protot/3rdparty/bgfx/tools/texturec/texturec.cpp

873 lines
22 KiB
C++

/*
* Copyright 2011-2016 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// Just hacking DDS loading code in here.
#include "bgfx_p.h"
#include "image.h"
#include <libsquish/squish.h>
#include <etc1/etc1.h>
#include <etc2/ProcessRGB.hpp>
#include <nvtt/nvtt.h>
#include <pvrtc/PvrTcEncoder.h>
#include <tinyexr/tinyexr.h>
#include <edtaa3/edtaa3func.h>
extern "C" {
#include <iqa.h>
}
#define LODEPNG_NO_COMPILE_ENCODER
#define LODEPNG_NO_COMPILE_DISK
#define LODEPNG_NO_COMPILE_ANCILLARY_CHUNKS
#define LODEPNG_NO_COMPILE_ERROR_TEXT
#define LODEPNG_NO_COMPILE_ALLOCATORS
#define LODEPNG_NO_COMPILE_CPP
#include <lodepng/lodepng.cpp>
void* lodepng_malloc(size_t _size)
{
return ::malloc(_size);
}
void* lodepng_realloc(void* _ptr, size_t _size)
{
return ::realloc(_ptr, _size);
}
void lodepng_free(void* _ptr)
{
::free(_ptr);
}
BX_PRAGMA_DIAGNOSTIC_PUSH();
BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wmissing-field-initializers");
BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wshadow");
BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wint-to-pointer-cast")
#define STBI_MALLOC(_size) lodepng_malloc(_size)
#define STBI_REALLOC(_ptr, _size) lodepng_realloc(_ptr, _size)
#define STBI_FREE(_ptr) lodepng_free(_ptr)
#define STB_IMAGE_IMPLEMENTATION
#include <stb/stb_image.c>
BX_PRAGMA_DIAGNOSTIC_POP();
#if 0
# define BX_TRACE(_format, ...) fprintf(stderr, "" _format "\n", ##__VA_ARGS__)
#endif // DEBUG
#include <bx/bx.h>
#include <bx/commandline.h>
#include <bx/crtimpl.h>
#include <bx/uint32_t.h>
namespace bgfx
{
const Memory* alloc(uint32_t _size)
{
Memory* mem = (Memory*)::realloc(NULL, sizeof(Memory) + _size);
mem->size = _size;
mem->data = (uint8_t*)mem + sizeof(Memory);
return mem;
}
const Memory* makeRef(const void* _data, uint32_t _size, ReleaseFn _releaseFn, void* _userData)
{
BX_UNUSED(_releaseFn, _userData);
Memory* mem = (Memory*)::realloc(NULL, sizeof(Memory) );
mem->size = _size;
mem->data = (uint8_t*)_data;
return mem;
}
void release(const Memory* _mem)
{
Memory* mem = const_cast<Memory*>(_mem);
::free(mem);
}
bool imageParse(ImageContainer& _imageContainer, const void* _data, uint32_t _size, void** _out)
{
*_out = NULL;
bool loaded = imageParse(_imageContainer, _data, _size);
if (!loaded)
{
bgfx::TextureFormat::Enum format = bgfx::TextureFormat::RGBA8;
uint32_t bpp = 32;
uint32_t width = 0;
uint32_t height = 0;
uint8_t* out = NULL;
static uint8_t pngMagic[] = { 0x89, 0x50, 0x4E, 0x47, 0x0d, 0x0a };
if (0 == memcmp(_data, pngMagic, sizeof(pngMagic) ) )
{
unsigned error;
LodePNGState state;
lodepng_state_init(&state);
state.decoder.color_convert = 0;
error = lodepng_decode(&out, &width, &height, &state, (uint8_t*)_data, _size);
if (0 == error)
{
*_out = out;
switch (state.info_raw.bitdepth)
{
case 8:
switch (state.info_raw.colortype)
{
case LCT_GREY:
format = bgfx::TextureFormat::R8;
bpp = 8;
break;
case LCT_GREY_ALPHA:
format = bgfx::TextureFormat::RG8;
bpp = 16;
break;
case LCT_RGB:
format = bgfx::TextureFormat::RGB8;
bpp = 24;
break;
case LCT_RGBA:
format = bgfx::TextureFormat::RGBA8;
bpp = 32;
break;
case LCT_PALETTE:
break;
}
break;
case 16:
switch (state.info_raw.colortype)
{
case LCT_GREY:
