1098 lines
44 KiB
C++
1098 lines
44 KiB
C++
/*
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright (c) 2011-2014, Willow Garage, Inc.
|
|
* Copyright (c) 2014-2016, Open Source Robotics Foundation
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
* * Neither the name of Open Source Robotics Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/** @author Jia Pan */
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "fcl/math/bv/utility.h"
|
|
#include "fcl/narrowphase/collision.h"
|
|
#include "fcl/narrowphase/detail/gjk_solver_indep.h"
|
|
#include "fcl/narrowphase/detail/gjk_solver_libccd.h"
|
|
#include "fcl/narrowphase/detail/traversal/collision_node.h"
|
|
|
|
#include "test_fcl_utility.h"
|
|
|
|
#include "fcl_resources/config.h"
|
|
|
|
using namespace fcl;
|
|
|
|
template<typename BV>
|
|
bool collide_Test(const Transform3<typename BV::S>& tf,
|
|
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
|
|
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method, bool verbose = true);
|
|
|
|
template<typename BV>
|
|
bool collide_Test2(const Transform3<typename BV::S>& tf,
|
|
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
|
|
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method, bool verbose = true);
|
|
|
|
template<typename BV, typename TraversalNode>
|
|
bool collide_Test_Oriented(const Transform3<typename BV::S>& tf,
|
|
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
|
|
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method, bool verbose = true);
|
|
|
|
|
|
template<typename BV>
|
|
bool test_collide_func(const Transform3<typename BV::S>& tf,
|
|
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
|
|
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method);
|
|
|
|
int num_max_contacts = std::numeric_limits<int>::max();
|
|
bool enable_contact = true;
|
|
|
|
template<typename S>
|
|
std::vector<Contact<S>>& global_pairs()
|
|
{
|
|
static std::vector<Contact<S>> static_global_pairs;
|
|
return static_global_pairs;
|
|
}
|
|
|
|
template<typename S>
|
|
std::vector<Contact<S>>& global_pairs_now()
|
|
{
|
|
static std::vector<Contact<S>> static_global_pairs_now;
|
|
return static_global_pairs_now;
|
|
}
|
|
|
|
template <typename S>
|
|
void test_OBB_Box_test()
|
|
{
|
|
S r_extents[] = {-1000, -1000, -1000, 1000, 1000, 1000};
|
|
aligned_vector<Transform3<S>> rotate_transform;
|
|
test::generateRandomTransforms(r_extents, rotate_transform, 1);
|
|
|
|
AABB<S> aabb1;
|
|
aabb1.min_ = Vector3<S>(-600, -600, -600);
|
|
aabb1.max_ = Vector3<S>(600, 600, 600);
|
|
|
|
OBB<S> obb1;
|
|
convertBV(aabb1, rotate_transform[0], obb1);
|
|
Box<S> box1;
|
|
Transform3<S> box1_tf;
|
|
constructBox(aabb1, rotate_transform[0], box1, box1_tf);
|
|
|
|
S extents[] = {-1000, -1000, -1000, 1000, 1000, 1000};
|
|
std::size_t n = 1000;
|
|
|
|
aligned_vector<Transform3<S>> transforms;
|
|
test::generateRandomTransforms(extents, transforms, n);
|
|
|
|
for(std::size_t i = 0; i < transforms.size(); ++i)
|
|
{
|
|
AABB<S> aabb;
|
|
aabb.min_ = aabb1.min_ * 0.5;
|
|
aabb.max_ = aabb1.max_ * 0.5;
|
|
|
|
OBB<S> obb2;
|
|
convertBV(aabb, transforms[i], obb2);
|
|
|
|
Box<S> box2;
|
|
Transform3<S> box2_tf;
|
|
constructBox(aabb, transforms[i], box2, box2_tf);
|
|
|
|
detail::GJKSolver_libccd<S> solver;
|
|
|
|
bool overlap_obb = obb1.overlap(obb2);
|
|
bool overlap_box = solver.shapeIntersect(box1, box1_tf, box2, box2_tf, nullptr);
|
|
|
|
EXPECT_TRUE(overlap_obb == overlap_box);
