#ifndef _SIMPLEMATHGL_H_ #define _SIMPLEMATHGL_H_ #include "SimpleMath.h" #include namespace SimpleMath { namespace GL { inline Matrix44f RotateMat44 (float rot_deg, float x, float y, float z) { float c = cosf (rot_deg * M_PI / 180.f); float s = sinf (rot_deg * M_PI / 180.f); return Matrix44f ( x * x * (1.0f - c) + c, y * x * (1.0f - c) + z * s, x * z * (1.0f - c) - y * s, 0.f, x * y * (1.0f - c) - z * s, y * y * (1.0f - c) + c, y * z * (1.0f - c) + x * s, 0.f, x * z * (1.0f - c) + y * s, y * z * (1.0f - c) - x * s, z * z * (1.0f - c) + c, 0.f, 0.f, 0.f, 0.f, 1.f ); } inline Matrix44f TranslateMat44 (float x, float y, float z) { return Matrix44f ( 1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, x, y, z, 1.f ); } inline Matrix44f ScaleMat44 (float x, float y, float z) { return Matrix44f ( x, 0.f, 0.f, 0.f, 0.f, y, 0.f, 0.f, 0.f, 0.f, z, 0.f, 0.f, 0.f, 0.f, 1.f ); } /** Quaternion * * order: x,y,z,w */ class Quaternion : public Vector4f { public: Quaternion () : Vector4f (0.f, 0.f, 0.f, 1.f) {} Quaternion (const Vector4f vec4) : Vector4f (vec4) {} Quaternion (float x, float y, float z, float w): Vector4f (x, y, z, w) {} /** This function is equivalent to multiplicate their corresponding rotation matrices */ Quaternion operator* (const Quaternion &q) const { return Quaternion ( q[3] * (*this)[0] + q[0] * (*this)[3] + q[1] * (*this)[2] - q[2] * (*this)[1], q[3] * (*this)[1] + q[1] * (*this)[3] + q[2] * (*this)[0] - q[0] * (*this)[2], q[3] * (*this)[2] + q[2] * (*this)[3] + q[0] * (*this)[1] - q[1] * (*this)[0], q[3] * (*this)[3] - q[0] * (*this)[0] - q[1] * (*this)[1] - q[2] * (*this)[2] ); } Quaternion& operator*=(const Quaternion &q) { set ( q[3] * (*this)[0] + q[0] * (*this)[3] + q[1] * (*this)[2] - q[2] * (*this)[1], q[3] * (*this)[1] + q[1] * (*this)[3] + q[2] * (*this)[0] - q[0] * (*this)[2], q[3] * (*this)[2] + q[2] * (*this)[3] + q[0] * (*this)[1] - q[1] * (*this)[0], q[3] * (*this)[3] - q[0] * (*this)[0] - q[1] * (*this)[1] - q[2] * (*this)[2] ); return *this; } static Quaternion fromGLRotate (float angle, float x, float y, float z) { float st = sinf (angle * M_PI / 360.f); return Quaternion ( st * x, st * y, st * z, cosf (angle * M_PI / 360.f) ); } Quaternion normalize() { return Vector4f::normalize(); } Quaternion slerp (float alpha, const Quaternion &quat) const { // check whether one of the two has 0 length float s = sqrt (squaredNorm() * quat.squaredNorm()); // division by 0.f is unhealthy! assert (s != 0.f); float angle = acos (dot(quat) / s); if (angle == 0.f || std::isnan(angle)) { return *this; } assert(!std::isnan(angle)); float d = 1.f / sinf (angle); float p0 = sinf ((1.f - alpha) * angle); float p1 = sinf (alpha * angle); if (dot (quat) < 0.f) { return Quaternion( ((*this) * p0 - quat * p1) * d); } return Quaternion( ((*this) * p0 + quat * p1) * d); } Matrix44f toGLMatrix() const { float x = (*this)[0]; float y = (*this)[1]; float z = (*this)[2]; float w = (*this)[3]; return Matrix44f ( 1 - 2*y*y - 2*z*z, 2*x*y + 2*w*z, 2*x*z - 2*w*y, 0.f, 2*x*y - 2*w*z, 1 - 2*x*x - 2*z*z, 2*y*z + 2*w*x, 0.f, 2*x*z + 2*w*y, 2*y*z - 2*w*x, 1 - 2*x*x - 2*y*y, 0.f, 0.f, 0.f, 0.f, 1.f); } static Quaternion fromGLMatrix(const Matrix44f &mat) { float w = sqrt (1.f + mat(0,0) + mat(1,1) + mat(2,2)) * 0.5f; return Quaternion ( -(mat(2,1) - mat(1,2)) / (w * 4.f), -(mat(0,2) - mat(2,0)) / (w * 4.f), -(mat(1,0) - mat(0,1)) / (w * 4.f), w); } static Quaternion fromMatrix (const Matrix33f &mat) { float w = sqrt (1.f + mat(0,0) + mat(1,1) + mat(2,2)) * 0.5f; return Quaternion ( (mat(2,1) - mat(1,2)) / (w * 4.f), (mat(0,2) - mat(2,0)) / (w * 4.f), (mat(1,0) - mat(0,1)) / (w * 4.f), w); } static Quaternion fromEulerZYX (const Vector3f &zyx_euler) { return Quaternion::fromGLRotate (zyx_euler[0] * 180.f / M_PI, 0.f, 0.f, 1.f) * Quaternion::fromGLRotate (zyx_euler[1] * 180.f / M_PI, 0.f, 1.f, 0.f) * Quaternion::fromGLRotate (zyx_euler[2] * 180.f / M_PI, 1.f, 0.f, 0.f); } Vector3f toEulerZYX () const { return Vector3f ( atan2 (-2.f * (*this)[0] * (*this)[1] + 2.f * (*this)[3] * (*this)[2], (*this)[0] * (*this)[0] + (*this)[3] * (*this)[3] -(*this)[2] * (*this)[2] - (*this)[1] * (*this)[1]), asin (2.f * (*this)[0] * (*this)[2] + 2.f * (*this)[3] * (*this)[1]), atan2 (-2.f * (*this)[1] * (*this)[2] + 2.f * (*this)[3] * (*this)[0], (*this)[2] * (*this)[2] - (*this)[1] * (*this)[1] -(*this)[0] * (*this)[0] + (*this)[3] * (*this)[3] ) ); } static Quaternion fromEulerYXZ (const Vector3f &yxz_euler) { return Quaternion::fromGLRotate (yxz_euler[0] * 180.f / M_PI, 0.f, 1.f, 0.f) * Quaternion::fromGLRotate (yxz_euler[1] * 180.f / M_PI, 1.f, 0.f, 0.f) * Quaternion::fromGLRotate (yxz_euler[2] * 180.f / M_PI, 0.f, 0.f, 1.f); } Vector3f toEulerYXZ() const { return Vector3f ( atan2 (-2.f * (*this)[0] * (*this)[2] + 2.f * (*this)[3] * (*this)[1], (*this)[2] * (*this)[2] - (*this)[1] * (*this)[1] -(*this)[0] * (*this)[0] + (*this)[3] * (*this)[3]), asin (2.f * (*this)[1] * (*this)[2] + 2.f * (*this)[3] * (*this)[0]), atan2 (-2.f * (*this)[0] * (*this)[1] + 2.f * (*this)[3] * (*this)[2], (*this)[1] * (*this)[1] - (*this)[2] * (*this)[2] +(*this)[3] * (*this)[3] - (*this)[0] * (*this)[0] ) ); } Matrix33f toMatrix() const { float x = (*this)[0]; float y = (*this)[1]; float z = (*this)[2]; float w = (*this)[3]; return Matrix33f ( 1 - 2*y*y - 2*z*z, 2*x*y - 2*w*z, 2*x*z + 2*w*y, 2*x*y + 2*w*z, 1 - 2*x*x - 2*z*z, 2*y*z - 2*w*x, 2*x*z - 2*w*y, 2*y*z + 2*w*x, 1 - 2*x*x - 2*y*y ); } Quaternion conjugate() const { return Quaternion ( -(*this)[0], -(*this)[1], -(*this)[2], (*this)[3]); } Vector3f rotate (const Vector3f &vec) const { Vector3f vn (vec); Quaternion vec_quat (vn[0], vn[1], vn[2], 0.f), res_quat; res_quat = vec_quat * (*this); res_quat = conjugate() * res_quat; return Vector3f (res_quat[0], res_quat[1], res_quat[2]); } }; // namespace GL } // namespace SimpleMath } /* _SIMPLEMATHGL_H_ */ #endif