for (uint32_t ii = 0, num = width*height; ii < num; ++ii)
{
uint16_t* rgba = (uint16_t*)out + ii;
rgba[0] = bx::toHostEndian(rgba[0], false);
}
format = bgfx::TextureFormat::R16;
bpp = 16;
break;
case LCT_GREY_ALPHA:
for (uint32_t ii = 0, num = width*height; ii < num; ++ii)
{
uint16_t* rgba = (uint16_t*)out + ii*2;
rgba[0] = bx::toHostEndian(rgba[0], false);
rgba[1] = bx::toHostEndian(rgba[1], false);
}
format = bgfx::TextureFormat::RG16;
bpp = 32;
break;
case LCT_RGBA:
for (uint32_t ii = 0, num = width*height; ii < num; ++ii)
{
uint16_t* rgba = (uint16_t*)out + ii*4;
rgba[0] = bx::toHostEndian(rgba[0], false);
rgba[1] = bx::toHostEndian(rgba[1], false);
rgba[2] = bx::toHostEndian(rgba[2], false);
rgba[3] = bx::toHostEndian(rgba[3], false);
}
format = bgfx::TextureFormat::RGBA16;
bpp = 64;
break;
case LCT_RGB:
case LCT_PALETTE:
break;
}
break;
default:
break;
}
}
lodepng_state_cleanup(&state);
}
else
{
int comp = 0;
*_out = stbi_load_from_memory( (uint8_t*)_data, _size, (int*)&width, (int*)&height, &comp, 4);
}
loaded = NULL != *_out;
if (loaded)
{
_imageContainer.m_data = *_out;
_imageContainer.m_size = width*height*bpp/8;
_imageContainer.m_offset = 0;
_imageContainer.m_width = width;
_imageContainer.m_height = height;
_imageContainer.m_depth = 1;
_imageContainer.m_numLayers = 1;
_imageContainer.m_format = format;
_imageContainer.m_numMips = 1;
_imageContainer.m_hasAlpha = true;
_imageContainer.m_cubeMap = false;
_imageContainer.m_ktx = false;
_imageContainer.m_ktxLE = false;
_imageContainer.m_srgb = false;
}
}
return loaded;
}
bool imageEncodeFromRgba8(void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint8_t _format)
{
TextureFormat::Enum format = TextureFormat::Enum(_format);
switch (format)
{
case TextureFormat::BC1:
case TextureFormat::BC2:
case TextureFormat::BC3:
case TextureFormat::BC4:
case TextureFormat::BC5:
squish::CompressImage( (const uint8_t*)_src, _width, _height, _dst
, format == TextureFormat::BC2 ? squish::kDxt3
: format == TextureFormat::BC3 ? squish::kDxt5
: format == TextureFormat::BC4 ? squish::kBc4
: format == TextureFormat::BC5 ? squish::kBc5
: squish::kDxt1
);
return true;
case TextureFormat::BC6H:
nvtt::compressBC6H( (const uint8_t*)_src, _width, _height, 4, _dst);
return true;
case TextureFormat::BC7:
nvtt::compressBC7( (const uint8_t*)_src, _width, _height, 4, _dst);
return true;
case TextureFormat::ETC1:
etc1_encode_image( (const uint8_t*)_src, _width, _height, 4, _width*4, (uint8_t*)_dst);
return true;
case TextureFormat::ETC2:
{
const uint32_t blockWidth = (_width +3)/4;
const uint32_t blockHeight = (_height+3)/4;
const uint32_t pitch = _width*4;
const uint8_t* src = (const uint8_t*)_src;
uint64_t* dst = (uint64_t*)_dst;
for (uint32_t yy = 0; yy < blockHeight; ++yy)
{
for (uint32_t xx = 0; xx < blockWidth; ++xx)
{
uint8_t block[4*4*4];
const uint8_t* ptr = &src[(yy*pitch+xx*4)*4];
for (uint32_t ii = 0; ii < 16; ++ii)
{ // BGRx
memcpy(&block[ii*4], &ptr[(ii%4)*pitch + (ii&~3)], 4);
bx::xchg(block[ii*4+0], block[ii*4+2]);
}
*dst++ = ProcessRGB_ETC2(block);
}
}
}
return true;
case TextureFormat::PTC14:
{
using namespace Javelin;
RgbaBitmap bmp;
bmp.width = _width;
bmp.height = _height;
bmp.data = (uint8_t*)const_cast<void*>(_src);
PvrTcEncoder::EncodeRgb4Bpp(_dst, bmp);