|
|
}
|
|
}
|
|
|
|
template <typename S>
|
|
void test_OBB_shape_test()
|
|
{
|
|
S r_extents[] = {-1000, -1000, -1000, 1000, 1000, 1000};
|
|
aligned_vector<Transform3<S>> rotate_transform;
|
|
test::generateRandomTransforms(r_extents, rotate_transform, 1);
|
|
|
|
AABB<S> aabb1;
|
|
aabb1.min_ = Vector3<S>(-600, -600, -600);
|
|
aabb1.max_ = Vector3<S>(600, 600, 600);
|
|
|
|
OBB<S> obb1;
|
|
convertBV(aabb1, rotate_transform[0], obb1);
|
|
Box<S> box1;
|
|
Transform3<S> box1_tf;
|
|
constructBox(aabb1, rotate_transform[0], box1, box1_tf);
|
|
|
|
S extents[] = {-1000, -1000, -1000, 1000, 1000, 1000};
|
|
std::size_t n = 1000;
|
|
|
|
aligned_vector<Transform3<S>> transforms;
|
|
test::generateRandomTransforms(extents, transforms, n);
|
|
|
|
for(std::size_t i = 0; i < transforms.size(); ++i)
|
|
{
|
|
S len = (aabb1.max_[0] - aabb1.min_[0]) * 0.5;
|
|
OBB<S> obb2;
|
|
detail::GJKSolver_libccd<S> solver;
|
|
|
|
{
|
|
Sphere<S> sphere(len);
|
|
computeBV(sphere, transforms[i], obb2);
|
|
|
|
bool overlap_obb = obb1.overlap(obb2);
|
|
bool overlap_sphere = solver.shapeIntersect(box1, box1_tf, sphere, transforms[i], nullptr);
|
|
EXPECT_TRUE(overlap_obb >= overlap_sphere);
|
|
}
|
|
|
|
{
|
|
Ellipsoid<S> ellipsoid(len, len, len);
|
|
computeBV(ellipsoid, transforms[i], obb2);
|
|
|
|
bool overlap_obb = obb1.overlap(obb2);
|
|
bool overlap_ellipsoid = solver.shapeIntersect(box1, box1_tf, ellipsoid, transforms[i], nullptr);
|
|
EXPECT_TRUE(overlap_obb >= overlap_ellipsoid);
|
|
}
|
|
|
|
{
|
|
Capsule<S> capsule(len, 2 * len);
|
|
computeBV(capsule, transforms[i], obb2);
|
|
|
|
bool overlap_obb = obb1.overlap(obb2);
|
|
bool overlap_capsule = solver.shapeIntersect(box1, box1_tf, capsule, transforms[i], nullptr);
|
|
EXPECT_TRUE(overlap_obb >= overlap_capsule);
|
|
}
|
|
|
|
{
|
|
Cone<S> cone(len, 2 * len);
|
|
computeBV(cone, transforms[i], obb2);
|
|
|
|
bool overlap_obb = obb1.overlap(obb2);
|
|
bool overlap_cone = solver.shapeIntersect(box1, box1_tf, cone, transforms[i], nullptr);
|
|
EXPECT_TRUE(overlap_obb >= overlap_cone);
|
|
}
|
|
|
|
{
|
|
Cylinder<S> cylinder(len, 2 * len);
|
|
computeBV(cylinder, transforms[i], obb2);
|
|
|
|
bool overlap_obb = obb1.overlap(obb2);
|
|
bool overlap_cylinder = solver.shapeIntersect(box1, box1_tf, cylinder, transforms[i], nullptr);
|
|
EXPECT_TRUE(overlap_obb >= overlap_cylinder);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename S>
|
|
void test_OBB_AABB_test()
|
|
{
|
|
S extents[] = {-1000, -1000, -1000, 1000, 1000, 1000};
|
|
std::size_t n = 1000;
|
|
|
|
aligned_vector<Transform3<S>> transforms;
|
|
test::generateRandomTransforms(extents, transforms, n);
|
|
|
|
AABB<S> aabb1;
|
|
aabb1.min_ = Vector3<S>(-600, -600, -600);
|
|
aabb1.max_ = Vector3<S>(600, 600, 600);
|
|
|
|
OBB<S> obb1;
|
|
convertBV(aabb1, Transform3<S>::Identity(), obb1);
|
|
|
|
for(std::size_t i = 0; i < transforms.size(); ++i)
|
|
{
|
|
AABB<S> aabb;
|
|
aabb.min_ = aabb1.min_ * 0.5;
|
|
aabb.max_ = aabb1.max_ * 0.5;
|
|
|
|
AABB<S> aabb2 = translate(aabb, transforms[i].translation());
|
|
|
|
OBB<S> obb2;
|
|
convertBV(aabb, Transform3<S>(Translation3<S>(transforms[i].translation())), obb2);
|
|
|
|
bool overlap_aabb = aabb1.overlap(aabb2);
|
|
bool overlap_obb = obb1.overlap(obb2);
|
|
if(overlap_aabb != overlap_obb)
|
|
{
|
|
std::cout << aabb1.min_.transpose() << " " << aabb1.max_.transpose() << std::endl;
|
|
