#include "RuntimeModule.h" #include "Globals.h" #include "RenderModule.h" #include "3rdparty/ocornut-imgui/imgui.h" #include "imgui/imgui.h" #define GLFW_EXPOSE_NATIVE_GLX #define GLFW_EXPOSE_NATIVE_X11 #include #include #include "SimpleMath/SimpleMath.h" #include "SimpleMath/SimpleMathMap.h" #include #include #include #include #include #include #include #include #define TINYOBJLOADER_IMPLEMENTATION #include "tiny_obj_loader.h" #include "math_types.h" #include #include #include #include "Serializer.h" using namespace std; typedef SimpleMath::Matrix44f Matrix44f; typedef SimpleMath::Vector4f Vector4f; typedef SimpleMath::Matrix33f Matrix33f; typedef SimpleMath::Vector3f Vector3f; typedef SimpleMath::MatrixNNf MatrixNNf; typedef SimpleMath::VectorNf VectorNf; struct Renderer; struct module_state { Renderer *renderer; }; static struct module_state *module_init() { std::cout << "RenderModule init called" << std::endl; assert (gWindow != nullptr && "Cannot initialize renderer module without gWindow!"); module_state *state = (module_state*) malloc(sizeof(*state)); state->renderer = new Renderer(); assert (state->renderer != nullptr); return state; } static void module_finalize(struct module_state *state) { std::cout << "RenderModule finalize called" << std::endl; assert (state->renderer != nullptr); delete state->renderer; free(state); } static void module_reload(struct module_state *state) { std::cout << "RenderModule reload called" << std::endl; assert (gWindow != nullptr); int width, height; glfwGetWindowSize(gWindow, &width, &height); std::cout << "renderer initialize" << std::endl; assert (state != nullptr); state->renderer->initialize(width, height); gRenderer = state->renderer; // get the state from the serializer Camera* camera = &gRenderer->cameras[gRenderer->activeCameraIndex]; assert (camera != nullptr); SerializeBool (*gReadSerializer, "protot.RenderModule.debug_enabled", gRenderer->drawDebug); SerializeVec3 (*gReadSerializer, "protot.RenderModule.camera.eye", camera->eye); SerializeVec3 (*gReadSerializer, "protot.RenderModule.camera.poi", camera->poi); camera->updateMatrices(); } static void module_unload(struct module_state *state) { Camera* camera = &gRenderer->cameras[gRenderer->activeCameraIndex]; //(*gSerializer)["protot"]["RenderModule"]["active_camera"] = (double)gRenderer->activeCameraIndex; SerializeBool (*gWriteSerializer, "protot.RenderModule.debug_enabled", gRenderer->drawDebug); SerializeVec3 (*gWriteSerializer, "protot.RenderModule.camera.eye", camera->eye); SerializeVec3 (*gWriteSerializer, "protot.RenderModule.camera.poi", camera->poi); gRenderer = nullptr; state->renderer->shutdown(); std::cout << "RenderModule unload called" << std::endl; } static bool module_step(struct module_state *state, float dt) { float deltaTime = 0.3; std::ostringstream s; s << "RenderModule: 2 Runtime Object 4 " << deltaTime << " update called!"; int width, height; assert (gWindow != nullptr); glfwGetWindowSize(gWindow, &width, &height); state->renderer->resize (width, height); state->renderer->paintGL(); return true; } extern "C" { const struct module_api MODULE_API = { .init = module_init, .reload = module_reload, .step = module_step, .unload = module_unload, .finalize = module_finalize }; } // BGFX globals bgfx::VertexBufferHandle cube_vbh; bgfx::IndexBufferHandle cube_ibh; bgfx::IndexBufferHandle cube_edges_ibh; bgfx::VertexBufferHandle plane_vbh; bgfx::IndexBufferHandle plane_ibh; bgfx::DynamicVertexBufferHandle debug_lines_vbh; bgfx::DynamicIndexBufferHandle debug_lines_ibh; bgfx::UniformHandle u_time; bgfx::UniformHandle u_color; bgfx::UniformHandle u_mtx; bgfx::UniformHandle u_exposure; bgfx::UniformHandle u_flags; bgfx::UniformHandle u_camPos; bgfx::UniformHandle s_texCube; bgfx::UniformHandle s_texCubeIrr; namespace IBL { struct Uniforms { enum { NumVec4 = 12 }; void init() { u_params = bgfx::createUniform("u_params", bgfx::UniformType::Vec4, NumVec4); } void submit() { bgfx::setUniform(u_params, m_params, NumVec4); } void destroy() { bgfx::destroyUniform(u_params); } union { struct { union { float m_mtx[16]; /* 0*/ struct { float m_mtx0[4]; }; /* 1*/ struct { float m_mtx1[4]; }; /* 2*/ struct { float m_mtx2[4]; }; /* 3*/ struct { float m_mtx3[4]; }; }; /* 4*/ struct { float m_glossiness, m_reflectivity, m_exposure, m_bgType; }; /* 5*/ struct { float m_metalOrSpec, m_unused5[3]; }; /* 6*/ struct { float m_doDiffuse, m_doSpecular, m_doDiffuseIbl, m_doSpecularIbl; }; /* 7*/ struct { float m_cameraPos[3], m_unused7[1]; }; /* 8*/ struct { float m_rgbDiff[4]; }; /* 9*/ struct { float m_rgbSpec[4]; }; /*10*/ struct { float m_lightDir[3], m_unused10[1]; }; /*11*/ struct { float m_lightCol[3], m_unused11[1]; }; }; float m_params[NumVec4*4]; }; bgfx::UniformHandle u_params; }; struct Settings { Settings() { m_envRotCurr = 0.0f; m_envRotDest = 0.0f; m_lightDir[0] = -0.8f; m_lightDir[1] = 0.2f; m_lightDir[2] = -0.5f; m_lightCol[0] = 1.0f; m_lightCol[1] = 1.0f; m_lightCol[2] = 1.0f; m_glossiness = 0.7f; m_exposure = 0.0f; m_bgType = 3.0f; m_radianceSlider = 2.0f; m_reflectivity = 0.85f; m_rgbDiff[0] = 1.0f; m_rgbDiff[1] = 1.0f; m_rgbDiff[2] = 1.0f; m_rgbSpec[0] = 1.0f; m_rgbSpec[1] = 1.0f; m_rgbSpec[2] = 1.0f; m_lod = 0.0f; m_doDiffuse = false; m_doSpecular = false; m_doDiffuseIbl = true; m_doSpecularIbl = true; m_showLightColorWheel = true; m_showDiffColorWheel = true; m_showSpecColorWheel = true; m_metalOrSpec = 0; m_meshSelection = 0; m_crossCubemapPreview = ImguiCubemap::Latlong; } float m_envRotCurr; float m_envRotDest; float m_lightDir[3]; float m_lightCol[3]; float m_glossiness; float m_exposure; float m_radianceSlider; float m_bgType; float m_reflectivity; float m_rgbDiff[3]; float m_rgbSpec[3]; float m_lod; bool m_doDiffuse; bool m_doSpecular; bool m_doDiffuseIbl; bool m_doSpecularIbl; bool m_showLightColorWheel; bool m_showDiffColorWheel; bool m_showSpecColorWheel; uint8_t m_metalOrSpec; uint8_t m_meshSelection; ImguiCubemap::Enum m_crossCubemapPreview; }; Settings settings; Uniforms uniforms; }; int64_t m_timeOffset; // // Vertex packing utilities // uint32_t packUint32(uint8_t _x, uint8_t _y, uint8_t _z, uint8_t _w) { union { uint32_t ui32; uint8_t arr[4]; } un; un.arr[0] = _x; un.arr[1] = _y; un.arr[2] = _z; un.arr[3] = _w; return un.ui32; } uint32_t packF4u(float _x, float _y = 0.0f, float _z = 0.0f, float _w = 0.0f) { const uint8_t xx = uint8_t(_x*127.0f + 128.0f); const uint8_t yy = uint8_t(_y*127.0f + 128.0f); const uint8_t zz = uint8_t(_z*127.0f + 128.0f); const uint8_t ww = uint8_t(_w*127.0f + 128.0f); return packUint32(xx, yy, zz, ww); } // // Render states // RenderState s_renderStates[RenderState::Count] = { { // Skybox 0 | BGFX_STATE_RGB_WRITE | BGFX_STATE_ALPHA_WRITE | BGFX_STATE_DEPTH_WRITE | BGFX_STATE_DEPTH_TEST_LESS | BGFX_STATE_CULL_CCW | BGFX_STATE_MSAA, 0, bgfx::invalidHandle, RenderState::Skybox }, { // ShadowMap 0 | BGFX_STATE_RGB_WRITE | BGFX_STATE_ALPHA_WRITE | BGFX_STATE_DEPTH_WRITE | BGFX_STATE_DEPTH_TEST_LESS | BGFX_STATE_CULL_CCW | BGFX_STATE_MSAA, 0, bgfx::invalidHandle, RenderState::ShadowMap }, { // Scene 0 | BGFX_STATE_RGB_WRITE | BGFX_STATE_ALPHA_WRITE | BGFX_STATE_DEPTH_WRITE | BGFX_STATE_DEPTH_TEST_LESS | BGFX_STATE_CULL_CCW | BGFX_STATE_MSAA, 0, bgfx::invalidHandle, RenderState::Scene }, { // SceneTextured 0 | BGFX_STATE_RGB_WRITE | BGFX_STATE_ALPHA_WRITE | BGFX_STATE_DEPTH_WRITE | BGFX_STATE_DEPTH_TEST_LESS | BGFX_STATE_CULL_CCW | BGFX_STATE_MSAA, 0, bgfx::invalidHandle, RenderState::SceneTextured }, { // Debug 0 | BGFX_STATE_RGB_WRITE | BGFX_STATE_ALPHA_WRITE | BGFX_STATE_DEPTH_WRITE | BGFX_STATE_DEPTH_TEST_LESS | BGFX_STATE_CULL_CCW | BGFX_STATE_PT_LINES | BGFX_STATE_MSAA, 0, bgfx::invalidHandle, RenderState::Debug } }; // // Vertex formats // struct PosColorVertex { float m_x; float m_y; float m_z; uint32_t m_abgr; static void init() { ms_decl .begin() .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float) .add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true) .end(); }; static bgfx::VertexDecl ms_decl; }; bgfx::VertexDecl PosColorVertex::ms_decl; struct PosNormalVertex { float m_x; float m_y; float m_z; uint32_t m_normal; static void init() { ms_decl .begin() .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float) .add(bgfx::Attrib::Normal, 4, bgfx::AttribType::Uint8, true, true) .end(); } static bgfx::VertexDecl ms_decl; }; bgfx::VertexDecl PosNormalVertex::ms_decl; struct PosNormalColorTexcoordVertex { float m_x; float m_y; float m_z; uint32_t m_normal; uint32_t m_color; float m_u; float m_v; static void init() { ms_decl .begin() .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float) .add(bgfx::Attrib::Normal, 4, bgfx::AttribType::Uint8, true, true) .add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true) .add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float, false) .end(); } static bgfx::VertexDecl ms_decl; }; bgfx::VertexDecl PosNormalColorTexcoordVertex::ms_decl; struct PosColorTexCoord0Vertex { float m_x; float m_y; float m_z; uint32_t m_rgba; float m_u; float m_v; static void init() { ms_decl .begin() .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float) .add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true) .add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float) .end(); } static bgfx::VertexDecl ms_decl; }; bgfx::VertexDecl PosColorTexCoord0Vertex::ms_decl; // // Static geometries // // Plane PosNormalColorTexcoordVertex s_hplaneVertices[] = { { -1.0f, 0.0f, 1.0f, packF4u(0.0f, 1.0f, 0.0f), packF4u(1.0f, 1.0f, 1.0f), 0.f, 0.f }, { 1.0f, 0.0f, 1.0f, packF4u(0.0f, 1.0f, 0.0f), packF4u(1.0f, 1.0f, 1.0f), 10.f, 0.f }, { -1.0f, 0.0f, -1.0f, packF4u(0.0f, 