bmp.data = NULL;
}
return true;
case TextureFormat::PTC14A:
{
using namespace Javelin;
RgbaBitmap bmp;
bmp.width = _width;
bmp.height = _height;
bmp.data = (uint8_t*)const_cast<void*>(_src);
PvrTcEncoder::EncodeRgba4Bpp(_dst, bmp);
bmp.data = NULL;
}
return true;
case TextureFormat::BGRA8:
imageSwizzleBgra8(_width, _height, _width*4, _src, _dst);
return true;
case TextureFormat::RGBA8:
memcpy(_dst, _src, _width*_height*4);
return true;
default:
return imageConvert(_dst, format, _src, TextureFormat::RGBA8, _width, _height);
}
return false;
}
bool imageEncodeFromRgba32f(bx::AllocatorI* _allocator, void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint8_t _format)
{
TextureFormat::Enum format = TextureFormat::Enum(_format);
const uint8_t* src = (const uint8_t*)_src;
switch (format)
{
case TextureFormat::RGBA8:
{
uint8_t* dst = (uint8_t*)_dst;
for (uint32_t yy = 0; yy < _height; ++yy)
{
for (uint32_t xx = 0; xx < _width; ++xx)
{
const uint32_t offset = yy*_width + xx;
const float* input = (const float*)&src[offset * 16];
uint8_t* output = &dst[offset * 4];
output[0] = uint8_t(input[0]*255.0f + 0.5f);
output[1] = uint8_t(input[1]*255.0f + 0.5f);
output[2] = uint8_t(input[2]*255.0f + 0.5f);
output[3] = uint8_t(input[3]*255.0f + 0.5f);
}
}
}
return true;
case TextureFormat::BC5:
{
uint8_t* temp = (uint8_t*)BX_ALLOC(_allocator, _width*_height*4);
for (uint32_t yy = 0; yy < _height; ++yy)
{
for (uint32_t xx = 0; xx < _width; ++xx)
{
const uint32_t offset = yy*_width + xx;
const float* input = (const float*)&src[offset * 16];
uint8_t* output = &temp[offset * 4];
output[0] = uint8_t(input[0]*255.0f + 0.5f);
output[1] = uint8_t(input[1]*255.0f + 0.5f);
output[2] = uint8_t(input[2]*255.0f + 0.5f);
output[3] = uint8_t(input[3]*255.0f + 0.5f);
}
}
imageEncodeFromRgba8(_dst, temp, _width, _height, _format);
BX_FREE(_allocator, temp);
}
return true;
default:
return imageConvert(_dst, format, _src, TextureFormat::RGBA32F, _width, _height);
}
return false;
}
void imageRgba32f11to01(void* _dst, uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src)
{
const uint8_t* src = (const uint8_t*)_src;
uint8_t* dst = (uint8_t*)_dst;
for (uint32_t yy = 0; yy < _height; ++yy)
{
for (uint32_t xx = 0; xx < _width; ++xx)
{
const uint32_t offset = yy*_pitch + xx * 16;
const float* input = (const float*)&src[offset];
float* output = (float*)&dst[offset];
output[0] = input[0]*0.5f + 0.5f;
output[1] = input[1]*0.5f + 0.5f;
output[2] = input[2]*0.5f + 0.5f;
output[3] = input[3]*0.5f + 0.5f;
}
}
}
static void edtaa3(bx::AllocatorI* _allocator, double* _dst, uint32_t _width, uint32_t _height, double* _src)
{
const uint32_t numPixels = _width*_height;
short* xdist = (short *)BX_ALLOC(_allocator, numPixels*sizeof(short) );
short* ydist = (short *)BX_ALLOC(_allocator, numPixels*sizeof(short) );
double* gx = (double*)BX_ALLOC(_allocator, numPixels*sizeof(double) );
double* gy = (double*)BX_ALLOC(_allocator, numPixels*sizeof(double) );
::computegradient(_src, _width, _height, gx, gy);
::edtaa3(_src, gx, gy, _width, _height, xdist, ydist, _dst);
for (uint32_t ii = 0; ii < numPixels; ++ii)
{
if (_dst[ii] < 0.0)
{
_dst[ii] = 0.0;
}
}
BX_FREE(_allocator, xdist);
BX_FREE(_allocator, ydist);
BX_FREE(_allocator, gx);
BX_FREE(_allocator, gy);
