protot/3rdparty/rbdl/addons/muscle/MuscleFunctionFactory.cc

928 lines
30 KiB
C++

/* -------------------------------------------------------------------------- *
* OpenSim: SmoothSegmentedFunctionFactory.cpp *
* -------------------------------------------------------------------------- *
* The OpenSim API is a toolkit for musculoskeletal modeling and simulation. *
* See http://opensim.stanford.edu and the NOTICE file for more information. *
* OpenSim is developed at Stanford University and supported by the US *
* National Institutes of Health (U54 GM072970, R24 HD065690) and by DARPA *
* through the Warrior Web program. *
* *
* Copyright (c) 2005-2012 Stanford University and the Authors *
* Author(s): Matthew Millard *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/*
Update:
This is a port of the original code so that it will work with
the multibody code RBDL written by Martin Felis.
Author:
Matthew Millard
Date:
Nov 2015
*/
//=============================================================================
// INCLUDES
//=============================================================================
#include "MuscleFunctionFactory.h"
#include <cmath>
#include <cstdio>
#include <iostream>
#include <fstream>
#include <sstream>
using namespace std;
using namespace RigidBodyDynamics::Addons::Muscle;
using namespace RigidBodyDynamics::Addons::Geometry;
//=============================================================================
// STATICS
//=============================================================================
//using namespace std;
static int NUM_SAMPLE_PTS = 100; //The number of knot points to use to sample
//each Bezier corner section
static double SMOOTHING = 0; //The amount of smoothing to use when fitting
//3rd order splines to the quintic Bezier
//functions
static bool DEBUG = true; //When this is set to true, each function's debug
//routine will be called, which ususally results
//in a text file of its output being produced
static double UTOL = (double)std::numeric_limits<double>::epsilon()*1e2;
static double INTTOL = (double)std::numeric_limits<double>::epsilon()*1e4;
static int MAXITER = 20;
//=============================================================================
// UTILITY FUNCTIONS
//=============================================================================
//=============================================================================
// MUSCLE CURVE FITTING FUNCTIONS
//=============================================================================
void MuscleFunctionFactory::createFiberActiveForceLengthCurve(
double x0,
double x1,
double x2,
double x3,
double ylow,
double dydx,
double curviness,
const std::string& curveName,
SmoothSegmentedFunction& smoothSegmentedFunctionToUpdate)
{
//Ensure that the inputs are within a valid range
double rootEPS = sqrt(std::numeric_limits<double>::epsilon());
if( (!(x0>=0 && x1>x0+rootEPS && x2>x1+rootEPS && x3>x2+rootEPS) ) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberActiveForceLengthCurve: "
<< curveName
<< ": This must be true: 0 < lce0 < lce1 < lce2 < lce3"
<< endl;
assert(0);
abort();
}
if( !(ylow >= 0) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberActiveForceLengthCurve:"
<< curveName
<<": shoulderVal must be greater than, or equal to 0"
<< endl;
assert(0);
abort();
}
double dydxUpperBound = (1-ylow)/(x2-x1);
if( !(dydx >= 0 && dydx < dydxUpperBound) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberActiveForceLengthCurve:"
<< curveName
<< ": plateauSlope must be greater than 0 and less than "
<< dydxUpperBound
<< endl;
assert(0);
abort();
}
if( !(curviness >= 0 && curviness <= 1) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberActiveForceLengthCurve:"
<< curveName
<< ": curviness must be between 0 and 1"
<< endl;
assert(0);
abort();
}
std::string name = curveName;
name.append(".createFiberActiveForceLengthCurve");
//Translate the users parameters into Bezier curves
double c = SegmentedQuinticBezierToolkit::scaleCurviness(curviness);
//The active force length curve is made up of 5 elbow shaped sections.
//Compute the locations of the joining point of each elbow section.