1.0f, 0.0f), packF4u(1.0f, 1.0f, 1.0f), 0.f, 10.f}, { 1.0f, 0.0f, -1.0f, packF4u(0.0f, 1.0f, 0.0f), packF4u(1.0f, 1.0f, 1.0f), 10.f, 10.f }, }; const uint16_t s_planeIndices[] = { 0, 1, 2, 1, 3, 2, }; // Cube PosColorVertex s_cubeVertices[8] = { {-1.0f, 1.0f, 1.0f, 0xffffffff }, { 1.0f, 1.0f, 1.0f, 0xffffffff }, {-1.0f, -1.0f, 1.0f, 0xffffffff }, { 1.0f, -1.0f, 1.0f, 0xffffffff }, {-1.0f, 1.0f, -1.0f, 0xffffffff }, { 1.0f, 1.0f, -1.0f, 0xffffffff }, {-1.0f, -1.0f, -1.0f, 0xffffffff }, { 1.0f, -1.0f, -1.0f, 0xffffffff }, }; const uint16_t s_cubeEdgeIndices[24] = { 0, 1, 1, 3, 3, 2, 2, 0, 4, 5, 5, 7, 7, 6, 6, 4, 0, 4, 1, 5, 2, 6, 3, 7 }; const uint16_t s_cubeIndices[36] = { 0, 1, 2, // 0 1, 3, 2, 4, 6, 5, // 2 5, 6, 7, 0, 2, 4, // 4 4, 2, 6, 1, 5, 3, // 6 5, 7, 3, 0, 4, 1, // 8 4, 5, 1, 2, 3, 6, // 10 6, 3, 7, }; bool flipV = false; static float s_texelHalf = 0.0f; void screenSpaceQuad(float _textureWidth, float _textureHeight, bool _originBottomLeft = false, float _width = 1.0f, float _height = 1.0f) { if (bgfx::checkAvailTransientVertexBuffer(3, PosColorTexCoord0Vertex::ms_decl) ) { bgfx::TransientVertexBuffer vb; bgfx::allocTransientVertexBuffer(&vb, 3, PosColorTexCoord0Vertex::ms_decl); PosColorTexCoord0Vertex* vertex = (PosColorTexCoord0Vertex*)vb.data; const float zz = 0.0f; const float minx = -_width; const float maxx = _width; const float miny = 0.0f; const float maxy = _height*2.0f; const float texelHalfW = s_texelHalf/_textureWidth; const float texelHalfH = s_texelHalf/_textureHeight; const float minu = -1.0f + texelHalfW; const float maxu = 1.0f + texelHalfW; float minv = texelHalfH; float maxv = 2.0f + texelHalfH; if (_originBottomLeft) { std::swap(minv, maxv); minv -= 1.0f; maxv -= 1.0f; } vertex[0].m_x = minx; vertex[0].m_y = miny; vertex[0].m_z = zz; vertex[0].m_rgba = 0xffffffff; vertex[0].m_u = minu; vertex[0].m_v = minv; vertex[1].m_x = maxx; vertex[1].m_y = miny; vertex[1].m_z = zz; vertex[1].m_rgba = 0xffffffff; vertex[1].m_u = maxu; vertex[1].m_v = minv; vertex[2].m_x = maxx; vertex[2].m_y = maxy; vertex[2].m_z = zz; vertex[2].m_rgba = 0xffffffff; vertex[2].m_u = maxu; vertex[2].m_v = maxv; bgfx::setVertexBuffer(&vb); } } void Camera::updateMatrices() { assert (width != -1.f && height != -1.f); // view matrix bx::mtxLookAt (mtxView, eye.data(), poi.data(), up.data()); // projection matrix if (orthographic) { bx::mtxOrtho(mtxProj, -width * 0.5f, width * 0.5f, -height * 0.5f, height * 0.5f, near, far); } else { float aspect = width / height; bx::mtxProj(mtxProj, fov, aspect, near, far); } // environment matrix const float dir[3] = { poi[0] - eye[0], poi[1] - eye[1], poi[2] - eye[2] }; const float dirLen = bx::vec3Length(dir); const float invDirLen = 1.0f / (dirLen + FLT_MIN); const float dirNorm[3] = { dir[0] * invDirLen, dir[1] * invDirLen, dir[2] * invDirLen }; float tmp[3]; const float fakeUp[3] = { 0.0f, 1.0f, 0.0f }; float right[3]; bx::vec3Cross (tmp, fakeUp, dirNorm); bx::vec3Norm(right, tmp); float up[3]; bx::vec3Cross(tmp, dirNorm, right); bx::vec3Norm(up, tmp); mtxEnv[ 0] = right[0]; mtxEnv[ 1] = right[1]; mtxEnv[ 2] = right[2]; mtxEnv[ 3] = 0.0f; mtxEnv[ 4] = up[0]; mtxEnv[ 5] = up[1]; mtxEnv[ 6] = up[2]; mtxEnv[ 7] = 