, there are two
* possible scenarios:
*
* - The program text contained something like 'vec4;'. This is an
* empty declaration. It is valid but weird. Emit a warning.
*
* - The program text contained something like 'S;' and 'S' is not the
* name of a known structure type. This is both invalid and weird.
* Emit an error.
*
* - The program text contained something like 'mediump float;'
* when the programmer probably meant 'precision mediump
* float;' Emit a warning with a description of what they
* probably meant to do.
*
* Note that if decl_type is NULL and there is a structure involved,
* there must have been some sort of error with the structure. In this
* case we assume that an error was already generated on this line of
* code for the structure. There is no need to generate an additional,
* confusing error.
*/
assert(this->type->specifier->structure == NULL || decl_type != NULL
|| state->error);
if (decl_type == NULL) {
_mesa_glsl_error(&loc, state,
"invalid type `%s' in empty declaration",
type_name);
} else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
/* Empty atomic counter declarations are allowed and useful
* to set the default offset qualifier.
*/
return NULL;
} else if (this->type->qualifier.precision != ast_precision_none) {
if (this->type->specifier->structure != NULL) {
_mesa_glsl_error(&loc, state,
"precision qualifiers can't be applied "
"to structures");
} else {
static const char *const precision_names[] = {
"highp",
"highp",
"mediump",
"lowp"
};
_mesa_glsl_warning(&loc, state,
"empty declaration with precision qualifier, "
"to set the default precision, use "
"`precision %s %s;'",
precision_names[this->type->qualifier.precision],
type_name);
}
} else if (this->type->specifier->structure == NULL) {
_mesa_glsl_warning(&loc, state, "empty declaration");
}
}
foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
const struct glsl_type *var_type;
ir_variable *var;
/* FINISHME: Emit a warning if a variable declaration shadows a
* FINISHME: declaration at a higher scope.
*/
if ((decl_type == NULL) || decl_type->is_void()) {
if (type_name != NULL) {
_mesa_glsl_error(& loc, state,
"invalid type `%s' in declaration of `%s'",
type_name, decl->identifier);
} else {
_mesa_glsl_error(& loc, state,
"invalid type in declaration of `%s'",
decl->identifier);
}
continue;
}
var_type = process_array_type(&loc, decl_type, decl->array_specifier,
state);
var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto, (glsl_precision)this->type->qualifier.precision);
/* The 'varying in' and 'varying out' qualifiers can only be used with
* ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
* yet.
*/
if (this->type->qualifier.flags.q.varying) {
if (this->type->qualifier.flags.q.in) {
_mesa_glsl_error(& loc, state,
"`varying in' qualifier in declaration of "
"`%s' only valid for geometry shaders using "
"ARB_geometry_shader4 or EXT_geometry_shader4",
decl->identifier);
} else if (this->type->qualifier.flags.q.out) {
_mesa_glsl_error(& loc, state,
"`varying out' qualifier in declaration of "
"`%s' only valid for geometry shaders using "
"ARB_geometry_shader4 or EXT_geometry_shader4",
decl->identifier);
}
}
/* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
*
* "Global variables can only use the qualifiers const,
* attribute, uniform, or varying. Only one may be
* specified.
*
* Local variables can only use the qualifier const."
*
* This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
* any extension that adds the 'layout' keyword.
*/
if (!state->is_version(130, 300)
&& !state->has_explicit_attrib_location()
&& !state->has_separate_shader_objects()
&& !state->ARB_fragment_coord_conventions_enable) {
if (this->type->qualifier.flags.q.out) {
_mesa_glsl_error(& loc, state,
"`out' qualifier in declaration of `%s' "
"only valid for function parameters in %s",
decl->identifier, state->get_version_string());
}
if (this->type->qualifier.flags.q.in) {
_mesa_glsl_error(& loc, state,
"`in' qualifier in declaration of `%s' "
"only valid for function parameters in %s",
decl->identifier, state->get_version_string());
}
/* FINISHME: Test for other invalid qualifiers. */
}
apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
& loc, false);
apply_precision_to_variable(this->type->qualifier, var, false, state);
if (this->type->qualifier.flags.q.invariant) {
if (!is_varying_var(var, state->stage)) {
_mesa_glsl_error(&loc, state,
"`%s' cannot be marked invariant; interfaces between "
"shader stages only", var->name);
}
}
if (state->current_function != NULL) {
const char *mode = NULL;
const char *extra = "";
/* There is no need to check for 'inout' here because the parser will
* only allow that in function parameter lists.
*/
if (this->type->qualifier.flags.q.attribute) {
mode = "attribute";
} else if (this->type->qualifier.flags.q.uniform) {
mode = "uniform";
} else if (this->type->qualifier.flags.q.varying) {
mode = "varying";
} else if (this->type->qualifier.flags.q.in) {
mode = "in";
extra = " or in function parameter list";
} else if (this->type->qualifier.flags.q.out) {
mode = "out";
extra = " or in function parameter list";
}
if (mode) {
_mesa_glsl_error(& loc, state,
"%s variable `%s' must be declared at "
"global scope%s",
mode, var->name, extra);
}
} else if (var->data.mode == ir_var_shader_in) {
var->data.read_only = true;
if (state->stage == MESA_SHADER_VERTEX) {
bool error_emitted = false;
/* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
*
* "Vertex shader inputs can only be float, floating-point
* vectors, matrices, signed and unsigned integers and integer
* vectors. Vertex shader inputs can also form arrays of these
* types, but not structures."
*
* From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
*
* "Vertex shader inputs can only be float, floating-point
* vectors, matrices, signed and unsigned integers and integer
* vectors. They cannot be arrays or structures."
*
* From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
*
* "The attribute qualifier can be used only with float,
* floating-point vectors, and matrices. Attribute variables
* cannot be declared as arrays or structures."
*
* From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
*
* "Vertex shader inputs can only be float, floating-point
* vectors, matrices, signed and unsigned integers and integer
* vectors. Vertex shader inputs cannot be arrays or
* structures."
*/
const glsl_type *check_type = var->type;
while (check_type->is_array())
check_type = check_type->element_type();
switch (check_type->base_type) {
case GLSL_TYPE_FLOAT:
break;
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
if (state->is_version(120, 300))
break;
/* FALLTHROUGH */
default:
_mesa_glsl_error(& loc, state,
"vertex shader input / attribute cannot have "
"type %s`%s'",
var->type->is_array() ? "array of " : "",
check_type->name);
error_emitted = true;
}
if (!error_emitted && var->type->is_array() &&
!state->check_version(150, 0, &loc,
"vertex shader input / attribute "
"cannot have array type")) {
error_emitted = true;
}
} else if (state->stage == MESA_SHADER_GEOMETRY) {
/* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
*
* Geometry shader input variables get the per-vertex values
* written out by vertex shader output variables of the same
* names. Since a geometry shader operates on a set of
* vertices, each input varying variable (or input block, see
* interface blocks below) needs to be declared as an array.
*/
if (!var->type->is_array()) {
_mesa_glsl_error(&loc, state,
"geometry shader inputs must be arrays");
}
handle_geometry_shader_input_decl(state, loc, var);
}
}
/* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
* so must integer vertex outputs.
*
* From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
* "Fragment shader inputs that are signed or unsigned integers or
* integer vectors must be qualified with the interpolation qualifier
* flat."
*
* From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
* "Fragment shader inputs that are, or contain, signed or unsigned
* integers or integer vectors must be qualified with the
* interpolation qualifier flat."
*
* From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
* "Vertex shader outputs that are, or contain, signed or unsigned
* integers or integer vectors must be qualified with the
* interpolation qualifier flat."
*
* Note that prior to GLSL 1.50, this requirement applied to vertex
* outputs rather than fragment inputs. That creates problems in the
* presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
* desktop GL shaders. For GLSL ES shaders, we follow the spec and
* apply the restriction to both vertex outputs and fragment inputs.
*
* Note also that the desktop GLSL specs are missing the text "or
* contain"; this is presumably an oversight, since there is no
* reasonable way to interpolate a fragment shader input that contains
* an integer.
*/
if (state->is_version(130, 300) &&
var->type->contains_integer() &&
var->data.interpolation != INTERP_QUALIFIER_FLAT &&
((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
|| (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
&& state->es_shader))) {
const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
"vertex output" : "fragment input";
_mesa_glsl_error(&loc, state, "if a %s is (or contains) "
"an integer, then it must be qualified with 'flat'",
var_type);
}
/* Interpolation qualifiers cannot be applied to 'centroid' and
* 'centroid varying'.
*
* From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
* "interpolation qualifiers may only precede the qualifiers in,
* centroid in, out, or centroid out in a declaration. They do not apply
* to the deprecated storage qualifiers varying or centroid varying."
*
* These deprecated storage qualifiers do not exist in GLSL ES 3.00.