//Calculate the location of the shoulder
double xDelta = 0.05*x2; //half the width of the sarcomere 0.0259,
//but TM.Winter's data has a wider shoulder than
//this
double xs = (x2-xDelta);//x1 + 0.75*(x2-x1);
//Calculate the intermediate points located on the ascending limb
double y0 = 0;
double dydx0 = 0;
double y1 = 1 - dydx*(xs-x1);
double dydx01= 1.25*(y1-y0)/(x1-x0);//(y1-y0)/(x1-(x0+xDelta));
double x01 = x0 + 0.5*(x1-x0); //x0 + xDelta + 0.5*(x1-(x0+xDelta));
double y01 = y0 + 0.5*(y1-y0);
//Calculate the intermediate points of the shallow ascending plateau
double x1s = x1 + 0.5*(xs-x1);
double y1s = y1 + 0.5*(1-y1);
double dydx1s= dydx;
//double dydx01c0 = 0.5*(y1s-y01)/(x1s-x01) + 0.5*(y01-y0)/(x01-x0);
//double dydx01c1 = 2*( (y1-y0)/(x1-x0));
//double dydx01(1-c)*dydx01c0 + c*dydx01c1;
//x2 entered
double y2 = 1;
double dydx2 = 0;
//Descending limb
//x3 entered
double y3 = 0;
double dydx3 = 0;
double x23 = (x2+xDelta) + 0.5*(x3-(x2+xDelta)); //x2 + 0.5*(x3-x2);
double y23 = y2 + 0.5*(y3-y2);
//double dydx23c0 = 0.5*((y23-y2)/(x23-x2)) + 0.5*((y3-y23)/(x3-x23));
//double dydx23c1 = 2*(y3-y2)/(x3-x2);
double dydx23 = (y3-y2)/((x3-xDelta)-(x2+xDelta));
//(1-c)*dydx23c0 + c*dydx23c1;
//Compute the locations of the control points
RigidBodyDynamics::Math::MatrixNd p0 = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints(x0,ylow,dydx0,x01,y01,dydx01,c);
RigidBodyDynamics::Math::MatrixNd p1 = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints(x01,y01,dydx01,x1s,y1s,dydx1s,c);
RigidBodyDynamics::Math::MatrixNd p2 = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints(x1s,y1s,dydx1s,x2, y2, dydx2,c);
RigidBodyDynamics::Math::MatrixNd p3 = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints(x2, y2, dydx2,x23,y23,dydx23,c);
RigidBodyDynamics::Math::MatrixNd p4 = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints(x23,y23,dydx23,x3,ylow,dydx3,c);
RigidBodyDynamics::Math::MatrixNd mX(6,5), mY(6,5);
mX.col(0) = p0.col(0);
mX.col(1) = p1.col(0);
mX.col(2) = p2.col(0);
mX.col(3) = p3.col(0);
mX.col(4) = p4.col(0);
mY.col(0) = p0.col(1);
mY.col(1) = p1.col(1);
mY.col(2) = p2.col(1);
mY.col(3) = p3.col(1);
mY.col(4) = p4.col(1);
smoothSegmentedFunctionToUpdate.updSmoothSegmentedFunction(
mX,mY,x0,x3,ylow,ylow,0,0,curveName);
}
void MuscleFunctionFactory::createFiberForceVelocityCurve(
double fmaxE,
double dydxC,
double dydxNearC,
double dydxIso,
double dydxE,
double dydxNearE,
double concCurviness,
double eccCurviness,
const std::string& curveName,
SmoothSegmentedFunction& smoothSegmentedFunctionToUpdate)
{
//Ensure that the inputs are within a valid range
if( !(fmaxE > 1.0) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceVelocityCurve: "
<< curveName
<<": fmaxE must be greater than 1"
<< endl;
assert(0);
abort();
}
if( !(dydxC >= 0.0 && dydxC < 1) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceVelocityCurve: "
<< curveName
<< ": dydxC must be greater than or equal to 0 "
<<" and less than 1"
<< endl;
assert(0);
abort();
}
if( !(dydxNearC > dydxC && dydxNearC <= 1) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceVelocityCurve: "
<< curveName
<< ": dydxNearC must be greater than or equal to 0 "
<< "and less than 1"
<< endl;
assert(0);
abort();
}
if( !(dydxIso > 1) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceVelocityCurve: "
<< curveName
<< ": dydxIso must be greater than (fmaxE-1)/1 ("
<< ((fmaxE-1.0)/1.0)
<< ")"
<< endl;
assert(0);
abort();
}
if( !(dydxE >= 0.0 && dydxE < (fmaxE-1)) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceVelocityCurve: "
<< curveName
<<": dydxE must be greater than or equal to 0 "
<< "and less than fmaxE-1 ("
<< (fmaxE-1) << ")"
<< endl;
assert(0);
abort();
}
if(!(dydxNearE >= dydxE && dydxNearE < (fmaxE-1))){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceVelocityCurve"
<< curveName
<< ": dydxNearE must be greater than or equal to dydxE "
<< "and less than fmaxE-1 (" << (fmaxE-1)
<< ")"
<< endl;
assert(0);
abort();
}
if(! (concCurviness <= 1.0 && concCurviness >= 0)){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceVelocityCurve "
<< curveName
<< ": concCurviness must be between 0 and 1"
<< endl;
assert(0);
abort();
}
if(! (eccCurviness <= 1.0 && eccCurviness >= 0)){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceVelocityCurve "
<< curveName
<< ": eccCurviness must be between 0 and 1"
<< endl;
assert(0);
abort();
}
std::string name = curveName;
name.append(".createFiberForceVelocityCurve");
//Translate the users parameters into Bezier point locations
double cC = SegmentedQuinticBezierToolkit::scaleCurviness(concCurviness);
double cE = SegmentedQuinticBezierToolkit::scaleCurviness(eccCurviness);
//Compute the concentric control point locations
double xC = -1;
double yC = 0;
double xNearC = -0.9;
double yNearC = yC + 0.5*dydxNearC*(xNearC-xC) + 0.5*dydxC*(xNearC-xC);
double xIso = 0;
double yIso = 1;
double xE = 1;
double yE = fmaxE;
double xNearE = 0.9;
double yNearE = yE + 0.5*dydxNearE*(xNearE-xE) + 0.5*dydxE*(xNearE-xE);
RigidBodyDynamics::Math::MatrixNd concPts1 = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints( xC, yC, dydxC,
xNearC, yNearC,dydxNearC,cC);
RigidBodyDynamics::Math::MatrixNd concPts2 = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints(xNearC,yNearC,dydxNearC,
xIso, yIso, dydxIso, cC);
RigidBodyDynamics::Math::MatrixNd eccPts1 = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints( xIso, yIso, dydxIso,
xNearE, yNearE, dydxNearE, cE);
RigidBodyDynamics::Math::MatrixNd eccPts2 = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints(xNearE, yNearE, dydxNearE,
xE, yE, dydxE, cE);
RigidBodyDynamics::Math::MatrixNd mX(6,4), mY(6,4);
mX.col(0) = concPts1.col(0);
mX.col(1) = concPts2.col(0);
mX.col(2) = eccPts1.col(0);
mX.col(3) = eccPts2.col(0);
mY.col(0) = concPts1.col(1);
mY.col(1) = concPts2.col(1);
mY.col(2) = eccPts1.col(1);
mY.col(3) = eccPts2.col(1);
smoothSegmentedFunctionToUpdate.updSmoothSegmentedFunction(
mX,mY,xC,xE,yC,yE,dydxC,dydxE,curveName);
}
void MuscleFunctionFactory::createFiberForceVelocityInverseCurve(
double fmaxE,
double dydxC,
double dydxNearC,
double dydxIso,
double dydxE,
double dydxNearE,
double concCurviness,
double eccCurviness,
const std::string& curveName,
SmoothSegmentedFunction& smoothSegmentedFunctionToUpdate)
{
//Ensure that the inputs are within a valid range
if(! (fmaxE > 1.0 )){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceVelocityInverseCurve: "
<< curveName
<< ": fmaxE must be greater than 1"
