/* * Software License Agreement (BSD License) * * Copyright (c) 2018. Toyota Research Institute * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of CNRS-LAAS and AIST nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** @author Sean Curtis (2018) */ #include #include #include #include "eigen_matrix_compare.h" #include "fcl/narrowphase/collision_object.h" #include "fcl/narrowphase/distance.h" // TODO(SeanCurtis-TRI): Modify this test so it can be re-used for the distance // query -- such that the sphere is slightly separated instead of slightly // penetrating. See test_sphere_cylinder.cpp for an example. // This collides a cylinder with a sphere. The cylinder is disk-like with a // large radius (r_c) and small height (h_c) and its geometric frame is aligned // with the world frame. The sphere has radius r_s and is positioned at // (sx, sy, sz) with an identity orientation. In this configuration, the sphere // penetrates the cylinder slightly on the top face near the edge. The contact // is *fully* contained in that face. (As illustrated below.) // // Side view // z small sphere // ┆ ↓ // ┏━━━━━━━━━━━━┿━━━━◯━━━━━━┓ ┬ // ┄┄┄┄┄┄╂┄┄┄┄┄┄┄┄┄┄┄┄┼┄┄┄┄┄┄┄┄┄┄┄╂┄ x h_c // ┗━━━━━━━━━━━━┿━━━━━━━━━━━┛ ┴ // ┆ // // ├──── r_c───┤ // // Top view // y // ┆ // ******* small sphere ┬ // ** ┆ **╱ │ // * ┆ ◯ * │ // * ┆ * │ // * ┆ * r_c // * ┆ * │ // * ┆ * │ // * ┆ * │ // ┄┄┄┄┄┄┄*┄┄┄┄┄┄┄┄┄┄┼┄┄┄┄┄┄┄┄┄┄*┄┄┄┄ x ┴ // * ┆ * // * ┆ * // * ┆ * // * ┆ * // * ┆ * // * ┆ * // ** ┆ ** // ******* // ┆ // Properties of expected outcome: // - One contact *should* be reported, // - Penetration depth δ should be: r_s - (sz - h_c / 2), // - Contact point should be at: [sx, sy, h_c / 2 - δ / 2], and // - Contact normal should be [0, 0, -1] (pointing from sphere into cylinder). // // NOTE: Orientation of the sphere should *not* make a difference and is not // tested here; it relies on the sphere-cylinder primitive algorithm unit tests // to have robustly tested that. // // This test *fails* if GJK is used to evaluate the collision. It passes if the // custom sphere-cylinder algorithm is used, and, therefore, its purpose is to // confirm that the custom algorithm is being applied. It doesn't exhaustively // test sphere-cylinder collision. It merely confirms the tested primitive // algorithm has been wired up correctly. template void LargeCylinderSmallSphereTest(fcl::GJKSolverType solver_type) { using fcl::Vector3; using Real = typename fcl::constants::Real; const Real eps = fcl::constants::eps(); // Configure geometry. // Cylinder and sphere dimensions. const Real r_c = 9; const Real h_c = 0.0025; const Real r_s = 0.0015; auto sphere_geometry = std::make_shared>(r_s); auto cylinder_geometry = std::make_shared>(r_c, h_c); // Pose of the cylinder in the world frame. const fcl::Transform3 X_WC = fcl::Transform3::Identity(); // Compute multiple sphere locations. All at the same height to produce a // fixed, expected penetration depth of half of its radius. The reported // position of the contact will have the x- and y- values of the sphere // center, but be half the target_depth below the +z face, i.e., // pz = (h_c / 2) - (target_depth / 2) const Real target_depth = r_s * 0.5; // Sphere center's height (position in z). const Real sz = h_c / 2 + r_s - target_depth; const Real pz = h_c / 2 - target_depth / 2; // This transform will get repeatedly modified in the nested for loop below. fcl::Transform3 X_WS = fcl::Transform3::Identity(); fcl::CollisionObject sphere(sphere_geometry, X_WS); fcl::CollisionObject cylinder(cylinder_geometry, X_WC); // Expected results. (Expected position is defined inside the for loop as it // changes with each new position of the sphere.) const S expected_depth = target_depth; // This normal direction assumes the *sphere* is the first collision object. // If the order is reversed, the normal must be likewise reversed. const Vector3 expected_normal = -Vector3::UnitZ(); // Set up the collision request. fcl::CollisionRequest collision_request(1 /* num contacts */, true /* enable_contact */); collision_request.gjk_solver_type = solver_type; // Sample around the surface of the +z face on the disk for a fixed // penetration depth. Note: the +z face is a disk with radius r_c. Notes on // the selected samples: // - We've picked positions such that the *whole* sphere projects onto the // +z face. This *guarantees* that the contact is completely contained in // the +z face so there is no possible ambiguity in the results. // - We've picked points out near the boundaries, in the middle, and *near* // zero without being zero. The GJK algorithm can actually provide the // correct result at the (eps, eps) sample points. We leave those sample // points in to confirm no degradation. const std::vector r_values{0, eps, r_c / 2, r_c - r_s}; const S pi = fcl::constants::pi(); const std::vector theta_values{0, pi/2, pi, 3 * pi / 4}; for (const Real r : r_values) { for (const Real theta : theta_values ) { // Don't just evaluate at nice, axis-aligned directions. Pick some number // that can't be perfectly represented. const Real angle = theta + pi / 7; const Real sx = cos(angle) * r; const Real sy = sin(angle) * r; // Repose the sphere. X_WS.translation() << sx, sy, sz; sphere.setTransform(X_WS); auto evaluate_collision = [&collision_request, &X_WS]( const fcl::CollisionObject* s1, const fcl::CollisionObject* s2, S expected_depth, const Vector3& expected_normal, const Vector3& expected_pos, Real eps) { // Compute collision. fcl::CollisionResult collision_result; std::size_t contact_count = fcl::collide(s1, s2, collision_request, collision_result); // Test answers if (contact_count == collision_request.num_max_contacts) { std::vector> contacts; collision_result.getContacts(contacts); GTEST_ASSERT_EQ(contacts.size(), collision_request.num_max_contacts); const fcl::Contact& contact = contacts[0]; EXPECT_NEAR(contact.penetration_depth, expected_depth, eps) << "Sphere at: " << X_WS.translation().transpose(); EXPECT_TRUE(fcl::CompareMatrices(contact.normal, expected_normal, eps, fcl::MatrixCompareType::absolute)) << "Sphere at: " << X_WS.translation().transpose(); EXPECT_TRUE(fcl::CompareMatrices( contact.pos, expected_pos, eps, fcl::MatrixCompareType::absolute)) << "Sphere at: " << X_WS.translation().transpose(); } else { EXPECT_TRUE(false) << "No contacts reported for sphere at: " << X_WS.translation().transpose(); } }; Vector3 expected_pos{sx, sy, pz}; evaluate_collision(&sphere, &cylinder, expected_depth, expected_normal, expected_pos, eps); evaluate_collision(&cylinder, &sphere, expected_depth, -expected_normal, expected_pos, eps); } } } GTEST_TEST(FCL_SPHERE_CYLINDER, LargCylinderSmallSphere_ccd) { LargeCylinderSmallSphereTest(fcl::GJKSolverType::GST_LIBCCD); LargeCylinderSmallSphereTest(fcl::GJKSolverType::GST_LIBCCD); } GTEST_TEST(FCL_SPHERE_CYLINDER, LargBoxSmallSphere_indep) { LargeCylinderSmallSphereTest(fcl::GJKSolverType::GST_INDEP); LargeCylinderSmallSphereTest(fcl::GJKSolverType::GST_INDEP); } //============================================================================== int main(int argc, char* argv[]) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }