protot/3rdparty/rbdl/include/rbdl/SimpleMath/SimpleMathQR.h

325 lines
8.5 KiB
C++

#ifndef _SIMPLE_MATH_QR_H
#define _SIMPLE_MATH_QR_H
#include <iostream>
#include <limits>
#include "SimpleMathFixed.h"
#include "SimpleMathDynamic.h"
#include "SimpleMathBlock.h"
namespace SimpleMath {
template <typename matrix_type>
class HouseholderQR {
public:
typedef typename matrix_type::value_type value_type;
HouseholderQR() :
mIsFactorized(false)
{}
private:
typedef Dynamic::Matrix<value_type> MatrixXXd;
typedef Dynamic::Matrix<value_type> VectorXd;
bool mIsFactorized;
MatrixXXd mQ;
MatrixXXd mR;
public:
HouseholderQR(const matrix_type &matrix) :
mIsFactorized(false),
mQ(matrix.rows(), matrix.rows())
{
compute(matrix);
}
HouseholderQR compute(const matrix_type &matrix) {
mR = matrix;
mQ = Dynamic::Matrix<value_type>::Identity (mR.rows(), mR.rows());
for (unsigned int i = 0; i < mR.cols(); i++) {
unsigned int block_rows = mR.rows() - i;
unsigned int block_cols = mR.cols() - i;
MatrixXXd current_block = mR.block(i,i, block_rows, block_cols);
VectorXd column = current_block.block(0, 0, block_rows, 1);
value_type alpha = - column.norm();
if (current_block(0,0) < 0) {
alpha = - alpha;
}
VectorXd v = current_block.block(0, 0, block_rows, 1);
v[0] = v[0] - alpha;
MatrixXXd Q (MatrixXXd::Identity(mR.rows(), mR.rows()));
Q.block(i, i, block_rows, block_rows) = MatrixXXd (Q.block(i, i, block_rows, block_rows))
- MatrixXXd(v * v.transpose() / (v.squaredNorm() * 0.5));
mR = Q * mR;
// Normalize so that we have positive diagonal elements
if (mR(i,i) < 0) {
mR.block(i,i,block_rows, block_cols) = MatrixXXd(mR.block(i,i,block_rows, block_cols)) * -1.;
Q.block(i,i,block_rows, block_rows) = MatrixXXd(Q.block(i,i,block_rows, block_rows)) * -1.;
}
mQ = mQ * Q;
}
mIsFactorized = true;
return *this;
}
Dynamic::Matrix<value_type> solve (
const Dynamic::Matrix<value_type> &rhs
) const {
assert (mIsFactorized);
VectorXd y = mQ.transpose() * rhs;
VectorXd x = VectorXd::Zero(mR.cols());
for (int i = mR.cols() - 1; i >= 0; --i) {
value_type z = y[i];
for (unsigned int j = i + 1; j < mR.cols(); j++) {
z = z - x[j] * mR(i,j);
}
if (fabs(mR(i,i)) < std::numeric_limits<value_type>::epsilon() * 10) {
std::cerr << "HouseholderQR: Cannot back-substitute as diagonal element is near zero!" << std::endl;
abort();
}
x[i] = z / mR(i,i);
}
return x;
}
Dynamic::Matrix<value_type> inverse() const {
assert (mIsFactorized);
VectorXd rhs_temp = VectorXd::Zero(mQ.cols());
MatrixXXd result (mQ.cols(), mQ.cols());
for (unsigned int i = 0; i < mQ.cols(); i++) {
rhs_temp[i] = 1.;
result.block(0, i, mQ.cols(), 1) = solve(rhs_temp);
rhs_temp[i] = 0.;
}
return result;
}
Dynamic::Matrix<value_type> householderQ () const {
return mQ;
}
Dynamic::Matrix<value_type> matrixR () const {
return mR;
}
};
template <typename matrix_type>
class ColPivHouseholderQR {
public:
typedef typename matrix_type::value_type value_type;
private:
typedef Dynamic::Matrix<value_type> MatrixXXd;
typedef Dynamic::Matrix<value_type> VectorXd;
bool mIsFactorized;
MatrixXXd mQ;
MatrixXXd mR;
unsigned int *mPermutations;
value_type mThreshold;
unsigned int mRank;
public:
ColPivHouseholderQR():
mIsFactorized(false) {
mPermutations = new unsigned int[1];
}
ColPivHouseholderQR (const ColPivHouseholderQR& other) {
mIsFactorized = other.mIsFactorized;
mQ = other.mQ;
mR = other.mR;
mPermutations = new unsigned int[mQ.cols()];
mThreshold = other.mThreshold;
mRank = other.mRank;
}
ColPivHouseholderQR& operator= (const ColPivHouseholderQR& other) {
if (this != &other) {
mIsFactorized = other.mIsFactorized;
mQ = other.mQ;
mR = other.mR;
delete[] mPermutations;
mPermutations = new unsigned int[mQ.cols()];
mThreshold = other.mThreshold;
mRank = other.mRank;
}
return *this;
}
ColPivHouseholderQR(const matrix_type &matrix) :
mIsFactorized(false),
mQ(matrix.rows(), matrix.rows()),