std::cout << aabb2.min_.transpose() << " " << aabb2.max_.transpose() << std::endl;
|
|
std::cout << obb1.To.transpose() << " " << obb1.extent.transpose() << " " << obb1.axis.col(0).transpose() << " " << obb1.axis.col(1).transpose() << " " << obb1.axis.col(2).transpose() << std::endl;
|
|
std::cout << obb2.To.transpose() << " " << obb2.extent.transpose() << " " << obb2.axis.col(0).transpose() << " " << obb2.axis.col(1).transpose() << " " << obb2.axis.col(2).transpose() << std::endl;
|
|
}
|
|
|
|
EXPECT_TRUE(overlap_aabb == overlap_obb);
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
template <typename S>
|
|
void test_mesh_mesh()
|
|
{
|
|
std::vector<Vector3<S>> p1, p2;
|
|
std::vector<Triangle> t1, t2;
|
|
|
|
test::loadOBJFile(TEST_RESOURCES_DIR"/env.obj", p1, t1);
|
|
test::loadOBJFile(TEST_RESOURCES_DIR"/rob.obj", p2, t2);
|
|
|
|
aligned_vector<Transform3<S>> transforms;
|
|
S extents[] = {-3000, -3000, 0, 3000, 3000, 3000};
|
|
#ifdef NDEBUG
|
|
std::size_t n = 10;
|
|
#else
|
|
std::size_t n = 1;
|
|
#endif
|
|
bool verbose = false;
|
|
|
|
test::generateRandomTransforms(extents, transforms, n);
|
|
|
|
// collision
|
|
for(std::size_t i = 0; i < transforms.size(); ++i)
|
|
{
|
|
global_pairs<S>().clear();
|
|
global_pairs_now<S>().clear();
|
|
|
|
collide_Test<OBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
|
|
collide_Test<OBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<OBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<AABB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<AABB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<AABB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<KDOP<S, 24> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<KDOP<S, 24> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<KDOP<S, 24> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<KDOP<S, 18> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<KDOP<S, 18> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<KDOP<S, 18> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<KDOP<S, 16> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<KDOP<S, 16> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<KDOP<S, 16> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<OBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<OBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<OBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<AABB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<AABB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<AABB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<KDOP<S, 24> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<KDOP<S, 24> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<KDOP<S, 24> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<KDOP<S, 18> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<KDOP<S, 18> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<KDOP<S, 18> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<KDOP<S, 16> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<KDOP<S, 16> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<KDOP<S, 16> >(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test_Oriented<OBB<S>, detail::MeshCollisionTraversalNodeOBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test_Oriented<OBB<S>, detail::MeshCollisionTraversalNodeOBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test_Oriented<OBB<S>, detail::MeshCollisionTraversalNodeOBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test_Oriented<RSS<S>, detail::MeshCollisionTraversalNodeRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test_Oriented<RSS<S>, detail::MeshCollisionTraversalNodeRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test_Oriented<RSS<S>, detail::MeshCollisionTraversalNodeRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
