protot/3rdparty/fcl/test/test_fcl_capsule_capsule.cpp

191 lines
7.2 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2011-2014, Willow Garage, Inc.
* Copyright (c) 2014-2016, Open Source Robotics Foundation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Open Source Robotics Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** @author Karsten Knese <Karsten.Knese@googlemail.com> */
#include <gtest/gtest.h>
#include "fcl/math/constants.h"
#include "fcl/narrowphase/collision.h"
#include "fcl/narrowphase/detail/gjk_solver_indep.h"
#include "fcl/narrowphase/detail/gjk_solver_libccd.h"
#include <cmath>
using namespace fcl;
//==============================================================================
template <typename S>
void test_distance_capsulecapsule_origin()
{
detail::GJKSolver_indep<S> solver;
Capsule<S> s1(5, 10);
Capsule<S> s2(5, 10);
Vector3<S> closest_p1, closest_p2;
Transform3<S> transform = Transform3<S>::Identity();
Transform3<S> transform2 = Transform3<S>::Identity();
transform2.translation() = Vector3<S>(20.1, 0,0);
bool res;
S dist;
res = solver.template shapeDistance<Capsule<S>, Capsule<S>>(s1, transform, s2, transform2, &dist, &closest_p1, &closest_p2);
std::cerr << "applied transformation of two caps: " << transform.translation() << " & " << transform2.translation() << std::endl;
std::cerr << "computed points in caps to caps" << closest_p1 << " & " << closest_p2 << "with dist: " << dist << std::endl;
EXPECT_TRUE(std::abs(dist - 10.1) < 0.001);
EXPECT_TRUE(res);
}
//==============================================================================
template <typename S>
void test_distance_capsulecapsule_transformXY()
{
detail::GJKSolver_indep<S> solver;
Capsule<S> s1(5, 10);
Capsule<S> s2(5, 10);
Vector3<S> closest_p1, closest_p2;
Transform3<S> transform = Transform3<S>::Identity();
Transform3<S> transform2 = Transform3<S>::Identity();
transform2.translation() = Vector3<S>(20, 20,0);
bool res;
S dist;
res = solver.template shapeDistance<Capsule<S>, Capsule<S>>(s1, transform, s2, transform2, &dist, &closest_p1, &closest_p2);
std::cerr << "applied transformation of two caps: " << transform.translation() << " & " << transform2.translation() << std::endl;
std::cerr << "computed points in caps to caps" << closest_p1 << " & " << closest_p2 << "with dist: " << dist << std::endl;
S expected = std::sqrt(S(800)) - 10;
EXPECT_TRUE(std::abs(expected-dist) < 0.01);
EXPECT_TRUE(res);
}
//==============================================================================
template <typename S>
void test_distance_capsulecapsule_transformZ()
{
detail::GJKSolver_indep<S> solver;
Capsule<S> s1(5, 10);
Capsule<S> s2(5, 10);
Vector3<S> closest_p1, closest_p2;
Transform3<S> transform = Transform3<S>::Identity();
Transform3<S> transform2 = Transform3<S>::Identity();
transform2.translation() = Vector3<S>(0,0,20.1);
bool res;
S dist;
res = solver.template shapeDistance<Capsule<S>, Capsule<S>>(s1, transform, s2, transform2, &dist, &closest_p1, &closest_p2);
std::cerr << "applied transformation of two caps: " << transform.translation() << " & " << transform2.translation() << std::endl;
std::cerr << "computed points in caps to caps" << closest_p1 << " & " << closest_p2 << "with dist: " << dist << std::endl;
EXPECT_TRUE(std::abs(dist - 0.1) < 0.001);
EXPECT_TRUE(res);
}
//==============================================================================
template <typename S>
void test_distance_capsulecapsule_transformZ2()
{
const S Pi = constants<S>::pi();
detail::GJKSolver_indep<S> solver;
Capsule<S> s1(5, 10);
Capsule<S> s2(5, 10);
Vector3<S> closest_p1, closest_p2;
Transform3<S> transform = Transform3<S>::Identity();
Transform3<S> transform2 = Transform3<S>::Identity();
transform2.translation() = Vector3<S>(0,0,25.1);
Matrix3<S> rot2(
AngleAxis<S>(0, Vector3<S>::UnitX())
* AngleAxis<S>(Pi/2, Vector3<S>::UnitY())
* AngleAxis<S>(0, Vector3<S>::UnitZ()));
transform2.linear() = rot2;
bool res;
S dist;
res = solver.template shapeDistance<Capsule<S>, Capsule<S>>(s1, transform, s2, transform2, &dist, &closest_p1, &closest_p2);
std::cerr << "applied transformation of two caps: " << transform.translation() << " & " << transform2.translation() << std::endl;
std::cerr << "applied transformation of two caps: " << transform.linear() << " & " << transform2.linear() << std::endl;
std::cerr << "computed points in caps to caps" << closest_p1 << " & " << closest_p2 << "with dist: " << dist << std::endl;
EXPECT_TRUE(std::abs(dist - 5.1) < 0.001);
EXPECT_TRUE(res);
}
//==============================================================================
GTEST_TEST(FCL_CAPSULE_CAPSULE, distance_capsulecapsule_origin)
{
// test_distance_capsulecapsule_origin<float>();
test_distance_capsulecapsule_origin<double>();
}
//==============================================================================
GTEST_TEST(FCL_CAPSULE_CAPSULE, distance_capsulecapsule_transformXY)
{
// test_distance_capsulecapsule_transformXY<float>();
test_distance_capsulecapsule_transformXY<double>();
}
//==============================================================================
GTEST_TEST(FCL_CAPSULE_CAPSULE, distance_capsulecapsule_transformZ)
{
// test_distance_capsulecapsule_transformZ<float>();
test_distance_capsulecapsule_transformZ<double>();
}
//==============================================================================
GTEST_TEST(FCL_CAPSULE_CAPSULE, distance_capsulecapsule_transformZ2)
{
// test_distance_capsulecapsule_transformZ2<float>();
test_distance_capsulecapsule_transformZ2<double>();
}
//==============================================================================
int main(int argc, char* argv[])
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}