}
inline double min(double _a, double _b)
{
return _a > _b ? _b : _a;
}
inline double max(double _a, double _b)
{
return _a > _b ? _a : _b;
}
inline double clamp(double _val, double _min, double _max)
{
return max(min(_val, _max), _min);
}
void imageMakeDist(bx::AllocatorI* _allocator, void* _dst, uint32_t _width, uint32_t _height, uint32_t _pitch, float _edge, const void* _src)
{
const uint32_t numPixels = _width*_height;
double* imgIn = (double*)BX_ALLOC(_allocator, numPixels*sizeof(double) );
double* outside = (double*)BX_ALLOC(_allocator, numPixels*sizeof(double) );
double* inside = (double*)BX_ALLOC(_allocator, numPixels*sizeof(double) );
for (uint32_t yy = 0; yy < _height; ++yy)
{
const uint8_t* src = (const uint8_t*)_src + yy*_pitch;
double* dst = &imgIn[yy*_width];
for (uint32_t xx = 0; xx < _width; ++xx)
{
dst[xx] = double(src[xx])/255.0;
}
}
edtaa3(_allocator, outside, _width, _height, imgIn);
for (uint32_t ii = 0; ii < numPixels; ++ii)
{
imgIn[ii] = 1.0 - imgIn[ii];
}
edtaa3(_allocator, inside, _width, _height, imgIn);
BX_FREE(_allocator, imgIn);
uint8_t* dst = (uint8_t*)_dst;
double edgeOffset = _edge*0.5;
double invEdge = 1.0/_edge;
for (uint32_t ii = 0; ii < numPixels; ++ii)
{
double dist = clamp( ( (outside[ii] - inside[ii])+edgeOffset) * invEdge, 0.0, 1.0);
dst[ii] = 255-uint8_t(dist * 255.0);
}
BX_FREE(_allocator, inside);
BX_FREE(_allocator, outside);
}
} // namespace bgfx
void help(const char* _error = NULL)
{
if (NULL != _error)
{
fprintf(stderr, "Error:\n%s\n\n", _error);
}
fprintf(stderr
, "texturec, bgfx texture compiler tool\n"
"Copyright 2011-2016 Branimir Karadzic. All rights reserved.\n"
"License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause\n\n"
);
fprintf(stderr
, "Usage: texturec -f <in> -o <out> [-t <format>]\n"
"\n"
"Supported input file types:\n"
" *.png Portable Network Graphics\n"
" *.tga Targa\n"
" *.dds Direct Draw Surface\n"
" *.ktx Khronos Texture\n"
" *.pvr PowerVR\n"
"\n"
"Options:\n"
" -f <file path> Input file path.\n"
" -o <file path> Output file path (file will be written in KTX format).\n"
" -t <format> Output format type (BC1/2/3/4/5, ETC1, PVR14, etc.).\n"
" -m, --mips Generate mip-maps.\n"
" -n, --normalmap Input texture is normal map.\n"
" --sdf <edge> Compute SDF texture.\n"
" --iqa Image Quality Assesment\n"
"\n"
"For additional information, see https://github.com/bkaradzic/bgfx\n"
);
}
int main(int _argc, const char* _argv[])
{
bx::CommandLine cmdLine(_argc, _argv);
if (cmdLine.hasArg('h', "help") )
{
help();
return EXIT_FAILURE;
}
const char* inputFileName = cmdLine.findOption('f');
if (NULL == inputFileName)
{
help("Input file must be specified.");
return EXIT_FAILURE;
}
const char* outputFileName = cmdLine.findOption('o');
if (NULL == outputFileName)
{
help("Output file must be specified.");
return EXIT_FAILURE;
}
bool sdf = false;
double edge = 16.0;
const char* edgeOpt = cmdLine.findOption("sdf");
if (NULL != edgeOpt)
{
sdf = true;
edge = atof(edgeOpt);
}
BX_UNUSED(sdf, edge);
bx::CrtFileReader reader;
if (!bx::open(&reader, inputFileName) )
{
help("Failed to open input file.");
return EXIT_FAILURE;
}
const bool mips = cmdLine.hasArg('m', "mips");
const bool normalMap = cmdLine.hasArg('n', "normalmap");