<< endl;
assert(0);
abort();
}
double SimTKSignificantReal =
pow((double)std::numeric_limits<double>::epsilon(), 7.0/8.0);
if(! (dydxC > SimTKSignificantReal && dydxC < 1 )){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceVelocityInverseCurve "
<< curveName
<< ": dydxC must be greater than 0"
<< "and less than 1"
<< endl;
assert(0);
abort();
}
if(! (dydxNearC > dydxC && dydxNearC < 1 )){
std::stringstream errMsg;
cerr << "MuscleFunctionFactory::"
<< "createFiberForceVelocityInverseCurve "
<< ": dydxNearC must be greater than 0 "
<< curveName
<< " and less than 1"
<< endl;
assert(0);
abort();
}
if(! (dydxIso > 1)){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceVelocityInverseCurve "
<< curveName
<< ": dydxIso must be greater than or equal to 1"
<< endl;
assert(0);
abort();
}
//double SimTKSignificantReal =
// pow(std::numeric_limits<double>::epsilon(), 7.0/8.0);
if(! (dydxE > SimTKSignificantReal && dydxE < (fmaxE-1)) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceVelocityInverseCurve "
<< curveName
<< ": dydxE must be greater than or equal to 0"
<< " and less than fmaxE-1 (" << (fmaxE-1) << ")"
<< endl;
assert(0);
abort();
}
if(! (dydxNearE >= dydxE && dydxNearE < (fmaxE-1)) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceVelocityInverseCurve "
<< curveName
<< ": dydxNearE must be greater than or equal to dydxE"
<< "and less than fmaxE-1 ("<< (fmaxE-1) << ")"
<< endl;
assert(0);
abort();
}
if(! (concCurviness <= 1.0 && concCurviness >= 0) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceVelocityInverseCurve "
<< curveName
<< ": concCurviness must be between 0 and 1"
<< endl;
assert(0);
abort();
}
if(! (eccCurviness <= 1.0 && eccCurviness >= 0) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceVelocityInverseCurve "
<< curveName
<< ": eccCurviness must be between 0 and 1"
<< endl;
assert(0);
abort();
}
std::string name = curveName;
name.append(".createFiberForceVelocityInverseCurve");
//Translate the users parameters into Bezier point locations
double cC = SegmentedQuinticBezierToolkit::scaleCurviness(concCurviness);
double cE = SegmentedQuinticBezierToolkit::scaleCurviness(eccCurviness);
//Compute the concentric control point locations
double xC = -1;
double yC = 0;
double xNearC = -0.9;
double yNearC = yC + 0.5*dydxNearC*(xNearC-xC) + 0.5*dydxC*(xNearC-xC);
double xIso = 0;
double yIso = 1;
double xE = 1;
double yE = fmaxE;
double xNearE = 0.9;
double yNearE = yE + 0.5*dydxNearE*(xNearE-xE) + 0.5*dydxE*(xNearE-xE);
RigidBodyDynamics::Math::MatrixNd concPts1 = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints( xC, yC, dydxC,
xNearC, yNearC,dydxNearC,cC);
RigidBodyDynamics::Math::MatrixNd concPts2 = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints(xNearC,yNearC,dydxNearC,
xIso, yIso, dydxIso, cC);
RigidBodyDynamics::Math::MatrixNd eccPts1 = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints( xIso, yIso, dydxIso,
xNearE, yNearE, dydxNearE, cE);
RigidBodyDynamics::Math::MatrixNd eccPts2 = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints(xNearE, yNearE, dydxNearE,
xE, yE, dydxE, cE);
RigidBodyDynamics::Math::MatrixNd mX(6,4), mY(6,4);
mX.col(0) = concPts1.col(0);
mX.col(1) = concPts2.col(0);
mX.col(2) = eccPts1.col(0);
mX.col(3) = eccPts2.col(0);
mY.col(0) = concPts1.col(1);
mY.col(1) = concPts2.col(1);
mY.col(2) = eccPts1.col(1);
mY.col(3) = eccPts2.col(1);
smoothSegmentedFunctionToUpdate.updSmoothSegmentedFunction(
mY,mX,yC,yE,xC,xE,1/dydxC,1/dydxE, curveName);
}
void MuscleFunctionFactory::createFiberCompressiveForcePennationCurve(
double phi0,
double k,
double curviness,
const std::string& curveName,
SmoothSegmentedFunction& smoothSegmentedFunctionToUpdate)
{
//Check the input arguments
if( !(phi0>0 && phi0<(M_PI/2.0)) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberCompressiveForcePennationCurve "
<< curveName
<< ": phi0 must be greater than 0, and less than Pi/2"
<< endl;
assert(0);
abort();
}
if( !(k > (1.0/(M_PI/2.0-phi0))) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberCompressiveForcePennationCurve "
<< curveName
<< ": k must be greater than " << (1.0/(M_PI/2.0-phi0))
<< endl;
assert(0);
abort();
}
if( !(curviness>=0 && curviness <= 1) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberCompressiveForcePennationCurve "
<< curveName
<< ": curviness must be between 0.0 and 1.0"
<< endl;
assert(0);
abort();
}
std::string name=curveName;
name.append(".createFiberCompressiveForcePennationCurve");
//Translate the user parameters to quintic Bezier points
double c = SegmentedQuinticBezierToolkit::scaleCurviness(curviness);
double x0 = phi0;
double y0 = 0;
double dydx0 = 0;
double x1 = M_PI/2.0;
double y1 = 1;
double dydx1 = k;
RigidBodyDynamics::Math::MatrixNd ctrlPts = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints(x0,y0,dydx0,x1,y1,dydx1,c);
RigidBodyDynamics::Math::MatrixNd mX(6,1), mY(6,1);
mX.col(0) = ctrlPts.col(0);
mY.col(0) = ctrlPts.col(1);
smoothSegmentedFunctionToUpdate.updSmoothSegmentedFunction(
mX,mY,x0,x1,y0,y1,dydx0,dydx1,curveName);
}
void MuscleFunctionFactory::
createFiberCompressiveForceCosPennationCurve(
double cosPhi0,
double k,
double curviness,
const std::string& curveName,
SmoothSegmentedFunction& smoothSegmentedFunctionToUpdate)
{
//Check the input arguments
if( !(cosPhi0>0 && cosPhi0 < 1) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberCompressiveForceCosPennationCurve "
<< curveName
<< ": cosPhi0 must be greater than 0, and less than 1"
<< endl;
assert(0);
abort();
}
if( !(k < 1/cosPhi0) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberCompressiveForceCosPennationCurve "
<< curveName
<< ": k must be less than 0"
<< endl;
assert(0);
abort();
}
if( !(curviness>=0 && curviness <= 1) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberCompressiveForceCosPennationCurve"
<< curveName
<< ": curviness must be between 0.0 and 1.0"
<< endl;
assert(0);
abort();
}
std::string name=curveName;
name.append(".createFiberCompressiveForceCosPennationCurve");
//Translate the user parameters to quintic Bezier points
double c = SegmentedQuinticBezierToolkit::scaleCurviness(curviness);
double x0 = 0;
double y0 = 1;
double dydx0 = k;
double x1 = cosPhi0;
double y1 = 0;
double dydx1 = 0;
RigidBodyDynamics::Math::MatrixNd ctrlPts = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints(x0,y0,dydx0,x1,y1,dydx1,c);
RigidBodyDynamics::Math::MatrixNd mX(6,1), mY(6,1);
mX.col(0) = ctrlPts.col(0);
mY.col(0) = ctrlPts.col(1);
smoothSegmentedFunctionToUpdate.updSmoothSegmentedFunction(
mX,mY,x0,x1,y0,y1,dydx0,dydx1,curveName);
}
void MuscleFunctionFactory::createFiberCompressiveForceLengthCurve(
double lmax,
double k,
double curviness,
const std::string& curveName,
SmoothSegmentedFunction& smoothSegmentedFunctionToUpdate)
{
if( !(lmax>0) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberCompressiveForceLength "
<< curveName
<< ": l0 must be greater than 0"
<< endl;
assert(0);
abort();
}
if( !(k < -(1.0/lmax)) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberCompressiveForceLength "
<< curveName
<< ": k must be less than "
<< -(1.0/lmax)
<< endl;
assert(0);
abort();
}
if( !(curviness>=0 && curviness <= 1) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberCompressiveForceLength "
<< curveName
<< ": curviness must be between 0.0 and 1.0"
<< endl;
assert(0);
abort();
}
std::string caller = curveName;
caller.append(".createFiberCompressiveForceLength");
//Translate the user parameters to quintic Bezier points
double c = SegmentedQuinticBezierToolkit::scaleCurviness(curviness);
double x0 = 0.0;
double y0 = 1;
double dydx0 = k;
double x1 = lmax;
double y1 = 0;
double dydx1 = 0;
RigidBodyDynamics::Math::MatrixNd ctrlPts = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints(x0,y0,dydx0,x1,y1,dydx1,c);
RigidBodyDynamics::Math::MatrixNd mX(6,1), mY(6,1);
mX.col(0) = ctrlPts.col(0);
mY.col(0) = ctrlPts.col(1);
smoothSegmentedFunctionToUpdate.updSmoothSegmentedFunction(
mX,mY,x0,x1,y0,y1,dydx0,dydx1,curveName);
}
void MuscleFunctionFactory::createFiberForceLengthCurve(
double eZero,
double eIso,
double kLow,
double kIso,
double curviness,
const std::string& curveName,
SmoothSegmentedFunction& smoothSegmentedFunctionToUpdate)
{
if( !(eIso > eZero) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceLength "
<< curveName
<< ": The following must hold: eIso > eZero"
<< endl;
assert(0);
abort();
}
if( !(kIso > (1.0/(eIso-eZero))) ){
std::stringstream errMsg;
cerr << "MuscleFunctionFactory::"
<< "createFiberForceLength "
<< curveName
<< ": kiso must be greater than 1/(eIso-eZero) ("
<< (1.0/(eIso-eZero)) << ")"
<< endl;
assert(0);
abort();
}
if( !(kLow > 0.0 && kLow < 1/(eIso-eZero)) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceLength "
<< curveName
<< ": kLow must be greater than 0 and less than"
<< 1.0/(eIso-eZero)
<< endl;
assert(0);
abort();
}
if( !(curviness>=0 && curviness <= 1) ){
cerr << "MuscleFunctionFactory::"
<< "createFiberForceLength "
<< curveName
<< ": curviness must be between 0.0 and 1.0"
<< endl;
assert(0);
abort();
}
std::string callerName = curveName;
callerName.append(".createFiberForceLength");
//Translate the user parameters to quintic Bezier points
double c = SegmentedQuinticBezierToolkit::scaleCurviness(curviness);
double xZero = 1+eZero;
double yZero = 0;
double xIso = 1 + eIso;
double yIso = 1;
double deltaX = std::min(0.1*(1.0/kIso), 0.1*(xIso-xZero));
double xLow = xZero + deltaX;
double xfoot = xZero + 0.5*(xLow-xZero);
double yfoot = 0;
double yLow = yfoot + kLow*(xLow-xfoot);
//Compute the Quintic Bezier control points
RigidBodyDynamics::Math::MatrixNd p0 = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints(xZero, yZero, 0,
xLow, yLow, kLow,c);