test_collide_func<RSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
test_collide_func<OBB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
test_collide_func<AABB<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
|
|
collide_Test<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test_Oriented<kIOS<S>, detail::MeshCollisionTraversalNodekIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test_Oriented<kIOS<S>, detail::MeshCollisionTraversalNodekIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test_Oriented<kIOS<S>, detail::MeshCollisionTraversalNodekIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
test_collide_func<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
test_collide_func<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
test_collide_func<kIOS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test2<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test_Oriented<OBBRSS<S>, detail::MeshCollisionTraversalNodeOBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test_Oriented<OBBRSS<S>, detail::MeshCollisionTraversalNodeOBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
collide_Test_Oriented<OBBRSS<S>, detail::MeshCollisionTraversalNodeOBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER, verbose);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
test_collide_func<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEAN);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
test_collide_func<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_MEDIAN);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
|
|
test_collide_func<OBBRSS<S>>(transforms[i], p1, t1, p2, t2, detail::SPLIT_METHOD_BV_CENTER);
|
|
EXPECT_TRUE(global_pairs<S>().size() == global_pairs_now<S>().size());
|
|
for(std::size_t j = 0; j < global_pairs<S>().size(); ++j)
|
|
{
|
|
EXPECT_TRUE(global_pairs<S>()[j].b1 == global_pairs_now<S>()[j].b1);
|
|
EXPECT_TRUE(global_pairs<S>()[j].b2 == global_pairs_now<S>()[j].b2);
|
|
}
|
|
}
|
|
}
|
|
|
|
GTEST_TEST(FCL_COLLISION, OBB_Box_test)
|
|
{
|
|
// test_OBB_Box_test<float>();
|
|
// Disabled for particular configurations: macOS + release + double (see #202)
|
|
#if !defined(FCL_OS_MACOS) || !defined(NDEBUG)
|
|
test_OBB_Box_test<double>();
|
|
#endif
|
|
}
|
|
|
|
GTEST_TEST(FCL_COLLISION, OBB_shape_test)
|
|
{
|
|
// test_OBB_shape_test<float>();
|
|
test_OBB_shape_test<double>();
|
|
}
|
|
|
|
GTEST_TEST(FCL_COLLISION, OBB_AABB_test)
|
|
{
|
|
// test_OBB_AABB_test<float>();
|
|
test_OBB_AABB_test<double>();
|
|
}
|
|
|
|
GTEST_TEST(FCL_COLLISION, mesh_mesh)
|
|
{
|
|
// test_mesh_mesh<float>();
|
|
test_mesh_mesh<double>();
|
|
}
|
|
|
|
template<typename BV>
|
|
bool collide_Test2(const Transform3<typename BV::S>& tf,
|
|
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
|
|
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method, bool verbose)
|
|
{
|
|
using S = typename BV::S;
|
|
|
|
BVHModel<BV> m1;
|
|
BVHModel<BV> m2;
|
|
m1.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
|
|
m2.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
|
|
|
|