*/
if (state->is_version(130, 0)
&& this->type->qualifier.has_interpolation()
&& this->type->qualifier.flags.q.varying) {
const char *i = this->type->qualifier.interpolation_string();
assert(i != NULL);
const char *s;
if (this->type->qualifier.flags.q.centroid)
s = "centroid varying";
else
s = "varying";
_mesa_glsl_error(&loc, state,
"qualifier '%s' cannot be applied to the "
"deprecated storage qualifier '%s'", i, s);
}
/* Interpolation qualifiers can only apply to vertex shader outputs and
* fragment shader inputs.
*
* From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
* "Outputs from a vertex shader (out) and inputs to a fragment
* shader (in) can be further qualified with one or more of these
* interpolation qualifiers"
*
* From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
* "These interpolation qualifiers may only precede the qualifiers
* in, centroid in, out, or centroid out in a declaration. They do
* not apply to inputs into a vertex shader or outputs from a
* fragment shader."
*/
if (state->is_version(130, 300)
&& this->type->qualifier.has_interpolation()) {
const char *i = this->type->qualifier.interpolation_string();
assert(i != NULL);
switch (state->stage) {
case MESA_SHADER_VERTEX:
if (this->type->qualifier.flags.q.in) {
_mesa_glsl_error(&loc, state,
"qualifier '%s' cannot be applied to vertex "
"shader inputs", i);
}
break;
case MESA_SHADER_FRAGMENT:
if (this->type->qualifier.flags.q.out) {
_mesa_glsl_error(&loc, state,
"qualifier '%s' cannot be applied to fragment "
"shader outputs", i);
}
break;
default:
break;
}
}
/* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
*/
if (this->type->qualifier.precision != ast_precision_none) {
state->check_precision_qualifiers_allowed(&loc);
}
/* If a precision qualifier is allowed on a type, it is allowed on
* an array of that type.
*/
if (!(this->type->qualifier.precision == ast_precision_none
|| precision_qualifier_allowed(var->type)
|| (var->type->is_array()
&& precision_qualifier_allowed(var->type->fields.array)))) {
_mesa_glsl_error(&loc, state,
"precision qualifiers apply only to floating point"
", integer and sampler types");
}
/* From section 4.1.7 of the GLSL 4.40 spec:
*
* "[Opaque types] can only be declared as function
* parameters or uniform-qualified variables."
*/
if (var_type->contains_opaque() &&
!this->type->qualifier.flags.q.uniform) {
_mesa_glsl_error(&loc, state,
"opaque variables must be declared uniform");
}
/* Process the initializer and add its instructions to a temporary
* list. This list will be added to the instruction stream (below) after
* the declaration is added. This is done because in some cases (such as
* redeclarations) the declaration may not actually be added to the
* instruction stream.
*/
exec_list initializer_instructions;
/* Examine var name here since var may get deleted in the next call */
bool var_is_gl_id = is_gl_identifier(var->name);
ir_variable *earlier =
get_variable_being_redeclared(var, decl->get_location(), state,
false /* allow_all_redeclarations */);
if (earlier != NULL) {
if (var_is_gl_id &&
earlier->data.how_declared == ir_var_declared_in_block) {
_mesa_glsl_error(&loc, state,
"`%s' has already been redeclared using "
"gl_PerVertex", var->name);
}
earlier->data.how_declared = ir_var_declared_normally;
}
if (decl->initializer != NULL) {
result = process_initializer((earlier == NULL) ? var : earlier,
decl, this->type,
&initializer_instructions, state);
}
/* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
*
* "It is an error to write to a const variable outside of
* its declaration, so they must be initialized when
* declared."
*/
if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
_mesa_glsl_error(& loc, state,
"const declaration of `%s' must be initialized",
decl->identifier);
}
if (state->es_shader) {
const glsl_type *const t = (earlier == NULL)
? var->type : earlier->type;
if (t->is_unsized_array())
/* Section 10.17 of the GLSL ES 1.00 specification states that
* unsized array declarations have been removed from the language.
* Arrays that are sized using an initializer are still explicitly
* sized. However, GLSL ES 1.00 does not allow array
* initializers. That is only allowed in GLSL ES 3.00.
*
* Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
*
* "An array type can also be formed without specifying a size
* if the definition includes an initializer:
*
* float x[] = float[2] (1.0, 2.0); // declares an array of size 2
* float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
*
* float a[5];
* float b[] = a;"
*/
_mesa_glsl_error(& loc, state,
"unsized array declarations are not allowed in "
"GLSL ES");
}
/* If the declaration is not a redeclaration, there are a few additional
* semantic checks that must be applied. In addition, variable that was
* created for the declaration should be added to the IR stream.
*/
if (earlier == NULL) {
validate_identifier(decl->identifier, loc, state);
/* Add the variable to the symbol table. Note that the initializer's
* IR was already processed earlier (though it hasn't been emitted
* yet), without the variable in scope.
*
* This differs from most C-like languages, but it follows the GLSL
* specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
* spec:
*
* "Within a declaration, the scope of a name starts immediately
* after the initializer if present or immediately after the name
* being declared if not."
*/
if (!state->symbols->add_variable(var)) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "name `%s' already taken in the "
"current scope", decl->identifier);
continue;
}
/* Push the variable declaration to the top. It means that all the
* variable declarations will appear in a funny last-to-first order,
* but otherwise we run into trouble if a function is prototyped, a
* global var is decled, then the function is defined with usage of
* the global var. See glslparsertest's CorrectModule.frag.
* However, do not insert declarations before default precision statements
* or type declarations.
*/
ir_instruction* before_node = (ir_instruction*)instructions->head;
while (before_node && (before_node->ir_type == ir_type_precision || before_node->ir_type == ir_type_typedecl))
before_node = (ir_instruction*)before_node->next;
if (before_node)
before_node->insert_before(var);
else
instructions->push_head(var);
}
instructions->append_list(&initializer_instructions);
}
/* Generally, variable declarations do not have r-values. However,
* one is used for the declaration in
*
* while (bool b = some_condition()) {
* ...
* }
*
* so we return the rvalue from the last seen declaration here.
*/
return result;
}
ir_rvalue *
ast_parameter_declarator::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
const struct glsl_type *type;
const char *name = NULL;
YYLTYPE loc = this->get_location();
type = this->type->glsl_type(& name, state);
if (type == NULL) {
if (name != NULL) {
_mesa_glsl_error(& loc, state,
"invalid type `%s' in declaration of `%s'",
name, this->identifier);
} else {
_mesa_glsl_error(& loc, state,
"invalid type in declaration of `%s'",
this->identifier);
}
type = glsl_type::error_type;
}
/* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
*
* "Functions that accept no input arguments need not use void in the
* argument list because prototypes (or definitions) are required and
* therefore there is no ambiguity when an empty argument list "( )" is
* declared. The idiom "(void)" as a parameter list is provided for
* convenience."
*
* Placing this check here prevents a void parameter being set up
* for a function, which avoids tripping up checks for main taking
* parameters and lookups of an unnamed symbol.
*/
if (type->is_void()) {
if (this->identifier != NULL)
_mesa_glsl_error(& loc, state,
"named parameter cannot have type `void'");
is_void = true;
return NULL;
}
if (formal_parameter && (this->identifier == NULL)) {
_mesa_glsl_error(& loc, state, "formal parameter lacks a name");
return NULL;
}
/* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
* call already handled the "vec4[..] foo" case.
*/
type = process_array_type(&loc, type, this->array_specifier, state);
if (!type->is_error() && type->is_unsized_array()) {
_mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
"a declared size");
type = glsl_type::error_type;
}
is_void = false;
ir_variable *var = new(ctx)
ir_variable(type, this->identifier, ir_var_function_in, (glsl_precision)this->type->qualifier.precision);
/* Apply any specified qualifiers to the parameter declaration. Note that
* for function parameters the default mode is 'in'.
*/
apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
true);
apply_precision_to_variable(this->type->qualifier, var, true, state);
/* From section 4.1.7 of the GLSL 4.40 spec:
*
* "Opaque variables cannot be treated as l-values; hence cannot
* be used as out or inout function parameters, nor can they be
* assigned into."
*/
if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
&& type->contains_opaque()) {
_mesa_glsl_error(&loc, state, "out and inout parameters cannot "
"contain opaque variables");
type = glsl_type::error_type;
}
/* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
*
* "When calling a function, expressions that do not evaluate to
* l-values cannot be passed to parameters declared as out or inout."
*
* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
*
* "Other binary or unary expressions, non-dereferenced arrays,
* function names, swizzles with repeated fields, and constants
* cannot be l-values."
*
* So for GLSL 1.10, passing an array as an out or inout parameter is not
* allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
*/
if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
&& type->is_array()
&& !state->check_version(120, 100, &loc,
"arrays cannot be out or inout parameters")) {
type = glsl_type::error_type;
}
instructions->push_tail(var);
/* Parameter declarations do not have r-values.
*/
return NULL;
}
void
ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
bool formal,
exec_list *ir_parameters,
_mesa_glsl_parse_state *state)
{
ast_parameter_declarator *void_param = NULL;
unsigned count = 0;
foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
param->formal_parameter = formal;
param->hir(ir_parameters, state);
if (param->is_void)
void_param = param;
count++;
}
if ((void_param != NULL) && (count > 1)) {
YYLTYPE loc = void_param->get_location();
_mesa_glsl_error(& loc, state,
"`void' parameter must be only parameter");
}
}
void
emit_function(_mesa_glsl_parse_state *state, ir_function *f)
{
/* IR invariants disallow function declarations or definitions
* nested within other function definitions. But there is no
* requirement about the relative order of function declarations
* and definitions with respect to one another. So simply insert
* the new ir_function block at the end of the toplevel instruction
* list.
*/
state->toplevel_ir->push_tail(f);
}
ir_rvalue *
ast_function::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
ir_function *f = NULL;
ir_function_signature *sig = NULL;
exec_list hir_parameters;
const char *const name = identifier;
/* New functions are always added to the top-level IR instruction stream,
* so this instruction list pointer is ignored. See also emit_function
* (called below).
*/
(void) instructions;
/* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
*
* "Function declarations (prototypes) cannot occur inside of functions;
* they must be at global scope, or for the built-in functions, outside
* the global scope."
*
* From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
*
* "User defined functions may only be defined within the global scope."
*
* Note that this language does not appear in GLSL 1.10.
*/
if ((state->current_function != NULL) &&
state->is_version(120, 100)) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state,
"declaration of function `%s' not allowed within "
"function body", name);
}
validate_identifier(name, this->get_location(), state);
/* Convert the list of function parameters to HIR now so that they can be
* used below to compare this function's signature with previously seen
* signatures for functions with the same name.
*/
ast_parameter_declarator::parameters_to_hir(& this->parameters,
is_definition,
& hir_parameters, state);
const char *return_type_name;
const glsl_type *return_type =
this->return_type->glsl_type(& return_type_name, state);
if (!return_type) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state,
"function `%s' has undeclared return type `%s'",
name, return_type_name);
return_type = glsl_type::error_type;
}
/* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
* "No qualifier is allowed on the return type of a function."
*/
if (this->return_type->has_qualifiers()) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"function `%s' return type has qualifiers", name);
}
/* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
*
* "Arrays are allowed as arguments and as the return type. In both
* cases, the array must be explicitly sized."
*/
if (return_type->is_unsized_array()) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"function `%s' return type array must be explicitly "
"sized", name);
}
/* From section 4.1.7 of the GLSL 4.40 spec:
*
* "[Opaque types] can only be declared as function parameters
* or uniform-qualified variables."
*/
if (return_type->contains_opaque()) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state,
"function `%s' return type can't contain an opaque type",
name);
}
/* Create an ir_function if one doesn't already exist. */
f = state->symbols->get_function(name);
if (f == NULL) {
f = new(ctx) ir_function(name);
if (!state->symbols->add_function(f)) {
/* This function name shadows a non-function use of the same name. */
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
"non-function", name);
return NULL;
}
emit_function(state, f);
}
/* Verify that this function's signature either doesn't match a previously
* seen signature for a function with the same name, or, if a match is found,
* that the previously seen signature does not have an associated definition.
*/
if (state->es_shader || f->has_user_signature()) {
sig = f->exact_matching_signature(state, &hir_parameters);
if (sig != NULL) {
const char *badvar = sig->qualifiers_match(&hir_parameters);
if (badvar != NULL) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
"qualifiers don't match prototype", name, badvar);
}
if (sig->return_type != return_type) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
"match prototype", name);
}
if (sig->is_defined) {
if (is_definition) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "function `%s' redefined", name);
} else {
/* We just encountered a prototype that exactly matches a
* function that's already been defined. This is redundant,
* and we should ignore it.
*/
return NULL;
}
}
}
}
/* Verify the return type of main() */
if (strcmp(name, "main") == 0) {
if (! return_type->is_void()) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "main() must return void");
}
if (!hir_parameters.is_empty()) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "main() must not take any parameters");
}
}
/* Finish storing the information about this new function in its signature.
*/
if (sig == NULL) {
sig = new(ctx) ir_function_signature(return_type, (glsl_precision)this->return_type->qualifier.precision);
f->add_signature(sig);
}
sig->replace_parameters(&hir_parameters);
signature = sig;
/* Function declarations (prototypes) do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_function_definition::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
prototype->is_definition = true;
prototype->hir(instructions, state);
ir_function_signature *signature = prototype->signature;
if (signature == NULL)
return NULL;
assert(state->current_function == NULL);
state->current_function = signature;
state->found_return = false;
/* Duplicate parameters declared in the prototype as concrete variables.
* Add these to the symbol table.
*/
state->symbols->push_scope();
foreach_in_list(ir_variable, var, &signature->parameters) {
assert(var->as_variable() != NULL);
/* The only way a parameter would "exist" is if two parameters have
* the same name.
*/
if (state->symbols->name_declared_this_scope(var->name)) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
} else {
state->symbols->add_variable(var);
}
}
/* Convert the body of the function to HIR. */
this->body->hir(&signature->body, state);
signature->is_defined = true;
state->symbols->pop_scope();
assert(state->current_function == signature);
state->current_function = NULL;
if (!signature->return_type->is_void() && !state->found_return) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
"%s, but no return statement",
signature->function_name(),
signature->return_type->name);
}
/* Function definitions do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_jump_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
switch (mode) {
case ast_return: {
ir_return *inst;
assert(state->current_function);
if (opt_return_value) {
ir_rvalue *ret = opt_return_value->hir(instructions, state);
/* The value of the return type can be NULL if the shader says
* 'return foo();' and foo() is a function that returns void.
*
* NOTE: The GLSL spec doesn't say that this is an error. The type
* of the return value is void. If the return type of the function is
* also void, then this should compile without error. Seriously.
*/
const glsl_type *const ret_type =
(ret == NULL) ? glsl_type::void_type : ret->type;
/* Implicit conversions are not allowed for return values prior to
* ARB_shading_language_420pack.
*/
if (state->current_function->return_type != ret_type) {
YYLTYPE loc = this->get_location();
if (state->ARB_shading_language_420pack_enable) {
if (!apply_implicit_conversion(state->current_function->return_type,
ret, state)) {
_mesa_glsl_error(& loc, state,
"could not implicitly convert return value "
"to %s, in function `%s'",
state->current_function->return_type->name,
state->current_function->function_name());
}
} else {
_mesa_glsl_error(& loc, state,
"`return' with wrong type %s, in function `%s' "
"returning %s",
ret_type->name,
state->current_function->function_name(),
state->current_function->return_type->name);
}
} else if (state->current_function->return_type->base_type ==
GLSL_TYPE_VOID) {
YYLTYPE loc = this->get_location();
/* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
* specs add a clarification:
*
* "A void function can only use return without a return argument, even if
* the return argument has void type. Return statements only accept values:
*
* void func1() { }
* void func2() { return func1(); } // illegal return statement"
*/
_mesa_glsl_error(& loc, state,
"void functions can only use `return' without a "
"return argument");
}
inst = new(ctx) ir_return(ret);
} else {
if (state->current_function->return_type->base_type !=
GLSL_TYPE_VOID) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"`return' with no value, in function %s returning "
"non-void",
state->current_function->function_name());
}
inst = new(ctx) ir_return;
}
state->found_return = true;
instructions->push_tail(inst);
break;
}
case ast_discard:
if (state->stage != MESA_SHADER_FRAGMENT) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"`discard' may only appear in a fragment shader");
}
instructions->push_tail(new(ctx) ir_discard);
break;
case ast_break:
case ast_continue:
if (mode == ast_continue &&
state->loop_nesting_ast == NULL) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "continue may only appear in a loop");
} else if (mode == ast_break &&
state->loop_nesting_ast == NULL &&
state->switch_state.switch_nesting_ast == NULL) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"break may only appear in a loop or a switch");
} else {
/* For a loop, inline the for loop expression again, since we don't
* know where near the end of the loop body the normal copy of it is
* going to be placed. Same goes for the condition for a do-while
* loop.
*/
if (state->loop_nesting_ast != NULL &&
mode == ast_continue) {
if (state->loop_nesting_ast->rest_expression) {
state->loop_nesting_ast->rest_expression->hir(instructions,
state);
}
if (state->loop_nesting_ast->mode ==
ast_iteration_statement::ast_do_while) {
state->loop_nesting_ast->condition_to_hir(instructions, state);
}
}
if (state->switch_state.is_switch_innermost &&
mode == ast_break) {
/* Force break out of switch by setting is_break switch state.
*/
ir_variable *const is_break_var = state->switch_state.is_break_var;
ir_dereference_variable *const deref_is_break_var =
new(ctx) ir_dereference_variable(is_break_var);
ir_constant *const true_val = new(ctx) ir_constant(true);
ir_assignment *const set_break_var =
new(ctx) ir_assignment(deref_is_break_var, true_val);
instructions->push_tail(set_break_var);
}
else {
ir_loop_jump *const jump =
new(ctx) ir_loop_jump((mode == ast_break)
? ir_loop_jump::jump_break
: ir_loop_jump::jump_continue);
instructions->push_tail(jump);
}
}
break;
}
/* Jump instructions do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_selection_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
ir_rvalue *const condition = this->condition->hir(instructions, state);
/* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
*
* "Any expression whose type evaluates to a Boolean can be used as the
* conditional expression bool-expression. Vector types are not accepted
* as the expression to if."
*
* The checks are separated so that higher quality diagnostics can be
* generated for cases where both rules are violated.
*/
if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
YYLTYPE loc = this->condition->get_location();
_mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
"boolean");
}
ir_if *const stmt = new(ctx) ir_if(condition);
if (then_statement != NULL) {
state->symbols->push_scope();
then_statement->hir(& stmt->then_instructions, state);
state->symbols->pop_scope();
}
if (else_statement != NULL) {
state->symbols->push_scope();
else_statement->hir(& stmt->else_instructions, state);
state->symbols->pop_scope();
}
instructions->push_tail(stmt);
/* if-statements do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_switch_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
ir_rvalue *const test_expression =
this->test_expression->hir(instructions, state);
/* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
*
* "The type of init-expression in a switch statement must be a
* scalar integer."
*/
if (!test_expression->type->is_scalar() ||
!test_expression->type->is_integer()) {
YYLTYPE loc = this->test_expression->get_location();
_mesa_glsl_error(& loc,
state,
"switch-statement expression must be scalar "
"integer");
}
/* Track the switch-statement nesting in a stack-like manner.
*/
struct glsl_switch_state saved = state->switch_state;
state->switch_state.is_switch_innermost = true;
state->switch_state.switch_nesting_ast = this;
state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
hash_table_pointer_compare);
state->switch_state.previous_default = NULL;
/* Initalize is_fallthru state to false.
*/
ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
state->switch_state.is_fallthru_var =
new(ctx) ir_variable(glsl_type::bool_type,
"switch_is_fallthru_tmp",
ir_var_temporary, glsl_precision_low);
instructions->push_tail(state->switch_state.is_fallthru_var);
ir_dereference_variable *deref_is_fallthru_var =
new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
is_fallthru_val));
/* Initalize is_break state to false.
*/
ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
state->switch_state.is_break_var =
new(ctx) ir_variable(glsl_type::bool_type,
"switch_is_break_tmp",
ir_var_temporary, glsl_precision_low);
instructions->push_tail(state->switch_state.is_break_var);
ir_dereference_variable *deref_is_break_var =
new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
is_break_val));
state->switch_state.run_default =
new(ctx) ir_variable(glsl_type::bool_type,
"run_default_tmp",
ir_var_temporary, glsl_precision_low);
instructions->push_tail(state->switch_state.run_default);
/* Cache test expression.
*/
test_to_hir(instructions, state);
/* Emit code for body of switch stmt.
*/
body->hir(instructions, state);
hash_table_dtor(state->switch_state.labels_ht);
state->switch_state = saved;
/* Switch statements do not have r-values. */
return NULL;
}
void
ast_switch_statement::test_to_hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
/* Cache value of test expression. */
ir_rvalue *const test_val =
test_expression->hir(instructions,
state);
state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
"switch_test_tmp",
ir_var_temporary, test_val->get_precision());
ir_dereference_variable *deref_test_var =
new(ctx) ir_dereference_variable(state->switch_state.test_var);
instructions->push_tail(state->switch_state.test_var);
instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
}
ir_rvalue *
ast_switch_body::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
if (stmts != NULL)
stmts->hir(instructions, state);
/* Switch bodies do not have r-values. */
return NULL;
}
ir_rvalue *
ast_case_statement_list::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
exec_list default_case, after_default, tmp;
foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
case_stmt->hir(&tmp, state);
/* Default case. */
if (state->switch_state.previous_default && default_case.is_empty()) {
default_case.append_list(&tmp);
continue;
}
/* If default case found, append 'after_default' list. */
if (!default_case.is_empty())
after_default.append_list(&tmp);
else
instructions->append_list(&tmp);
}
/* Handle the default case. This is done here because default might not be
* the last case. We need to add checks against following cases first to see
* if default should be chosen or not.
*/
if (!default_case.is_empty()) {
ir_rvalue *const true_val = new (state) ir_constant(true);
ir_dereference_variable *deref_run_default_var =
new(state) ir_dereference_variable(state->switch_state.run_default);
/* Choose to run default case initially, following conditional
* assignments might change this.
*/
ir_assignment *const init_var =
new(state) ir_assignment(deref_run_default_var, true_val);
instructions->push_tail(init_var);
/* Default case was the last one, no checks required. */
if (after_default.is_empty()) {
instructions->append_list(&default_case);
return NULL;
}
foreach_in_list(ir_instruction, ir, &after_default) {
ir_assignment *assign = ir->as_assignment();
if (!assign)
continue;
/* Clone the check between case label and init expression. */
ir_expression *exp = (ir_expression*) assign->condition;
ir_expression *clone = exp->clone(state, NULL);
ir_dereference_variable *deref_var =
new(state) ir_dereference_variable(state->switch_state.run_default);
ir_rvalue *const false_val = new (state) ir_constant(false);
ir_assignment *const set_false =
new(state) ir_assignment(deref_var, false_val, clone);
instructions->push_tail(set_false);
}
/* Append default case and all cases after it. */
instructions->append_list(&default_case);
instructions->append_list(&after_default);
}
/* Case statements do not have r-values. */
return NULL;
}
ir_rvalue *
ast_case_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
labels->hir(instructions, state);
/* Conditionally set fallthru state based on break state. */
ir_constant *const false_val = new(state) ir_constant(false);
ir_dereference_variable *const deref_is_fallthru_var =
new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
ir_dereference_variable *const deref_is_break_var =
new(state) ir_dereference_variable(state->switch_state.is_break_var);
ir_assignment *const reset_fallthru_on_break =
new(state) ir_assignment(deref_is_fallthru_var,
false_val,
deref_is_break_var);
instructions->push_tail(reset_fallthru_on_break);
/* Guard case statements depending on fallthru state. */
ir_dereference_variable *const deref_fallthru_guard =
new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
foreach_list_typed (ast_node, stmt, link, & this->stmts)
stmt->hir(& test_fallthru->then_instructions, state);
instructions->push_tail(test_fallthru);
/* Case statements do not have r-values. */
return NULL;
}
ir_rvalue *
ast_case_label_list::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
foreach_list_typed (ast_case_label, label, link, & this->labels)
label->hir(instructions, state);
/* Case labels do not have r-values. */
return NULL;
}
ir_rvalue *
ast_case_label::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
ir_dereference_variable *deref_fallthru_var =
new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
ir_rvalue *const true_val = new(ctx) ir_constant(true);
/* If not default case, ... */
if (this->test_value != NULL) {
/* Conditionally set fallthru state based on
* comparison of cached test expression value to case label.
*/
ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
ir_constant *label_const = label_rval->constant_expression_value();
if (!label_const) {
YYLTYPE loc = this->test_value->get_location();
_mesa_glsl_error(& loc, state,
"switch statement case label must be a "
"constant expression");
/* Stuff a dummy value in to allow processing to continue. */
label_const = new(ctx) ir_constant(0);
} else {
ast_expression *previous_label = (ast_expression *)
hash_table_find(state->switch_state.labels_ht,
(void *)(uintptr_t)label_const->value.u[0]);
if (previous_label) {
YYLTYPE loc = this->test_value->get_location();
_mesa_glsl_error(& loc, state, "duplicate case value");
loc = previous_label->get_location();
_mesa_glsl_error(& loc, state, "this is the previous case label");
} else {
hash_table_insert(state->switch_state.labels_ht,
this->test_value,
(void *)(uintptr_t)label_const->value.u[0]);
}
}
ir_dereference_variable *deref_test_var =
new(ctx) ir_dereference_variable(state->switch_state.test_var);
ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
label_const,
deref_test_var);
/*
* From GLSL 4.40 specification section 6.2 ("Selection"):
*
* "The type of the init-expression value in a switch statement must
* be a scalar int or uint. The type of the constant-expression value
* in a case label also must be a scalar int or uint. When any pair
* of these values is tested for "equal value" and the types do not
* match, an implicit conversion will be done to convert the int to a
* uint (see section 4.1.10 “Implicit Conversions”) before the compare
* is done."