const bool iqa = cmdLine.hasArg('\0', "iqa");
const bgfx::Memory* mem;
{
uint32_t size = (uint32_t)bx::getSize(&reader);
mem = bgfx::alloc(size);
bx::read(&reader, mem->data, mem->size);
bx::close(&reader);
}
{
using namespace bgfx;
uint8_t* decodedImage = NULL;
ImageContainer imageContainer;
bool loaded = imageParse(imageContainer, mem->data, mem->size, (void**)&decodedImage);
if (NULL != decodedImage)
{
release(mem);
mem = makeRef(imageContainer.m_data, imageContainer.m_size);
}
if (loaded)
{
const char* type = cmdLine.findOption('t');
bgfx::TextureFormat::Enum format = imageContainer.m_format;
if (NULL != type)
{
format = bgfx::getFormat(type);
if (!isValid(format) )
{
help("Invalid format specified.");
return EXIT_FAILURE;
}
}
bx::CrtAllocator allocator;
const Memory* output = NULL;
ImageMip mip;
if (imageGetRawData(imageContainer, 0, 0, mem->data, mem->size, mip) )
{
uint8_t numMips = mips
? imageGetNumMips(format, mip.m_width, mip.m_height)
: 1
;
void* temp = NULL;
if (normalMap)
{
output = imageAlloc(imageContainer, format, mip.m_width, mip.m_height, 0, 1, false, mips);
ImageMip dstMip;
imageGetRawData(imageContainer, 0, 0, NULL, 0, dstMip);
if (mip.m_width != dstMip.m_width
&& mip.m_height != dstMip.m_height)
{
printf("Invalid input image size %dx%d, it must be at least %dx%d to be converted to %s format.\n"
, mip.m_width
, mip.m_height
, dstMip.m_width
, dstMip.m_height
, getName(format)
);
return EXIT_FAILURE;
}
uint32_t size = imageGetSize(TextureFormat::RGBA32F, dstMip.m_width, dstMip.m_height);
temp = BX_ALLOC(&allocator, size);
float* rgba = (float*)temp;
float* rgbaDst = (float*)BX_ALLOC(&allocator, size);
imageDecodeToRgba32f(&allocator
, rgba
, mip.m_data
, mip.m_width
, mip.m_height
, mip.m_width*mip.m_bpp/8
, mip.m_format
);
if (TextureFormat::BC5 != mip.m_format)
{
for (uint32_t yy = 0; yy < mip.m_height; ++yy)
{
for (uint32_t xx = 0; xx < mip.m_width; ++xx)
{
const uint32_t offset = (yy*mip.m_width + xx) * 4;
float* inout = &rgba[offset];
inout[0] = inout[0] * 2.0f - 1.0f;
inout[1] = inout[1] * 2.0f - 1.0f;
inout[2] = inout[2] * 2.0f - 1.0f;
inout[3] = inout[3] * 2.0f - 1.0f;
}
}
}
imageRgba32f11to01(rgbaDst, dstMip.m_width, dstMip.m_height, dstMip.m_width*16, rgba);
imageEncodeFromRgba32f(&allocator, output->data, rgbaDst, dstMip.m_width, dstMip.m_height, format);
for (uint8_t lod = 1; lod < numMips; ++lod)
{
imageRgba32fDownsample2x2NormalMap(dstMip.m_width, dstMip.m_height, dstMip.m_width*16, rgba, rgba);
imageRgba32f11to01(rgbaDst, dstMip.m_width, dstMip.m_height, dstMip.m_width*16, rgba);
imageGetRawData(imageContainer, 0, lod, output->data, output->size, dstMip);
uint8_t* data = const_cast<uint8_t*>(dstMip.m_data);
imageEncodeFromRgba32f(&allocator, data, rgbaDst, dstMip.m_width, dstMip.m_height, format);
}
BX_FREE(&allocator, rgbaDst);
}
else if (8 != getBlockInfo(imageContainer.m_format).rBits)
{
output = imageAlloc(imageContainer, format, mip.m_width, mip.m_height, 0, 1, false, mips);
ImageMip dstMip;
imageGetRawData(imageContainer, 0, 0, NULL, 0, dstMip);
if (mip.m_width != dstMip.m_width
&& mip.m_height != dstMip.m_height)
{
printf("Invalid input image size %dx%d, it must be at least %dx%d to be converted to %s format.\n"
, mip.m_width
, mip.m_height
, dstMip.m_width
, dstMip.m_height