std::vector<Vector3<S>> vertices1_new(vertices1.size());
|
|
for(unsigned int i = 0; i < vertices1_new.size(); ++i)
|
|
{
|
|
vertices1_new[i] = tf * vertices1[i];
|
|
}
|
|
|
|
|
|
m1.beginModel();
|
|
m1.addSubModel(vertices1_new, triangles1);
|
|
m1.endModel();
|
|
|
|
m2.beginModel();
|
|
m2.addSubModel(vertices2, triangles2);
|
|
m2.endModel();
|
|
|
|
Transform3<S> pose1 = Transform3<S>::Identity();
|
|
Transform3<S> pose2 = Transform3<S>::Identity();
|
|
|
|
CollisionResult<S> local_result;
|
|
detail::MeshCollisionTraversalNode<BV> node;
|
|
|
|
if(!detail::initialize<BV>(node, m1, pose1, m2, pose2,
|
|
CollisionRequest<S>(num_max_contacts, enable_contact), local_result))
|
|
std::cout << "initialize error" << std::endl;
|
|
|
|
node.enable_statistics = verbose;
|
|
|
|
collide(&node);
|
|
|
|
|
|
if(local_result.numContacts() > 0)
|
|
{
|
|
if(global_pairs<S>().size() == 0)
|
|
{
|
|
local_result.getContacts(global_pairs<S>());
|
|
std::sort(global_pairs<S>().begin(), global_pairs<S>().end());
|
|
}
|
|
else
|
|
{
|
|
local_result.getContacts(global_pairs_now<S>());
|
|
std::sort(global_pairs_now<S>().begin(), global_pairs_now<S>().end());
|
|
}
|
|
|
|
|
|
if(verbose)
|
|
std::cout << "in collision " << local_result.numContacts() << ": " << std::endl;
|
|
if(verbose) std::cout << node.num_bv_tests << " " << node.num_leaf_tests << std::endl;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
if(verbose) std::cout << "collision free " << std::endl;
|
|
if(verbose) std::cout << node.num_bv_tests << " " << node.num_leaf_tests << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
template<typename BV>
|
|
bool collide_Test(const Transform3<typename BV::S>& tf,
|
|
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
|
|
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method, bool verbose)
|
|
{
|
|
using S = typename BV::S;
|
|
|
|
BVHModel<BV> m1;
|
|
BVHModel<BV> m2;
|
|
m1.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
|
|
m2.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
|
|
|
|
m1.beginModel();
|
|
m1.addSubModel(vertices1, triangles1);
|
|
m1.endModel();
|
|
|
|
m2.beginModel();
|
|
m2.addSubModel(vertices2, triangles2);
|
|
m2.endModel();
|
|
|
|
Transform3<S> pose1(tf);
|
|
Transform3<S> pose2 = Transform3<S>::Identity();
|
|
|
|
CollisionResult<S> local_result;
|
|
detail::MeshCollisionTraversalNode<BV> node;
|
|
|
|
if(!detail::initialize<BV>(node, m1, pose1, m2, pose2,
|
|
CollisionRequest<S>(num_max_contacts, enable_contact), local_result))
|
|
std::cout << "initialize error" << std::endl;
|
|
|
|
node.enable_statistics = verbose;
|
|
|
|
collide(&node);
|
|
|
|
|
|
if(local_result.numContacts() > 0)
|
|
{
|
|
if(global_pairs<S>().size() == 0)
|
|
{
|
|
local_result.getContacts(global_pairs<S>());
|
|
std::sort(global_pairs<S>().begin(), global_pairs<S>().end());
|
|
}
|
|
else
|
|
{
|
|
local_result.getContacts(global_pairs_now<S>());
|
|
std::sort(global_pairs_now<S>().begin(), global_pairs_now<S>().end());
|
|
}
|
|
|
|
if(verbose)
|
|
std::cout << "in collision " << local_result.numContacts() << ": " << std::endl;
|
|
if(verbose) std::cout << node.num_bv_tests << " " << node.num_leaf_tests << std::endl;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
if(verbose) std::cout << "collision free " << std::endl;
|
|
if(verbose) std::cout << node.num_bv_tests << " " << node.num_leaf_tests << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
template<typename BV, typename TraversalNode>
