#version 150 core uniform sampler2D uPosition; uniform sampler2D uDepth; uniform sampler2D uNormal; uniform sampler2D uColor; uniform sampler2D uAmbientOcclusion; const int NUM_SPLITS = 4; #define USE_SAMPLER2D_SHADOW 1 #ifdef USE_SAMPLER2D_SHADOW uniform sampler2DShadow uShadowMap[NUM_SPLITS]; #else uniform sampler2D uShadowMaps[NUM_SPLITS]; #endif uniform mat4 uViewToLightMatrix[NUM_SPLITS]; uniform float uNear; uniform float uFar; uniform vec4 uShadowSplits; uniform vec4 uShadowSplitBias; uniform vec3 uLightDirection; uniform float uShadowBias; in vec2 ioFragTexCoords; out vec3 outColor; #ifdef USE_SAMPLER2D_SHADOW float ShadowCalculationPCF(sampler2DShadow shadow_map, vec4 frag_pos_light_space, vec3 frag_normal_light_space, float shadow_bias) { #else float ShadowCalculationPCF(sampler2D shadow_map, vec4 frag_pos_light_space, vec3 frag_normal_light_space, float shadow_bias) { #endif vec3 projected_coordinates = frag_pos_light_space.xyz / frag_pos_light_space.w; projected_coordinates = projected_coordinates * 0.5 + 0.5; if (abs(projected_coordinates.z) > 1.0 ) { return 0.0; } float current_depth = projected_coordinates.z; float bias = 0.00; bias = max(shadow_bias * (1.0 - dot(frag_normal_light_space, uLightDirection)), shadow_bias); float shadow = 0.0; vec2 texel_size = 1.0 / textureSize(shadow_map, 0); for (int x = -1; x <= 1; ++x) { for (int y = -1; y <= 1; ++y) { #ifdef USE_SAMPLER2D_SHADOW vec2 coordinate = projected_coordinates.xy + vec2(x, y) * texel_size; float pcf_depth = texture(shadow_map, vec3(coordinate, current_depth - bias)); #else float pcf_depth = texture(shadow_map, projected_coordinates.xy).r; #endif shadow += current_depth - bias > pcf_depth ? 1.0 : 0.0; } } shadow /= 9.0; return shadow; } vec3 get_cascade_color (float depth) { if (depth < uShadowSplits[1]) { return vec3 (1.0, 0.0, 0.0); } else if (depth < uShadowSplits[2]) { return vec3 (0.0, 1.0, 0.0); } return vec3 (0.0, 0.0, 1.0); } void main() { vec3 color = texture(uColor, ioFragTexCoords).rgb; vec3 normal = texture (uNormal, ioFragTexCoords).xyz; float depth = texture (uDepth, ioFragTexCoords).r; vec3 position = texture (uPosition, ioFragTexCoords).xyz; float ambient_occlusion = texture(uAmbientOcclusion, ioFragTexCoords).r; // ambient lighting float ambient_strength = 0.2; vec3 ambient = ambient_strength * color; vec3 light_dir = -uLightDirection; // diffuse lighting float diff = max(dot(normal, light_dir), 0.0); vec3 diffuse = diff * color; // specular lighting vec3 view_dir = normalize(-position); vec3 halfway_dir = normalize(light_dir + view_dir); float spec = pow(max(dot(normal, halfway_dir), 0.0), 32); vec3 specular = spec * vec3(0.5); float shadow = 0; float normalized_depth = (depth - uNear) / (uFar - uNear); if (-position.z < uShadowSplits[0]) { // shadow (need to transform position and normal to light space) vec4 position_light_space = uViewToLightMatrix[0] * vec4(position, 1.0); vec3 normal_light_space = (transpose(inverse(uViewToLightMatrix[0])) * vec4(normal, 1.0)).xyz; shadow = ShadowCalculationPCF(uShadowMap[0], position_light_space, normal, uShadowSplitBias[0]); } else if (-position.z< uShadowSplits[1]) { vec4 position_light_space = uViewToLightMatrix[1] * vec4(position, 1.0); vec3 normal_light_space = (transpose(inverse(uViewToLightMatrix[1])) * vec4(normal, 1.0)).xyz; shadow = ShadowCalculationPCF(uShadowMap[1], position_light_space, normal, uShadowSplitBias[1]); } else if (-position.z< uShadowSplits[2]) { vec4 position_light_space = uViewToLightMatrix[2] * vec4(position, 1.0); vec3 normal_light_space = (transpose(inverse(uViewToLightMatrix[2])) * vec4(normal, 1.0)).xyz; shadow = ShadowCalculationPCF(uShadowMap[2], position_light_space, normal, uShadowSplitBias[2]); } else { vec4 position_light_space = uViewToLightMatrix[3] * vec4(position, 1.0); vec3 normal_light_space = (transpose(inverse(uViewToLightMatrix[3])) * vec4(normal, 1.0)).xyz; shadow = ShadowCalculationPCF(uShadowMap[3], position_light_space, normal, uShadowSplitBias[3]); } // vec3 cascade = get_cascade_color(-position.z); // ambient = cascade; outColor = (ambient + (1.0 - shadow) * (diffuse + specular)) * ambient_occlusion; // outColor = diffuse; // outColor = (ambient + (diffuse + specular)) * ambient_occlusion; }