, getName(format)
);
return EXIT_FAILURE;
}
uint32_t size = imageGetSize(TextureFormat::RGBA32F, dstMip.m_width, dstMip.m_height);
temp = BX_ALLOC(&allocator, size);
float* rgba = (float*)temp;
float* rgbaDst = (float*)BX_ALLOC(&allocator, size);
imageDecodeToRgba32f(&allocator
, rgba
, mip.m_data
, mip.m_width
, mip.m_height
, mip.m_width*mip.m_bpp/8
, mip.m_format
);
imageEncodeFromRgba32f(&allocator, output->data, rgba, dstMip.m_width, dstMip.m_height, format);
imageRgba32fToLinear(rgba
, mip.m_width
, mip.m_height
, mip.m_width*mip.m_bpp/8
, rgba
);
for (uint8_t lod = 1; lod < numMips; ++lod)
{
imageRgba32fLinearDownsample2x2(dstMip.m_width, dstMip.m_height, dstMip.m_width*16, rgba, rgba);
imageGetRawData(imageContainer, 0, lod, output->data, output->size, dstMip);
uint8_t* data = const_cast<uint8_t*>(dstMip.m_data);
imageRgba32fToGamma(rgbaDst
, mip.m_width
, mip.m_height
, mip.m_width*mip.m_bpp/8
, rgba
);
imageEncodeFromRgba32f(&allocator, data, rgbaDst, dstMip.m_width, dstMip.m_height, format);
}
BX_FREE(&allocator, rgbaDst);
}
else
{
output = imageAlloc(imageContainer, format, mip.m_width, mip.m_height, 0, 1, false, mips);
ImageMip dstMip;
imageGetRawData(imageContainer, 0, 0, NULL, 0, dstMip);
if (mip.m_width != dstMip.m_width
&& mip.m_height != dstMip.m_height)
{
printf("Invalid input image size %dx%d, it must be at least %dx%d to be converted to %s format.\n"
, mip.m_width
, mip.m_height
, dstMip.m_width
, dstMip.m_height
, getName(format)
);
return EXIT_FAILURE;
}
uint32_t size = imageGetSize(TextureFormat::RGBA8, dstMip.m_width, dstMip.m_height);
temp = BX_ALLOC(&allocator, size);
memset(temp, 0, size);
uint8_t* rgba = (uint8_t*)temp;
imageDecodeToRgba8(rgba
, mip.m_data
, mip.m_width
, mip.m_height
, mip.m_width*mip.m_bpp/8
, mip.m_format
);
void* ref = NULL;
if (iqa)
{
ref = BX_ALLOC(&allocator, size);
memcpy(ref, rgba, size);
}
imageEncodeFromRgba8(output->data, rgba, dstMip.m_width, dstMip.m_height, format);
for (uint8_t lod = 1; lod < numMips; ++lod)
{
imageRgba8Downsample2x2(dstMip.m_width, dstMip.m_height, dstMip.m_width*4, rgba, rgba);
imageGetRawData(imageContainer, 0, lod, output->data, output->size, dstMip);
uint8_t* data = const_cast<uint8_t*>(dstMip.m_data);
imageEncodeFromRgba8(data, rgba, dstMip.m_width, dstMip.m_height, format);
}
if (NULL != ref)
{
imageDecodeToRgba8(rgba
, output->data
, mip.m_width
, mip.m_height
, mip.m_width*mip.m_bpp/8
, format
);
static const iqa_ssim_args args =
{
0.39f, // alpha
0.731f, // beta
1.12f, // gamma
187, // L
0.025987f, // K1
0.0173f, // K2
1 // factor
};
float result = iqa_ssim( (uint8_t*)ref
, rgba
, mip.m_width
, mip.m_height
, mip.m_width*mip.m_bpp/8
, 0
, &args
);
printf("%f\n", result);
BX_FREE(&allocator, ref);
}
}
BX_FREE(&allocator, temp);
}
if (NULL != output)
{
bx::CrtFileWriter writer;
if (bx::open(&writer, outputFileName) )
{
if (NULL != bx::stristr(outputFileName, ".ktx") )
{
imageWriteKtx(&writer, imageContainer, output->data, output->size);
}
bx::close(&writer);
}
else
{
help("Failed to open output file.");
return EXIT_FAILURE;
}
imageFree(output);
}
else
{
help("No output generated.");
return EXIT_FAILURE;
}
}
else
{
help("Failed to load input file.");
return EXIT_FAILURE;
}
release(mem);
}
return EXIT_SUCCESS;
}