/* * Software License Agreement (BSD License) * * Copyright (c) 2018, Toyota Research Institute * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Open Source Robotics Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** \author Alejandro Castro */ #include #include #include "fcl/fcl.h" using namespace std; using namespace fcl; template void test_collision_cylinder_half_space(fcl::GJKSolverType solver_type) { // Numerical precision expected in the results. const double kTolerance = 20 * std::numeric_limits::epsilon(); const S radius = 0.05; const S length = 4 * radius; auto half_space = std::make_shared>(Vector3::UnitZ(), 0.0); auto cylinder = std::make_shared>(radius, length); // Pose of cylinder frame C in the world frame W. Transform3 X_WC(Translation3(Vector3(0.0, 0.0, 0.049))); // Pose of half space frame H in the world frame W. Transform3 X_WH = Transform3::Identity(); CollisionObject half_space_co(half_space, X_WH); CollisionObject cylinder_co(cylinder, X_WC); fcl::CollisionResult result; static const int num_max_contacts = std::numeric_limits::max(); static const bool enable_contact = true; fcl::CollisionRequest request(num_max_contacts, enable_contact); request.gjk_solver_type = solver_type; fcl::collide(&half_space_co, &cylinder_co, request, result); vector> contacts; result.getContacts(contacts); EXPECT_EQ(static_cast(contacts.size()), 1); EXPECT_NEAR(contacts[0].penetration_depth, 0.051, kTolerance); // Now perform the same test but with the cylinder's z axis Cz pointing down. X_WC.linear() = AngleAxis(fcl::constants::pi(), Vector3d::UnitX()).matrix(); X_WC.translation() = Vector3(0, 0, 0.049); cylinder_co.setTransform(X_WC); result.clear(); contacts.clear(); fcl::collide(&half_space_co, &cylinder_co, request, result); result.getContacts(contacts); EXPECT_EQ(static_cast(contacts.size()), 1); EXPECT_NEAR(contacts[0].penetration_depth, 0.051, kTolerance); } GTEST_TEST(FCL_GEOMETRIC_SHAPES, collision_cylinder_half_space_libccd) { test_collision_cylinder_half_space(fcl::GJKSolverType::GST_LIBCCD); } GTEST_TEST(FCL_GEOMETRIC_SHAPES, collision_cylinder_half_space_indep) { test_collision_cylinder_half_space(fcl::GJKSolverType::GST_INDEP); } int main(int argc, char* argv[]) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }