protot/3rdparty/tinygltf/examples/raytrace/obj-loader.cc

459 lines
15 KiB
C++

#include "obj-loader.h"
#include "nanort.h" // for float3
#define TINYOBJLOADER_IMPLEMENTATION
#include "tiny_obj_loader.h"
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wold-style-cast"
#pragma clang diagnostic ignored "-Wreserved-id-macro"
#pragma clang diagnostic ignored "-Wc++98-compat-pedantic"
#pragma clang diagnostic ignored "-Wcast-align"
#pragma clang diagnostic ignored "-Wpadded"
#pragma clang diagnostic ignored "-Wold-style-cast"
#pragma clang diagnostic ignored "-Wsign-conversion"
#pragma clang diagnostic ignored "-Wvariadic-macros"
#pragma clang diagnostic ignored "-Wc++11-extensions"
#pragma clang diagnostic ignored "-Wdisabled-macro-expansion"
#pragma clang diagnostic ignored "-Wimplicit-fallthrough"
#if __has_warning("-Wdouble-promotion")
#pragma clang diagnostic ignored "-Wdouble-promotion"
#endif
#if __has_warning("-Wcomma")
#pragma clang diagnostic ignored "-Wcomma"
#endif
#if __has_warning("-Wcast-qual")
#pragma clang diagnostic ignored "-Wcast-qual"
#endif
#endif
#include "stb_image.h"
#ifdef __clang__
#pragma clang diagnostic pop
#endif
#include <iostream>
#ifdef NANOSG_USE_CXX11
#include <unordered_map>
#else
#include <map>
#endif
#define USE_TEX_CACHE 1
namespace example {
typedef nanort::real3<float> float3;
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wexit-time-destructors"
#pragma clang diagnostic ignored "-Wglobal-constructors"
#endif
// TODO(LTE): Remove global static definition.
#ifdef NANOSG_USE_CXX11
static std::unordered_map<std::string, int> hashed_tex;
#else
static std::map<std::string, int> hashed_tex;
#endif
#ifdef __clang__
#pragma clang diagnostic pop
#endif
inline void CalcNormal(float3 &N, float3 v0, float3 v1, float3 v2) {
float3 v10 = v1 - v0;
float3 v20 = v2 - v0;
N = vcross(v20, v10);
N = vnormalize(N);
}
static std::string GetBaseDir(const std::string &filepath) {
if (filepath.find_last_of("/\\") != std::string::npos)
return filepath.substr(0, filepath.find_last_of("/\\"));
return "";
}
static int LoadTexture(const std::string &filename,
std::vector<Texture> *textures) {
int idx;
if (filename.empty()) return -1;
std::cout << " Loading texture : " << filename << std::endl;
Texture texture;
// tigra: find in cache. get index
if (USE_TEX_CACHE) {
if (hashed_tex.find(filename) != hashed_tex.end()) {
puts("from cache");
return hashed_tex[filename];
}
}
int w, h, n;
unsigned char *data = stbi_load(filename.c_str(), &w, &h, &n, 0);
if (data) {
texture.width = w;
texture.height = h;
texture.components = n;
size_t n_elem = size_t(w * h * n);
texture.image = new unsigned char[n_elem];
for (size_t i = 0; i < n_elem; i++) {
texture.image[i] = data[i];
}
free(data);
textures->push_back(texture);
idx = int(textures->size()) - 1;
// tigra: store index to cache
if (USE_TEX_CACHE) {
hashed_tex[filename] = idx;
}
return idx;
}
std::cout << " Failed to load : " << filename << std::endl;
return -1;
}
static void ComputeBoundingBoxOfMesh(float bmin[3], float bmax[3],
const example::Mesh<float> &mesh) {
bmin[0] = bmin[1] = bmin[2] = std::numeric_limits<float>::max();
bmax[0] = bmax[1] = bmax[2] = -std::numeric_limits<float>::max();
for (size_t i = 0; i < mesh.vertices.size() / 3; i++) {
bmin[0] = std::min(bmin[0], mesh.vertices[3 * i + 0]);
bmin[1] = std::min(bmin[1], mesh.vertices[3 * i + 1]);
bmin[2] = std::min(bmin[1], mesh.vertices[3 * i + 2]);
bmax[0] = std::max(bmax[0], mesh.vertices[3 * i + 0]);
bmax[1] = std::max(bmax[1], mesh.vertices[3 * i + 1]);
bmax[2] = std::max(bmax[2], mesh.vertices[3 * i + 2]);
}
}
bool LoadObj(const std::string &filename, float scale,
std::vector<Mesh<float> > *meshes,
std::vector<Material> *out_materials,
std::vector<Texture> *out_textures) {
tinyobj::attrib_t attrib;
std::vector<tinyobj::shape_t> shapes;
std::vector<tinyobj::material_t> materials;
std::string err;
std::string basedir = GetBaseDir(filename) + "/";
const char *basepath = (basedir.compare("/") == 0) ? NULL : basedir.c_str();
// auto t_start = std::chrono::system_clock::now();
bool ret =
tinyobj::LoadObj(&attrib, &shapes, &materials, &err, filename.c_str(),
basepath, /* triangulate */ true);
// auto t_end = std::chrono::system_clock::now();
// std::chrono::duration<double, std::milli> ms = t_end - t_start;
if (!err.empty()) {
std::cerr << err << std::endl;
}
if (!ret) {
return false;
}
// std::cout << "[LoadOBJ] Parse time : " << ms.count() << " [msecs]"
// << std::endl;
std::cout << "[LoadOBJ] # of shapes in .obj : " << shapes.size() << std::endl;
std::cout << "[LoadOBJ] # of materials in .obj : " << materials.size()
<< std::endl;
{
size_t total_num_vertices = 0;
size_t total_num_faces = 0;
total_num_vertices = attrib.vertices.size() / 3;
std::cout << " vertices : " << attrib.vertices.size() / 3 << std::endl;
for (size_t i = 0; i < shapes.size(); i++) {
std::cout << " shape[" << i << "].name : " << shapes[i].name
<< std::endl;
std::cout << " shape[" << i
<< "].indices : " << shapes[i].mesh.indices.size() << std::endl;
assert((shapes[i].mesh.indices.size() % 3) == 0);
total_num_faces += shapes[i].mesh.indices.size() / 3;
// tigra: empty name convert to _id
if (shapes[i].name.length() == 0) {
#ifdef NANOSG_USE_CXX11
shapes[i].name = "_" + std::to_string(i);
#else
std::stringstream ss;
ss << i;
shapes[i].name = "_" + ss.str();
#endif
std::cout << " EMPTY shape[" << i << "].name, new : " << shapes[i].name
<< std::endl;
}
}
std::cout << "[LoadOBJ] # of faces: " << total_num_faces << std::endl;
std::cout << "[LoadOBJ] # of vertices: " << total_num_vertices << std::endl;
}
// TODO(LTE): Implement tangents and binormals
for (size_t i = 0; i < shapes.size(); i++) {
Mesh<float> mesh(/* stride */ sizeof(float) * 3);
mesh.name = shapes[i].name;
const size_t num_faces = shapes[i].mesh.indices.size() / 3;
mesh.faces.resize(num_faces * 3);
mesh.material_ids.resize(num_faces);
mesh.facevarying_normals.resize(num_faces * 3 * 3);
mesh.facevarying_uvs.resize(num_faces * 3 * 2);
mesh.vertices.resize(num_faces * 3 * 3);
for (size_t f = 0; f < shapes[i].mesh.indices.size() / 3; f++) {
// reorder vertices. may create duplicated vertices.
size_t f0 = size_t(shapes[i].mesh.indices[3 * f + 0].vertex_index);
size_t f1 = size_t(shapes[i].mesh.indices[3 * f + 1].vertex_index);
size_t f2 = size_t(shapes[i].mesh.indices[3 * f + 2].vertex_index);
mesh.vertices[9 * f + 0] = scale * attrib.vertices[3 * f0 + 0];
mesh.vertices[9 * f + 1] = scale * attrib.vertices[3 * f0 + 1];
mesh.vertices[9 * f + 2] = scale * attrib.vertices[3 * f0 + 2];
mesh.vertices[9 * f + 3] = scale * attrib.vertices[3 * f1 + 0];
mesh.vertices[9 * f + 4] = scale * attrib.vertices[3 * f1 + 1];
mesh.vertices[9 * f + 5] = scale * attrib.vertices[3 * f1 + 2];
mesh.vertices[9 * f + 6] = scale * attrib.vertices[3 * f2 + 0];
mesh.vertices[9 * f + 7] = scale * attrib.vertices[3 * f2 + 1];
mesh.vertices[9 * f + 8] = scale * attrib.vertices[3 * f2 + 2];
mesh.faces[3 * f + 0] = static_cast<unsigned int>(3 * f + 0);
mesh.faces[3 * f + 1] = static_cast<unsigned int>(3 * f + 1);
mesh.faces[3 * f + 2] = static_cast<unsigned int>(3 * f + 2);
mesh.material_ids[f] =
static_cast<unsigned int>(shapes[i].mesh.material_ids[f]);
}
if (attrib.normals.size() > 0) {
for (size_t f = 0; f < shapes[i].mesh.indices.size() / 3; f++) {
size_t f0, f1, f2;
f0 = size_t(shapes[i].mesh.indices[3 * f + 0].normal_index);
f1 = size_t(shapes[i].mesh.indices[3 * f + 1].normal_index);
f2 = size_t(shapes[i].mesh.indices[3 * f + 2].normal_index);
if (f0 > 0 && f1 > 0 && f2 > 0) {
float n0[3], n1[3], n2[3];
n0[0] = attrib.normals[3 * f0 + 0];
n0[1] = attrib.normals[3 * f0 + 1];
n0[2] = attrib.normals[3 * f0 + 2];
n1[0] = attrib.normals[3 * f1 + 0];
n1[1] = attrib.normals[3 * f1 + 1];
n1[2] = attrib.normals[3 * f1 + 2];
n2[0] = attrib.normals[3 * f2 + 0];
n2[1] = attrib.normals[3 * f2 + 1];
n2[2] = attrib.normals[3 * f2 + 2];
mesh.facevarying_normals[3 * (3 * f + 0) + 0] = n0[0];
mesh.facevarying_normals[3 * (3 * f + 0) + 1] = n0[1];
mesh.facevarying_normals[3 * (3 * f + 0) + 2] = n0[2];
mesh.facevarying_normals[3 * (3 * f + 1) + 0] = n1[0];
mesh.facevarying_normals[3 * (3 * f + 1) + 1] = n1[1];
mesh.facevarying_normals[3 * (3 * f + 1) + 2] = n1[2];
mesh.facevarying_normals[3 * (3 * f + 2) + 0] = n2[0];
mesh.facevarying_normals[3 * (3 * f + 2) + 1] = n2[1];
mesh.facevarying_normals[3 * (3 * f + 2) + 2] = n2[2];
} else { // face contains invalid normal index. calc geometric normal.
f0 = size_t(shapes[i].mesh.indices[3 * f + 0].vertex_index);
f1 = size_t(shapes[i].mesh.indices[3 * f + 1].vertex_index);
f2 = size_t(shapes[i].mesh.indices[3 * f + 2].vertex_index);
float3 v0, v1, v2;
v0[0] = attrib.vertices[3 * f0 + 0];
v0[1] = attrib.vertices[3 * f0 + 1];
v0[2] = attrib.vertices[3 * f0 + 2];
v1[0] = attrib.vertices[3 * f1 + 0];
v1[1] = attrib.vertices[3 * f1 + 1];
v1[2] = attrib.vertices[3 * f1 + 2];
v2[0] = attrib.vertices[3 * f2 + 0];
v2[1] = attrib.vertices[3 * f2 + 1];
v2[2] = attrib.vertices[3 * f2 + 2];
float3 N;
CalcNormal(N, v0, v1, v2);
mesh.facevarying_normals[3 * (3 * f + 0) + 0] = N[0];
mesh.facevarying_normals[3 * (3 * f + 0) + 1] = N[1];
mesh.facevarying_normals[3 * (3 * f + 0) + 2] = N[2];
mesh.facevarying_normals[3 * (3 * f + 1) + 0] = N[0];
mesh.facevarying_normals[3 * (3 * f + 1) + 1] = N[1];
mesh.facevarying_normals[3 * (3 * f + 1) + 2] = N[2];
mesh.facevarying_normals[3 * (3 * f + 2) + 0] = N[0];
mesh.facevarying_normals[3 * (3 * f + 2) + 1] = N[1];
mesh.facevarying_normals[3 * (3 * f + 2) + 2] = N[2];
}
}
} else {
// calc geometric normal
for (size_t f = 0; f < shapes[i].mesh.indices.size() / 3; f++) {
size_t f0, f1, f2;
f0 = size_t(shapes[i].mesh.indices[3 * f + 0].vertex_index);
f1 = size_t(shapes[i].mesh.indices[3 * f + 1].vertex_index);
f2 = size_t(shapes[i].mesh.indices[3 * f + 2].vertex_index);
float3 v0, v1, v2;
v0[0] = attrib.vertices[3 * f0 + 0];
v0[1] = attrib.vertices[3 * f0 + 1];
v0[2] = attrib.vertices[3 * f0 + 2];
v1[0] = attrib.vertices[3 * f1 + 0];
v1[1] = attrib.vertices[3 * f1 + 1];
v1[2] = attrib.vertices[3 * f1 + 2];
v2[0] = attrib.vertices[3 * f2 + 0];
v2[1] = attrib.vertices[3 * f2 + 1];
v2[2] = attrib.vertices[3 * f2 + 2];
float3 N;
CalcNormal(N, v0, v1, v2);
mesh.facevarying_normals[3 * (3 * f + 0) + 0] = N[0];
mesh.facevarying_normals[3 * (3 * f + 0) + 1] = N[1];
mesh.facevarying_normals[3 * (3 * f + 0) + 2] = N[2];
mesh.facevarying_normals[3 * (3 * f + 1) + 0] = N[0];
mesh.facevarying_normals[3 * (3 * f + 1) + 1] = N[1];
mesh.facevarying_normals[3 * (3 * f + 1) + 2] = N[2];
mesh.facevarying_normals[3 * (3 * f + 2) + 0] = N[0];
mesh.facevarying_normals[3 * (3 * f + 2) + 1] = N[1];
mesh.facevarying_normals[3 * (3 * f + 2) + 2] = N[2];
}
}
if (attrib.texcoords.size() > 0) {
for (size_t f = 0; f < shapes[i].mesh.indices.size() / 3; f++) {
size_t f0, f1, f2;
f0 = size_t(shapes[i].mesh.indices[3 * f + 0].texcoord_index);
f1 = size_t(shapes[i].mesh.indices[3 * f + 1].texcoord_index);
f2 = size_t(shapes[i].mesh.indices[3 * f + 2].texcoord_index);
if (f0 > 0 && f1 > 0 && f2 > 0) {
float3 n0, n1, n2;
n0[0] = attrib.texcoords[2 * f0 + 0];
n0[1] = attrib.texcoords[2 * f0 + 1];
n1[0] = attrib.texcoords[2 * f1 + 0];
n1[1] = attrib.texcoords[2 * f1 + 1];
n2[0] = attrib.texcoords[2 * f2 + 0];
n2[1] = attrib.texcoords[2 * f2 + 1];
mesh.facevarying_uvs[2 * (3 * f + 0) + 0] = n0[0];
mesh.facevarying_uvs[2 * (3 * f + 0) + 1] = n0[1];
mesh.facevarying_uvs[2 * (3 * f + 1) + 0] = n1[0];
mesh.facevarying_uvs[2 * (3 * f + 1) + 1] = n1[1];
mesh.facevarying_uvs[2 * (3 * f + 2) + 0] = n2[0];
mesh.facevarying_uvs[2 * (3 * f + 2) + 1] = n2[1];
}
}
}
// Compute pivot translation and add offset to the vertices.
float bmin[3], bmax[3];
ComputeBoundingBoxOfMesh(bmin, bmax, mesh);
float bcenter[3];
bcenter[0] = 0.5f * (bmax[0] - bmin[0]) + bmin[0];
bcenter[1] = 0.5f * (bmax[1] - bmin[1]) + bmin[1];
bcenter[2] = 0.5f * (bmax[2] - bmin[2]) + bmin[2];
for (size_t v = 0; v < mesh.vertices.size() / 3; v++) {
mesh.vertices[3 * v + 0] -= bcenter[0];
mesh.vertices[3 * v + 1] -= bcenter[1];
mesh.vertices[3 * v + 2] -= bcenter[2];
}
mesh.pivot_xform[0][0] = 1.0f;
mesh.pivot_xform[0][1] = 0.0f;
mesh.pivot_xform[0][2] = 0.0f;
mesh.pivot_xform[0][3] = 0.0f;
mesh.pivot_xform[1][0] = 0.0f;
mesh.pivot_xform[1][1] = 1.0f;
mesh.pivot_xform[1][2] = 0.0f;
mesh.pivot_xform[1][3] = 0.0f;
mesh.pivot_xform[2][0] = 0.0f;
mesh.pivot_xform[2][1] = 0.0f;
mesh.pivot_xform[2][2] = 1.0f;
mesh.pivot_xform[2][3] = 0.0f;
mesh.pivot_xform[3][0] = bcenter[0];
mesh.pivot_xform[3][1] = bcenter[1];
mesh.pivot_xform[3][2] = bcenter[2];
mesh.pivot_xform[3][3] = 1.0f;
meshes->push_back(mesh);
}
// material_t -> Material and Texture
out_materials->resize(materials.size());
out_textures->resize(0);
for (size_t i = 0; i < materials.size(); i++) {
(*out_materials)[i].diffuse[0] = materials[i].diffuse[0];
(*out_materials)[i].diffuse[1] = materials[i].diffuse[1];
(*out_materials)[i].diffuse[2] = materials[i].diffuse[2];
(*out_materials)[i].specular[0] = materials[i].specular[0];
(*out_materials)[i].specular[1] = materials[i].specular[1];
(*out_materials)[i].specular[2] = materials[i].specular[2];
(*out_materials)[i].id = int(i);
// map_Kd
(*out_materials)[i].diffuse_texid =
LoadTexture(materials[i].diffuse_texname, out_textures);
// map_Ks
(*out_materials)[i].specular_texid =
LoadTexture(materials[i].specular_texname, out_textures);
}
return true;
}
} // namespace example