RigidBodyDynamics::Math::MatrixNd p1 = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints(xLow, yLow, kLow,
xIso, yIso, kIso, c);
RigidBodyDynamics::Math::MatrixNd mX(6,2);
RigidBodyDynamics::Math::MatrixNd mY(6,2);
mX.col(0) = p0.col(0);
mY.col(0) = p0.col(1);
mX.col(1) = p1.col(0);
mY.col(1) = p1.col(1);
smoothSegmentedFunctionToUpdate.updSmoothSegmentedFunction(
mX, mY, xZero, xIso, yZero, yIso, 0.0, kIso, curveName);
}
void MuscleFunctionFactory::
createTendonForceLengthCurve( double eIso, double kIso,
double fToe, double curviness,
const std::string& curveName,
SmoothSegmentedFunction& smoothSegmentedFunctionToUpdate)
{
if( !(eIso>0) ){
cerr << "MuscleFunctionFactory::"
<< "createTendonForceLengthCurve "
<< curveName
<< ": eIso must be greater than 0, but "
<< eIso << " was entered"
<< endl;
assert(0);
abort();
}
if( !(fToe>0 && fToe < 1) ){
cerr << "MuscleFunctionFactory::"
<< "createTendonForceLengthCurve "
<< curveName
<< ": fToe must be greater than 0 and less than 1, but "
<< fToe
<< " was entered"
<< endl;
assert(0);
abort();
}
if( !(kIso > (1/eIso)) ){
cerr << "MuscleFunctionFactory::"
<< "createTendonForceLengthCurve "
<< curveName
<< ": kIso must be greater than 1/eIso, ("
<< (1/eIso) << "), but kIso ("
<< kIso << ") was entered"
<< endl;
assert(0);
abort();
}
if( !(curviness>=0 && curviness <= 1) ){
cerr << "MuscleFunctionFactory::"
<< "createTendonForceLengthCurve "
<< curveName
<< " : curviness must be between 0.0 and 1.0, but "
<< curviness << " was entered"
<< endl;
assert(0);
abort();
}
std::string callerName = curveName;
callerName.append(".createTendonForceLengthCurve");
//Translate the user parameters to quintic Bezier points
double c = SegmentedQuinticBezierToolkit::scaleCurviness(curviness);
double x0 = 1.0;
double y0 = 0;
double dydx0 = 0;
double xIso = 1.0 + eIso;
double yIso = 1;
double dydxIso = kIso;
//Location where the curved section becomes linear
double yToe = fToe;
double xToe = (yToe-1)/kIso + xIso;
//To limit the 2nd derivative of the toe region the line it tends to
//has to intersect the x axis to the right of the origin
double xFoot = 1.0+(xToe-1.0)/10.0;
double yFoot = 0;
double dydxToe = (yToe-yFoot)/(xToe-xFoot);
//Compute the location of the corner formed by the average slope of the
//toe and the slope of the linear section
double yToeMid = yToe*0.5;
double xToeMid = (yToeMid-yIso)/kIso + xIso;
double dydxToeMid = (yToeMid-yFoot)/(xToeMid-xFoot);
//Compute the location of the control point to the left of the corner
double xToeCtrl = xFoot + 0.5*(xToeMid-xFoot);
double yToeCtrl = yFoot + dydxToeMid*(xToeCtrl-xFoot);
//Compute the Quintic Bezier control points
RigidBodyDynamics::Math::MatrixNd p0 = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints(x0,y0,dydx0,
xToeCtrl,yToeCtrl,dydxToeMid,c);
RigidBodyDynamics::Math::MatrixNd p1 = SegmentedQuinticBezierToolkit::
calcQuinticBezierCornerControlPoints(xToeCtrl, yToeCtrl, dydxToeMid,
xToe, yToe, dydxIso, c);
RigidBodyDynamics::Math::MatrixNd mX(6,2);
RigidBodyDynamics::Math::MatrixNd mY(6,2);
mX.col(0) = p0.col(0);
mY.col(0) = p0.col(1);
mX.col(1) = p1.col(0);
mY.col(1) = p1.col(1);
smoothSegmentedFunctionToUpdate.updSmoothSegmentedFunction(
mX, mY, x0, xToe, y0, yToe, dydx0, dydxIso, curveName);
}