mThreshold (std::numeric_limits<value_type>::epsilon() * matrix.cols()) {
mPermutations = new unsigned int [matrix.cols()];
for (unsigned int i = 0; i < matrix.cols(); i++) {
mPermutations[i] = i;
}
compute(matrix);
}
~ColPivHouseholderQR() {
delete[] mPermutations;
}
ColPivHouseholderQR& setThreshold (const value_type& threshold) {
mThreshold = threshold;
return *this;
}
ColPivHouseholderQR& compute(const matrix_type &matrix) {
mR = matrix;
mQ = Dynamic::Matrix<value_type>::Identity (mR.rows(), mR.rows());
for (unsigned int i = 0; i < mR.cols(); i++) {
unsigned int block_rows = mR.rows() - i;
unsigned int block_cols = mR.cols() - i;
// find and swap the column with the highest norm
unsigned int col_index_norm_max = i;
value_type col_norm_max = VectorXd(mR.block(i,i, block_rows, 1)).squaredNorm();
for (unsigned int j = i + 1; j < mR.cols(); j++) {
VectorXd column = mR.block(i, j, block_rows, 1);
if (column.squaredNorm() > col_norm_max) {
col_index_norm_max = j;
col_norm_max = column.squaredNorm();
}
}
if (col_norm_max < mThreshold) {
// if all entries of the column is close to zero, we bail out
break;
}
if (col_index_norm_max != i) {
VectorXd temp_col = mR.block(0, i, mR.rows(), 1);
mR.block(0,i,mR.rows(),1) = mR.block(0, col_index_norm_max, mR.rows(), 1);
mR.block(0, col_index_norm_max, mR.rows(), 1) = temp_col;
unsigned int temp_index = mPermutations[i];
mPermutations[i] = mPermutations[col_index_norm_max];
mPermutations[col_index_norm_max] = temp_index;
}
MatrixXXd current_block = mR.block(i,i, block_rows, block_cols);
VectorXd column = current_block.block(0, 0, block_rows, 1);
value_type alpha = - column.norm();
if (current_block(0,0) < 0) {
alpha = - alpha;
}
VectorXd v = current_block.block(0, 0, block_rows, 1);
v[0] = v[0] - alpha;
MatrixXXd Q (MatrixXXd::Identity(mR.rows(), mR.rows()));
Q.block(i, i, block_rows, block_rows) = MatrixXXd (Q.block(i, i, block_rows, block_rows))
- MatrixXXd(v * v.transpose() / (v.squaredNorm() * 0.5));
mR = Q * mR;
// Normalize so that we have positive diagonal elements
if (mR(i,i) < 0) {
mR.block(i,i,block_rows, block_cols) = MatrixXXd(mR.block(i,i,block_rows, block_cols)) * -1.;
Q.block(i,i,block_rows, block_rows) = MatrixXXd(Q.block(i,i,block_rows, block_rows)) * -1.;
}
mQ = mQ * Q;
}
mIsFactorized = true;
return *this;
}
Dynamic::Matrix<value_type> solve (
const Dynamic::Matrix<value_type> &rhs
) const {
assert (mIsFactorized);
VectorXd y = mQ.transpose() * rhs;
VectorXd x = VectorXd::Zero(mR.cols());
for (int i = mR.cols() - 1; i >= 0; --i) {
value_type z = y[i];
for (unsigned int j = i + 1; j < mR.cols(); j++) {
z = z - x[mPermutations[j]] * mR(i,j);
}
if (fabs(mR(i,i)) < std::numeric_limits<value_type>::epsilon() * 10) {
std::cerr << "HouseholderQR: Cannot back-substitute as diagonal element is near zero!" << std::endl;
abort();
}
x[mPermutations[i]] = z / mR(i,i);
}
return x;
}
Dynamic::Matrix<value_type> inverse() const {
assert (mIsFactorized);
VectorXd rhs_temp = VectorXd::Zero(mQ.cols());
MatrixXXd result (mQ.cols(), mQ.cols());
for (unsigned int i = 0; i < mQ.cols(); i++) {
rhs_temp[i] = 1.;
result.block(0, i, mQ.cols(), 1) = solve(rhs_temp);
rhs_temp[i] = 0.;
}
return result;
}
Dynamic::Matrix<value_type> householderQ () const {
return mQ;
}
Dynamic::Matrix<value_type> matrixR () const {
return mR;
}
Dynamic::Matrix<value_type> matrixP () const {
MatrixXXd P = MatrixXXd::Identity(mR.cols(), mR.cols());
MatrixXXd identity = MatrixXXd::Identity(mR.cols(), mR.cols());
for (unsigned int i = 0; i < mR.cols(); i++) {
P.block(0,i,mR.cols(),1) = identity.block(0,mPermutations[i], mR.cols(), 1);
}
return P;
}
unsigned int rank() const {
value_type abs_threshold = fabs(mR(0,0)) * mThreshold;
for (unsigned int i = 1; i < mR.cols(); i++) {
if (fabs(mR(i,i) < abs_threshold))
return i;
}
return mR.cols();
}
};
}
/* _SIMPLE_MATH_QR_H */
#endif