*/
if (label_const->type != state->switch_state.test_var->type) {
YYLTYPE loc = this->test_value->get_location();
const glsl_type *type_a = label_const->type;
const glsl_type *type_b = state->switch_state.test_var->type;
/* Check if int->uint implicit conversion is supported. */
bool integer_conversion_supported =
glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
state);
if ((!type_a->is_integer() || !type_b->is_integer()) ||
!integer_conversion_supported) {
_mesa_glsl_error(&loc, state, "type mismatch with switch "
"init-expression and case label (%s != %s)",
type_a->name, type_b->name);
} else {
/* Conversion of the case label. */
if (type_a->base_type == GLSL_TYPE_INT) {
if (!apply_implicit_conversion(glsl_type::uint_type,
test_cond->operands[0], state))
_mesa_glsl_error(&loc, state, "implicit type conversion error");
} else {
/* Conversion of the init-expression value. */
if (!apply_implicit_conversion(glsl_type::uint_type,
test_cond->operands[1], state))
_mesa_glsl_error(&loc, state, "implicit type conversion error");
}
}
}
ir_assignment *set_fallthru_on_test =
new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
instructions->push_tail(set_fallthru_on_test);
} else { /* default case */
if (state->switch_state.previous_default) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"multiple default labels in one switch");
loc = state->switch_state.previous_default->get_location();
_mesa_glsl_error(& loc, state, "this is the first default label");
}
state->switch_state.previous_default = this;
/* Set fallthru condition on 'run_default' bool. */
ir_dereference_variable *deref_run_default =
new(ctx) ir_dereference_variable(state->switch_state.run_default);
ir_rvalue *const cond_true = new(ctx) ir_constant(true);
ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
cond_true,
deref_run_default);
/* Set falltrhu state. */
ir_assignment *set_fallthru =
new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
instructions->push_tail(set_fallthru);
}
/* Case statements do not have r-values. */
return NULL;
}
void
ast_iteration_statement::condition_to_hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
if (condition != NULL) {
ir_rvalue *const cond =
condition->hir(instructions, state);
if ((cond == NULL)
|| !cond->type->is_boolean() || !cond->type->is_scalar()) {
YYLTYPE loc = condition->get_location();
_mesa_glsl_error(& loc, state,
"loop condition must be scalar boolean");
} else {
/* As the first code in the loop body, generate a block that looks
* like 'if (!condition) break;' as the loop termination condition.
*/
ir_rvalue *const not_cond =
new(ctx) ir_expression(ir_unop_logic_not, cond);
ir_if *const if_stmt = new(ctx) ir_if(not_cond);
ir_jump *const break_stmt =
new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
if_stmt->then_instructions.push_tail(break_stmt);
instructions->push_tail(if_stmt);
}
}
}
ir_rvalue *
ast_iteration_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
/* For-loops and while-loops start a new scope, but do-while loops do not.
*/
if (mode != ast_do_while)
state->symbols->push_scope();
if (init_statement != NULL)
init_statement->hir(instructions, state);
ir_loop *const stmt = new(ctx) ir_loop();
instructions->push_tail(stmt);
/* Track the current loop nesting. */
ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
state->loop_nesting_ast = this;
/* Likewise, indicate that following code is closest to a loop,
* NOT closest to a switch.
*/
bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
state->switch_state.is_switch_innermost = false;
if (mode != ast_do_while)
condition_to_hir(&stmt->body_instructions, state);
if (body != NULL)
body->hir(& stmt->body_instructions, state);
if (rest_expression != NULL)
rest_expression->hir(& stmt->body_instructions, state);
if (mode == ast_do_while)
condition_to_hir(&stmt->body_instructions, state);
if (mode != ast_do_while)
state->symbols->pop_scope();
/* Restore previous nesting before returning. */
state->loop_nesting_ast = nesting_ast;
state->switch_state.is_switch_innermost = saved_is_switch_innermost;
/* Loops do not have r-values.
*/
return NULL;
}
/**
* Determine if the given type is valid for establishing a default precision
* qualifier.
*
* From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
*
* "The precision statement
*
* precision precision-qualifier type;
*
* can be used to establish a default precision qualifier. The type field
* can be either int or float or any of the sampler types, and the
* precision-qualifier can be lowp, mediump, or highp."
*
* GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
* qualifiers on sampler types, but this seems like an oversight (since the
* intention of including these in GLSL 1.30 is to allow compatibility with ES
* shaders). So we allow int, float, and all sampler types regardless of GLSL
* version.
*/
static bool
is_valid_default_precision_type(const struct glsl_type *const type)
{
if (type == NULL)
return false;
switch (type->base_type) {
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
/* "int" and "float" are valid, but vectors and matrices are not. */
return type->vector_elements == 1 && type->matrix_columns == 1;
case GLSL_TYPE_SAMPLER:
return true;
default:
return false;
}
}
ir_rvalue *
ast_type_specifier::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
if (this->default_precision == ast_precision_none && this->structure == NULL)
return NULL;
YYLTYPE loc = this->get_location();
/* If this is a precision statement, check that the type to which it is
* applied is either float or int.
*
* From section 4.5.3 of the GLSL 1.30 spec:
* "The precision statement
* precision precision-qualifier type;
* can be used to establish a default precision qualifier. The type
* field can be either int or float [...]. Any other types or
* qualifiers will result in an error.
*/
if (this->default_precision != ast_precision_none) {
if (!state->check_precision_qualifiers_allowed(&loc))
return NULL;
if (this->structure != NULL) {
_mesa_glsl_error(&loc, state,
"precision qualifiers do not apply to structures");
return NULL;
}
if (this->array_specifier != NULL) {
_mesa_glsl_error(&loc, state,
"default precision statements do not apply to "
"arrays");
return NULL;
}
const struct glsl_type *const type =
state->symbols->get_type(this->type_name);
if (!is_valid_default_precision_type(type)) {
_mesa_glsl_error(&loc, state,
"default precision statements apply only to "
"float, int, and sampler types");
return NULL;
}
{
void *ctx = state;
const char* precision_type = NULL;
switch (this->default_precision) {
case glsl_precision_high: precision_type = "highp"; break;
case glsl_precision_medium: precision_type = "mediump"; break;
case glsl_precision_low: precision_type = "lowp"; break;
case glsl_precision_undefined: precision_type = ""; break;
}
char* precision_statement = ralloc_asprintf(ctx, "precision %s %s", precision_type, this->type_name);
ir_precision_statement *const stmt = new(ctx) ir_precision_statement(precision_statement);
instructions->push_head(stmt);
}
if (type->base_type == GLSL_TYPE_FLOAT
&& state->es_shader
&& state->stage == MESA_SHADER_FRAGMENT) {
/* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
* spec says:
*
* "The fragment language has no default precision qualifier for
* floating point types."
*
* As a result, we have to track whether or not default precision has
* been specified for float in GLSL ES fragment shaders.
*
* Earlier in that same section, the spec says:
*
* "Non-precision qualified declarations will use the precision
* qualifier specified in the most recent precision statement
* that is still in scope. The precision statement has the same
* scoping rules as variable declarations. If it is declared
* inside a compound statement, its effect stops at the end of
* the innermost statement it was declared in. Precision
* statements in nested scopes override precision statements in
* outer scopes. Multiple precision statements for the same basic
* type can appear inside the same scope, with later statements
* overriding earlier statements within that scope."
*
* Default precision specifications follow the same scope rules as
* variables. So, we can track the state of the default float
* precision in the symbol table, and the rules will just work. This
* is a slight abuse of the symbol table, but it has the semantics
* that we want.
*/
ir_variable *const junk =
new(state) ir_variable(type, "#default precision",
ir_var_auto, (glsl_precision)this->default_precision);
state->symbols->add_variable(junk);
state->had_float_precision = true;
}
/* FINISHME: Translate precision statements into IR. */
return NULL;
}
/* _mesa_ast_set_aggregate_type() sets the <structure> field so that
* process_record_constructor() can do type-checking on C-style initializer
* expressions of structs, but ast_struct_specifier should only be translated
* to HIR if it is declaring the type of a structure.
*
* The ->is_declaration field is false for initializers of variables
* declared separately from the struct's type definition.
*
* struct S { ... }; (is_declaration = true)
* struct T { ... } t = { ... }; (is_declaration = true)
* S s = { ... }; (is_declaration = false)
*/
if (this->structure != NULL && this->structure->is_declaration)
return this->structure->hir(instructions, state);
return NULL;
}
/**
* Process a structure or interface block tree into an array of structure fields
*
* After parsing, where there are some syntax differnces, structures and
* interface blocks are almost identical. They are similar enough that the
* AST for each can be processed the same way into a set of
* \c glsl_struct_field to describe the members.
*
* If we're processing an interface block, var_mode should be the type of the
* interface block (ir_var_shader_in, ir_var_shader_out, or ir_var_uniform).
* If we're processing a structure, var_mode should be ir_var_auto.
*
* \return
* The number of fields processed. A pointer to the array structure fields is
* stored in \c *fields_ret.
*/
unsigned
ast_process_structure_or_interface_block(exec_list *instructions,
struct _mesa_glsl_parse_state *state,
exec_list *declarations,
YYLTYPE &loc,
glsl_struct_field **fields_ret,
bool is_interface,
enum glsl_matrix_layout matrix_layout,
bool allow_reserved_names,
ir_variable_mode var_mode)
{
unsigned decl_count = 0;
/* Make an initial pass over the list of fields to determine how
* many there are. Each element in this list is an ast_declarator_list.
* This means that we actually need to count the number of elements in the
* 'declarations' list in each of the elements.
*/
foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
decl_count += decl_list->declarations.length();
}
/* Allocate storage for the fields and process the field
* declarations. As the declarations are processed, try to also convert
* the types to HIR. This ensures that structure definitions embedded in
* other structure definitions or in interface blocks are processed.
*/
glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
decl_count);
unsigned i = 0;
foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
const char *type_name;
decl_list->type->specifier->hir(instructions, state);
/* Section 10.9 of the GLSL ES 1.00 specification states that
* embedded structure definitions have been removed from the language.
*/
if (state->es_shader && decl_list->type->specifier->structure != NULL) {
_mesa_glsl_error(&loc, state, "embedded structure definitions are "
"not allowed in GLSL ES 1.00");
}
const glsl_type *decl_type =
decl_list->type->glsl_type(& type_name, state);
foreach_list_typed (ast_declaration, decl, link,
&decl_list->declarations) {
if (!allow_reserved_names)
validate_identifier(decl->identifier, loc, state);
/* From section 4.3.9 of the GLSL 4.40 spec:
*
* "[In interface blocks] opaque types are not allowed."
*
* It should be impossible for decl_type to be NULL here. Cases that
* might naturally lead to decl_type being NULL, especially for the
* is_interface case, will have resulted in compilation having
* already halted due to a syntax error.
*/
const struct glsl_type *field_type =
decl_type != NULL ? decl_type : glsl_type::error_type;
if (is_interface && field_type->contains_opaque()) {
YYLTYPE loc = decl_list->get_location();
_mesa_glsl_error(&loc, state,
"uniform in non-default uniform block contains "
"opaque variable");
}
if (field_type->contains_atomic()) {
/* FINISHME: Add a spec quotation here once updated spec
* FINISHME: language is available. See Khronos bug #10903
* FINISHME: on whether atomic counters are allowed in
* FINISHME: structures.
*/
YYLTYPE loc = decl_list->get_location();
_mesa_glsl_error(&loc, state, "atomic counter in structure or "
"uniform block");
}
if (field_type->contains_image()) {
/* FINISHME: Same problem as with atomic counters.
* FINISHME: Request clarification from Khronos and add
* FINISHME: spec quotation here.
*/
YYLTYPE loc = decl_list->get_location();
_mesa_glsl_error(&loc, state,
"image in structure or uniform block");
}
const struct ast_type_qualifier *const qual =
& decl_list->type->qualifier;
if (qual->flags.q.std140 ||
qual->flags.q.packed ||
qual->flags.q.shared) {
_mesa_glsl_error(&loc, state,
"uniform block layout qualifiers std140, packed, and "
"shared can only be applied to uniform blocks, not "
"members");
}
field_type = process_array_type(&loc, decl_type,
decl->array_specifier, state);
fields[i].type = field_type;
fields[i].name = decl->identifier;
fields[i].precision = (glsl_precision)decl_list->type->qualifier.precision;
fields[i].location = -1;
fields[i].interpolation =
interpret_interpolation_qualifier(qual, var_mode, state, &loc);
fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
fields[i].sample = qual->flags.q.sample ? 1 : 0;
/* Only save explicitly defined streams in block's field */
fields[i].stream = qual->flags.q.explicit_stream ? qual->stream : -1;
if (qual->flags.q.row_major || qual->flags.q.column_major) {
if (!qual->flags.q.uniform) {
_mesa_glsl_error(&loc, state,
"row_major and column_major can only be "
"applied to uniform interface blocks");
} else
validate_matrix_layout_for_type(state, &loc, field_type, NULL);
}
if (qual->flags.q.uniform && qual->has_interpolation()) {
_mesa_glsl_error(&loc, state,
"interpolation qualifiers cannot be used "
"with uniform interface blocks");
}
if ((qual->flags.q.uniform || !is_interface) &&
qual->has_auxiliary_storage()) {
_mesa_glsl_error(&loc, state,
"auxiliary storage qualifiers cannot be used "
"in uniform blocks or structures.");
}
/* Propogate row- / column-major information down the fields of the
* structure or interface block. Structures need this data because
* the structure may contain a structure that contains ... a matrix
* that need the proper layout.
*/
if (field_type->without_array()->is_matrix()
|| field_type->without_array()->is_record()) {
/* If no layout is specified for the field, inherit the layout
* from the block.
*/
fields[i].matrix_layout = matrix_layout;
if (qual->flags.q.row_major)
fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
else if (qual->flags.q.column_major)
fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
/* If we're processing an interface block, the matrix layout must
* be decided by this point.
*/
assert(!is_interface
|| fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
|| fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
}
i++;
}
}
assert(i == decl_count);
*fields_ret = fields;
return decl_count;
}
ir_rvalue *
ast_struct_specifier::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
YYLTYPE loc = this->get_location();
/* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
*
* "Anonymous structures are not supported; so embedded structures must
* have a declarator. A name given to an embedded struct is scoped at
* the same level as the struct it is embedded in."
*
* The same section of the GLSL 1.20 spec says:
*
* "Anonymous structures are not supported. Embedded structures are not
* supported.
*
* struct S { float f; };
* struct T {
* S; // Error: anonymous structures disallowed
* struct { ... }; // Error: embedded structures disallowed
* S s; // Okay: nested structures with name are allowed
* };"
*
* The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
* we allow embedded structures in 1.10 only.
*/
if (state->language_version != 110 && state->struct_specifier_depth != 0)
_mesa_glsl_error(&loc, state,
"embedded structure declarations are not allowed");
state->struct_specifier_depth++;
glsl_struct_field *fields;
unsigned decl_count =
ast_process_structure_or_interface_block(instructions,
state,
&this->declarations,
loc,
&fields,
false,
GLSL_MATRIX_LAYOUT_INHERITED,
false /* allow_reserved_names */,
ir_var_auto);
validate_identifier(this->name, loc, state);
const glsl_type *t =
glsl_type::get_record_instance(fields, decl_count, this->name);
if (!state->symbols->add_type(name, t)) {
_mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
} else {
const glsl_type **s = reralloc(state, state->user_structures,
const glsl_type *,
state->num_user_structures + 1);
if (s != NULL) {
s[state->num_user_structures] = t;
state->user_structures = s;
state->num_user_structures++;
ir_typedecl_statement* stmt = new(state) ir_typedecl_statement(t);
/* Push the struct declarations to the top.
* However, do not insert declarations before default precision
* statements or other declarations
*/
ir_instruction* before_node = (ir_instruction*)instructions->head;
while (before_node &&
(before_node->ir_type == ir_type_precision ||
before_node->ir_type == ir_type_typedecl))
before_node = (ir_instruction*)before_node->next;
if (before_node)
before_node->insert_before(stmt);
else
instructions->push_head(stmt);
}
}
state->struct_specifier_depth--;
/* Structure type definitions do not have r-values.
*/
return NULL;
}
/**
* Visitor class which detects whether a given interface block has been used.
*/
class interface_block_usage_visitor : public ir_hierarchical_visitor
{
public:
interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
: mode(mode), block(block), found(false)
{
}
virtual ir_visitor_status visit(ir_dereference_variable *ir)
{
if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
found = true;
return visit_stop;
}
return visit_continue;
}
bool usage_found() const
{
return this->found;
}
private:
ir_variable_mode mode;
const glsl_type *block;
bool found;
};
ir_rvalue *
ast_interface_block::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
YYLTYPE loc = this->get_location();
/* The ast_interface_block has a list of ast_declarator_lists. We
* need to turn those into ir_variables with an association
* with this uniform block.
*/
enum glsl_interface_packing packing;
if (this->layout.flags.q.shared) {
packing = GLSL_INTERFACE_PACKING_SHARED;
} else if (this->layout.flags.q.packed) {
packing = GLSL_INTERFACE_PACKING_PACKED;
} else {
/* The default layout is std140.
*/
packing = GLSL_INTERFACE_PACKING_STD140;
}
ir_variable_mode var_mode;
const char *iface_type_name;
if (this->layout.flags.q.in) {
var_mode = ir_var_shader_in;
iface_type_name = "in";
} else if (this->layout.flags.q.out) {
var_mode = ir_var_shader_out;
iface_type_name = "out";
} else if (this->layout.flags.q.uniform) {
var_mode = ir_var_uniform;
iface_type_name = "uniform";
} else {
var_mode = ir_var_auto;
iface_type_name = "UNKNOWN";
assert(!"interface block layout qualifier not found!");
}
enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
if (this->layout.flags.q.row_major)
matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
else if (this->layout.flags.q.column_major)
matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
exec_list declared_variables;
glsl_struct_field *fields;
/* Treat an interface block as one level of nesting, so that embedded struct
* specifiers will be disallowed.
*/
state->struct_specifier_depth++;
unsigned int num_variables =
ast_process_structure_or_interface_block(&declared_variables,
state,
&this->declarations,
loc,
&fields,
true,
matrix_layout,
redeclaring_per_vertex,
var_mode);
state->struct_specifier_depth--;
if (!redeclaring_per_vertex)
validate_identifier(this->block_name, loc, state);
const glsl_type *earlier_per_vertex = NULL;
if (redeclaring_per_vertex) {
/* Find the previous declaration of gl_PerVertex. If we're redeclaring
* the named interface block gl_in, we can find it by looking at the
* previous declaration of gl_in. Otherwise we can find it by looking
* at the previous decalartion of any of the built-in outputs,
* e.g. gl_Position.
*
* Also check that the instance name and array-ness of the redeclaration
* are correct.
*/
switch (var_mode) {
case ir_var_shader_in:
if (ir_variable *earlier_gl_in =
state->symbols->get_variable("gl_in")) {
earlier_per_vertex = earlier_gl_in->get_interface_type();
} else {
_mesa_glsl_error(&loc, state,
"redeclaration of gl_PerVertex input not allowed "
"in the %s shader",
_mesa_shader_stage_to_string(state->stage));
}
if (this->instance_name == NULL ||
strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL) {
_mesa_glsl_error(&loc, state,
"gl_PerVertex input must be redeclared as "
"gl_in[]");
}
break;
case ir_var_shader_out:
if (ir_variable *earlier_gl_Position =
state->symbols->get_variable("gl_Position")) {
earlier_per_vertex = earlier_gl_Position->get_interface_type();
} else {
_mesa_glsl_error(&loc, state,
"redeclaration of gl_PerVertex output not "
"allowed in the %s shader",
_mesa_shader_stage_to_string(state->stage));
}
if (this->instance_name != NULL) {
_mesa_glsl_error(&loc, state,
"gl_PerVertex output may not be redeclared with "
"an instance name");
}
break;
default:
_mesa_glsl_error(&loc, state,
"gl_PerVertex must be declared as an input or an "
"output");
break;
}
if (earlier_per_vertex == NULL) {
/* An error has already been reported. Bail out to avoid null
* dereferences later in this function.
*/
return NULL;
}
/* Copy locations from the old gl_PerVertex interface block. */
for (unsigned i = 0; i < num_variables; i++) {
int j = earlier_per_vertex->field_index(fields[i].name);
if (j == -1) {
_mesa_glsl_error(&loc, state,
"redeclaration of gl_PerVertex must be a subset "
"of the built-in members of gl_PerVertex");
} else {
fields[i].location =
earlier_per_vertex->fields.structure[j].location;
fields[i].interpolation =
earlier_per_vertex->fields.structure[j].interpolation;
fields[i].centroid =
earlier_per_vertex->fields.structure[j].centroid;
fields[i].sample =
earlier_per_vertex->fields.structure[j].sample;
}
}
/* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
* spec:
*
* If a built-in interface block is redeclared, it must appear in
* the shader before any use of any member included in the built-in
* declaration, or a compilation error will result.
*
* This appears to be a clarification to the behaviour established for
* gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
* regardless of GLSL version.
*/
interface_block_usage_visitor v(var_mode, earlier_per_vertex);
v.run(instructions);
if (v.usage_found()) {
_mesa_glsl_error(&loc, state,
"redeclaration of a built-in interface block must "
"appear before any use of any member of the "
"interface block");
}
}
const glsl_type *block_type =
glsl_type::get_interface_instance(fields,
num_variables,
packing,
this->block_name);
if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
"already taken in the current scope",
this->block_name, iface_type_name);
}
/* Since interface blocks cannot contain statements, it should be
* impossible for the block to generate any instructions.
*/
assert(declared_variables.is_empty());
/* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
*
* Geometry shader input variables get the per-vertex values written
* out by vertex shader output variables of the same names. Since a
* geometry shader operates on a set of vertices, each input varying
* variable (or input block, see interface blocks below) needs to be
* declared as an array.
*/
if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
var_mode == ir_var_shader_in) {
_mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
}
/* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
* says:
*
* "If an instance name (instance-name) is used, then it puts all the
* members inside a scope within its own name space, accessed with the
* field selector ( . ) operator (analogously to structures)."
*/
if (this->instance_name) {
if (redeclaring_per_vertex) {
/* When a built-in in an unnamed interface block is redeclared,
* get_variable_being_redeclared() calls
* check_builtin_array_max_size() to make sure that built-in array
* variables aren't redeclared to illegal sizes. But we're looking
* at a redeclaration of a named built-in interface block. So we
* have to manually call check_builtin_array_max_size() for all parts
* of the interface that are arrays.
*/
for (unsigned i = 0; i < num_variables; i++) {
if (fields[i].type->is_array()) {
const unsigned size = fields[i].type->array_size();
check_builtin_array_max_size(fields[i].name, size, loc, state);
}
}
} else {
validate_identifier(this->instance_name, loc, state);
}
ir_variable *var;
if (this->array_specifier != NULL) {
/* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
*
* For uniform blocks declared an array, each individual array
* element corresponds to a separate buffer object backing one
* instance of the block. As the array size indicates the number
* of buffer objects needed, uniform block array declarations
* must specify an array size.
*
* And a few paragraphs later:
*
* Geometry shader input blocks must be declared as arrays and
* follow the array declaration and linking rules for all
* geometry shader inputs. All other input and output block
* arrays must specify an array size.
*
* The upshot of this is that the only circumstance where an
* interface array size *doesn't* need to be specified is on a
* geometry shader input.
*/
if (this->array_specifier->is_unsized_array &&
(state->stage != MESA_SHADER_GEOMETRY || !this->layout.flags.q.in)) {
_mesa_glsl_error(&loc, state,
"only geometry shader inputs may be unsized "
"instance block arrays");
}
const glsl_type *block_array_type =
process_array_type(&loc, block_type, this->array_specifier, state);
var = new(state) ir_variable(block_array_type,
this->instance_name,
var_mode, glsl_precision_undefined);
} else {
var = new(state) ir_variable(block_type,
this->instance_name,
var_mode, glsl_precision_undefined);
}
var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
handle_geometry_shader_input_decl(state, loc, var);
if (ir_variable *earlier =
state->symbols->get_variable(this->instance_name)) {
if (!redeclaring_per_vertex) {
_mesa_glsl_error(&loc, state, "`%s' redeclared",
this->instance_name);
}
earlier->data.how_declared = ir_var_declared_normally;
earlier->type = var->type;
earlier->reinit_interface_type(block_type);
delete var;
} else {
/* Propagate the "binding" keyword into this UBO's fields;
* the UBO declaration itself doesn't get an ir_variable unless it
* has an instance name. This is ugly.
*/
var->data.explicit_binding = this->layout.flags.q.explicit_binding;
var->data.binding = this->layout.binding;
state->symbols->add_variable(var);
instructions->push_tail(var);
}
} else {
/* In order to have an array size, the block must also be declared with
* an instance name.
*/
assert(this->array_specifier == NULL);
for (unsigned i = 0; i < num_variables; i++) {
ir_variable *var =
new(state) ir_variable(fields[i].type,
ralloc_strdup(state, fields[i].name),
var_mode, fields[i].precision);
var->data.interpolation = fields[i].interpolation;
var->data.centroid = fields[i].centroid;
var->data.sample = fields[i].sample;
var->init_interface_type(block_type);
if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
} else {
var->data.matrix_layout = fields[i].matrix_layout;
}
if (fields[i].stream != -1 &&
((unsigned)fields[i].stream) != this->layout.stream) {
_mesa_glsl_error(&loc, state,
"stream layout qualifier on "
"interface block member `%s' does not match "
"the interface block (%d vs %d)",
var->name, fields[i].stream, this->layout.stream);
}
var->data.stream = this->layout.stream;
if (redeclaring_per_vertex) {
ir_variable *earlier =
get_variable_being_redeclared(var, loc, state,
true /* allow_all_redeclarations */);
if (!is_gl_identifier(var->name) || earlier == NULL) {
_mesa_glsl_error(&loc, state,
"redeclaration of gl_PerVertex can only "
"include built-in variables");
} else if (earlier->data.how_declared == ir_var_declared_normally) {
_mesa_glsl_error(&loc, state,
"`%s' has already been redeclared", var->name);
} else {
earlier->data.how_declared = ir_var_declared_in_block;
earlier->reinit_interface_type(block_type);
}
continue;
}
if (state->symbols->get_variable(var->name) != NULL)
_mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
/* Propagate the "binding" keyword into this UBO's fields;
* the UBO declaration itself doesn't get an ir_variable unless it
* has an instance name. This is ugly.
*/
var->data.explicit_binding = this->layout.flags.q.explicit_binding;
var->data.binding = this->layout.binding;
state->symbols->add_variable(var);
instructions->push_tail(var);
}
if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
/* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
*
* It is also a compilation error ... to redeclare a built-in
* block and then use a member from that built-in block that was
* not included in the redeclaration.
*
* This appears to be a clarification to the behaviour established
* for gl_PerVertex by GLSL 1.50, therefore we implement this
* behaviour regardless of GLSL version.
*
* To prevent the shader from using a member that was not included in
* the redeclaration, we disable any ir_variables that are still
* associated with the old declaration of gl_PerVertex (since we've
* already updated all of the variables contained in the new
* gl_PerVertex to point to it).
*
* As a side effect this will prevent
* validate_intrastage_interface_blocks() from getting confused and
* thinking there are conflicting definitions of gl_PerVertex in the
* shader.
*/
foreach_in_list_safe(ir_instruction, node, instructions) {
ir_variable *const var = node->as_variable();
if (var != NULL &&
var->get_interface_type() == earlier_per_vertex &&
var->data.mode == var_mode) {
if (var->data.how_declared == ir_var_declared_normally) {
_mesa_glsl_error(&loc, state,
"redeclaration of gl_PerVertex cannot "
"follow a redeclaration of `%s'",
var->name);
}
state->symbols->disable_variable(var->name);
var->remove();
}
}
}
}
return NULL;
}
ir_rvalue *
ast_gs_input_layout::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
YYLTYPE loc = this->get_location();
/* If any geometry input layout declaration preceded this one, make sure it
* was consistent with this one.
*/
if (state->gs_input_prim_type_specified &&
state->in_qualifier->prim_type != this->prim_type) {
_mesa_glsl_error(&loc, state,
"geometry shader input layout does not match"
" previous declaration");
return NULL;
}
/* If any shader inputs occurred before this declaration and specified an
* array size, make sure the size they specified is consistent with the
* primitive type.
*/
unsigned num_vertices = vertices_per_prim(this->prim_type);
if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
_mesa_glsl_error(&loc, state,
"this geometry shader input layout implies %u vertices"
" per primitive, but a previous input is declared"
" with size %u", num_vertices, state->gs_input_size);
return NULL;
}
state->gs_input_prim_type_specified = true;
/* If any shader inputs occurred before this declaration and did not
* specify an array size, their size is determined now.
*/
foreach_in_list(ir_instruction, node, instructions) {
ir_variable *var = node->as_variable();
if (var == NULL || var->data.mode != ir_var_shader_in)
continue;
/* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
* array; skip it.
*/
if (var->type->is_unsized_array()) {
if (var->data.max_array_access >= num_vertices) {
_mesa_glsl_error(&loc, state,
"this geometry shader input layout implies %u"
" vertices, but an access to element %u of input"
" `%s' already exists", num_vertices,
var->data.max_array_access, var->name);
} else {
var->type = glsl_type::get_array_instance(var->type->fields.array,
num_vertices);
}
}
}
return NULL;
}
ir_rvalue *
ast_cs_input_layout::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
YYLTYPE loc = this->get_location();
/* If any compute input layout declaration preceded this one, make sure it
* was consistent with this one.
*/
if (state->cs_input_local_size_specified) {
for (int i = 0; i < 3; i++) {
if (state->cs_input_local_size[i] != this->local_size[i]) {
_mesa_glsl_error(&loc, state,
"compute shader input layout does not match"
" previous declaration");
return NULL;
}
}
}
/* From the ARB_compute_shader specification:
*
* If the local size of the shader in any dimension is greater
* than the maximum size supported by the implementation for that
* dimension, a compile-time error results.
*
* It is not clear from the spec how the error should be reported if
* the total size of the work group exceeds
* MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
* report it at compile time as well.
*/
GLuint64 total_invocations = 1;
for (int i = 0; i < 3; i++) {
if (this->local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
_mesa_glsl_error(&loc, state,
"local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
" (%d)", 'x' + i,
state->ctx->Const.MaxComputeWorkGroupSize[i]);
break;
}
total_invocations *= this->local_size[i];
if (total_invocations >
state->ctx->Const.MaxComputeWorkGroupInvocations) {
_mesa_glsl_error(&loc, state,
"product of local_sizes exceeds "
"MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
state->ctx->Const.MaxComputeWorkGroupInvocations);
break;
}
}
state->cs_input_local_size_specified = true;
for (int i = 0; i < 3; i++)
state->cs_input_local_size[i] = this->local_size[i];
/* We may now declare the built-in constant gl_WorkGroupSize (see
* builtin_variable_generator::generate_constants() for why we didn't
* declare it earlier).
*/
ir_variable *var = new(state->symbols)
ir_variable(glsl_type::ivec3_type, "gl_WorkGroupSize", ir_var_auto, glsl_precision_undefined);
var->data.how_declared = ir_var_declared_implicitly;
var->data.read_only = true;
instructions->push_tail(var);
state->symbols->add_variable(var);
ir_constant_data data;
memset(&data, 0, sizeof(data));
for (int i = 0; i < 3; i++)
data.i[i] = this->local_size[i];
var->constant_value = new(var) ir_constant(glsl_type::ivec3_type, &data);
var->constant_initializer =
new(var) ir_constant(glsl_type::ivec3_type, &data);
var->data.has_initializer = true;
return NULL;
}
static void
detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
exec_list *instructions)
{
bool gl_FragColor_assigned = false;
bool gl_FragData_assigned = false;
bool user_defined_fs_output_assigned = false;
ir_variable *user_defined_fs_output = NULL;
/* It would be nice to have proper location information. */
YYLTYPE loc;
memset(&loc, 0, sizeof(loc));
foreach_in_list(ir_instruction, node, instructions) {
ir_variable *var = node->as_variable();
if (!var || !var->data.assigned)
continue;
if (strcmp(var->name, "gl_FragColor") == 0)
gl_FragColor_assigned = true;
else if (strcmp(var->name, "gl_FragData") == 0)
gl_FragData_assigned = true;
else if (!is_gl_identifier(var->name)) {
if (state->stage == MESA_SHADER_FRAGMENT &&
var->data.mode == ir_var_shader_out) {
user_defined_fs_output_assigned = true;
user_defined_fs_output = var;
}
}
}
/* From the GLSL 1.30 spec:
*
* "If a shader statically assigns a value to gl_FragColor, it
* may not assign a value to any element of gl_FragData. If a
* shader statically writes a value to any element of
* gl_FragData, it may not assign a value to
* gl_FragColor. That is, a shader may assign values to either
* gl_FragColor or gl_FragData, but not both. Multiple shaders
* linked together must also consistently write just one of
* these variables. Similarly, if user declared output
* variables are in use (statically assigned to), then the
* built-in variables gl_FragColor and gl_FragData may not be
* assigned to. These incorrect usages all generate compile
* time errors."
*/
if (gl_FragColor_assigned && gl_FragData_assigned) {
_mesa_glsl_error(&loc, state, "fragment shader writes to both "
"`gl_FragColor' and `gl_FragData'");
} else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
_mesa_glsl_error(&loc, state, "fragment shader writes to both "
"`gl_FragColor' and `%s'",
user_defined_fs_output->name);
} else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
_mesa_glsl_error(&loc, state, "fragment shader writes to both "
"`gl_FragData' and `%s'",
user_defined_fs_output->name);
}
}
static void
remove_per_vertex_blocks(exec_list *instructions,
_mesa_glsl_parse_state *state, ir_variable_mode mode)
{
/* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
* if it exists in this shader type.
*/
const glsl_type *per_vertex = NULL;
switch (mode) {
case ir_var_shader_in:
if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
per_vertex = gl_in->get_interface_type();
break;
case ir_var_shader_out:
if (ir_variable *gl_Position =
state->symbols->get_variable("gl_Position")) {
per_vertex = gl_Position->get_interface_type();
}
break;
default:
assert(!"Unexpected mode");
break;
}
/* If we didn't find a built-in gl_PerVertex interface block, then we don't
* need to do anything.
*/
if (per_vertex == NULL)
return;
/* If the interface block is used by the shader, then we don't need to do
* anything.
*/
interface_block_usage_visitor v(mode, per_vertex);
v.run(instructions);
if (v.usage_found())
return;
/* Remove any ir_variable declarations that refer to the interface block
* we're removing.
*/
foreach_in_list_safe(ir_instruction, node, instructions) {
ir_variable *const var = node->as_variable();
if (var != NULL && var->get_interface_type() == per_vertex &&
var->data.mode == mode) {
state->symbols->disable_variable(var->name);
var->remove();
}
}
}