|
|
bool collide_Test_Oriented(const Transform3<typename BV::S>& tf,
|
|
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
|
|
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method, bool verbose)
|
|
{
|
|
using S = typename BV::S;
|
|
|
|
BVHModel<BV> m1;
|
|
BVHModel<BV> m2;
|
|
m1.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
|
|
m2.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
|
|
|
|
m1.beginModel();
|
|
m1.addSubModel(vertices1, triangles1);
|
|
m1.endModel();
|
|
|
|
m2.beginModel();
|
|
m2.addSubModel(vertices2, triangles2);
|
|
m2.endModel();
|
|
|
|
Transform3<S> pose1(tf);
|
|
Transform3<S> pose2 = Transform3<S>::Identity();
|
|
|
|
CollisionResult<S> local_result;
|
|
TraversalNode node;
|
|
if(!initialize(node, (const BVHModel<BV>&)m1, pose1, (const BVHModel<BV>&)m2, pose2,
|
|
CollisionRequest<S>(num_max_contacts, enable_contact), local_result))
|
|
std::cout << "initialize error" << std::endl;
|
|
|
|
node.enable_statistics = verbose;
|
|
|
|
collide(&node);
|
|
|
|
if(local_result.numContacts() > 0)
|
|
{
|
|
if(global_pairs<S>().size() == 0)
|
|
{
|
|
local_result.getContacts(global_pairs<S>());
|
|
std::sort(global_pairs<S>().begin(), global_pairs<S>().end());
|
|
}
|
|
else
|
|
{
|
|
local_result.getContacts(global_pairs_now<S>());
|
|
std::sort(global_pairs_now<S>().begin(), global_pairs_now<S>().end());
|
|
}
|
|
|
|
if(verbose)
|
|
std::cout << "in collision " << local_result.numContacts() << ": " << std::endl;
|
|
if(verbose) std::cout << node.num_bv_tests << " " << node.num_leaf_tests << std::endl;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
if(verbose) std::cout << "collision free " << std::endl;
|
|
if(verbose) std::cout << node.num_bv_tests << " " << node.num_leaf_tests << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
template<typename BV>
|
|
bool test_collide_func(const Transform3<typename BV::S>& tf,
|
|
const std::vector<Vector3<typename BV::S>>& vertices1, const std::vector<Triangle>& triangles1,
|
|
const std::vector<Vector3<typename BV::S>>& vertices2, const std::vector<Triangle>& triangles2, detail::SplitMethodType split_method)
|
|
{
|
|
using S = typename BV::S;
|
|
|
|
BVHModel<BV> m1;
|
|
BVHModel<BV> m2;
|
|
m1.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
|
|
m2.bv_splitter.reset(new detail::BVSplitter<BV>(split_method));
|
|
|
|
m1.beginModel();
|
|
m1.addSubModel(vertices1, triangles1);
|
|
m1.endModel();
|
|
|
|
m2.beginModel();
|
|
m2.addSubModel(vertices2, triangles2);
|
|
m2.endModel();
|
|
|
|
Transform3<S> pose1(tf);
|
|
Transform3<S> pose2 = Transform3<S>::Identity();
|
|
|
|
std::vector<Contact<S>> contacts;
|
|
|
|
CollisionRequest<S> request(num_max_contacts, enable_contact);
|
|
CollisionResult<S> result;
|
|
int num_contacts = collide(&m1, pose1, &m2, pose2, request, result);
|
|
|
|
result.getContacts(contacts);
|
|
|
|
global_pairs_now<S>().resize(num_contacts);
|
|
|
|
for(int i = 0; i < num_contacts; ++i)
|
|
{
|
|
global_pairs_now<S>()[i].b1 = contacts[i].b1;
|
|
global_pairs_now<S>()[i].b2 = contacts[i].b2;
|
|
}
|
|
|
|
std::sort(global_pairs_now<S>().begin(), global_pairs_now<S>().end());
|
|
|
|
if(num_contacts > 0) return true;
|
|
else return false;
|
|
}
|
|
|
|
//==============================================================================
|
|
int main(int argc, char* argv[])
|
|
{
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
return RUN_ALL_TESTS();
|
|
}
|