0.0f; mtxEnv[ 8] = dirNorm[0]; mtxEnv[ 9] = dirNorm[1]; mtxEnv[10] = dirNorm[2]; mtxEnv[11] = 0.0f; mtxEnv[12] = 0.0f; mtxEnv[13] = 0.0f; mtxEnv[14] = 0.0f; mtxEnv[15] = 1.0f; } void LightProbe::load(const char* _name) { char filePath[512]; bx::snprintf(filePath, BX_COUNTOF(filePath), "data/textures/%s_lod.dds", _name); m_tex = bgfxutils::loadTexture(filePath, BGFX_TEXTURE_U_CLAMP|BGFX_TEXTURE_V_CLAMP|BGFX_TEXTURE_W_CLAMP); bx::snprintf(filePath, BX_COUNTOF(filePath), "data/textures/%s_irr.dds", _name); m_texIrr = bgfxutils::loadTexture(filePath, BGFX_TEXTURE_U_CLAMP|BGFX_TEXTURE_V_CLAMP|BGFX_TEXTURE_W_CLAMP); } void Renderer::createGeometries() { // Create vertex stream declaration. PosColorVertex::init(); PosNormalVertex::init(); PosNormalColorTexcoordVertex::init(); PosColorTexCoord0Vertex::init(); // Create static vertex buffer. cube_vbh = bgfx::createVertexBuffer( // Static data can be passed with bgfx::makeRef bgfx::makeRef(s_cubeVertices, sizeof(s_cubeVertices) ) , PosColorVertex::ms_decl ); // Create static index buffer. cube_ibh = bgfx::createIndexBuffer( // Static data can be passed with bgfx::makeRef bgfx::makeRef(s_cubeIndices, sizeof(s_cubeIndices) ) ); // Create static index buffer. cube_edges_ibh = bgfx::createIndexBuffer( // Static data can be passed with bgfx::makeRef bgfx::makeRef(s_cubeEdgeIndices, sizeof(s_cubeEdgeIndices) ) ); // Create dynamic debug line buffer debug_lines_vbh = bgfx::createDynamicVertexBuffer( (uint32_t) 10, PosColorVertex::ms_decl, BGFX_BUFFER_ALLOW_RESIZE ); debug_lines_ibh = bgfx::createDynamicIndexBuffer( (uint32_t) 10, BGFX_BUFFER_ALLOW_RESIZE ); plane_vbh = bgfx::createVertexBuffer( bgfx::makeRef(s_hplaneVertices, sizeof(s_hplaneVertices) ) , PosNormalColorTexcoordVertex::ms_decl ); plane_ibh = bgfx::createIndexBuffer( bgfx::makeRef(s_planeIndices, sizeof(s_planeIndices) ) ); } void Renderer::setupShaders() { // Create uniforms sceneDefaultTextureSampler = bgfx::createUniform("sceneDefaultTexture", bgfx::UniformType::Int1); u_mtx = bgfx::createUniform("u_mtx", bgfx::UniformType::Mat4); u_flags = bgfx::createUniform("u_flags", bgfx::UniformType::Vec4); u_camPos = bgfx::createUniform("u_camPos", bgfx::UniformType::Vec4); s_texCube = bgfx::createUniform("s_texCube", bgfx::UniformType::Int1); s_texCubeIrr = bgfx::createUniform("s_texCubeIrr", bgfx::UniformType::Int1); int grid_size = 1024; int grid_border = 12; uint8_t grid_color_border [4] = {255, 255, 255, 255}; // uint8_t grid_color_border [4] = {0, 0, 0, 0}; uint8_t grid_color_0[4] = {192, 192, 192, 255}; uint8_t grid_color_1[4] = {128, 128, 128, 255}; uint8_t* texture_data = NULL; texture_data = new uint8_t[grid_size * grid_size * 4]; for (int i = 0; i < grid_size; i++) { for (int j = 0; j < grid_size; j++) { uint8_t *texel = &texture_data[i * (grid_size * 4) + j * 4]; if ( (i < (grid_border / 2)) || (i > grid_size - (grid_border / 2)) || (j < (grid_border / 2)) || (j > grid_size - (grid_border / 2)) ) { memcpy (texel, grid_color_border, sizeof (uint8_t) * 4); } else { if ( (i * 2) / grid_size + (j * 2) / grid_size == 1) { memcpy (texel, grid_color_0, sizeof (uint8_t) * 4); } else { memcpy (texel, grid_color_1, sizeof (uint8_t) * 4); } } } } sceneDefaultTexture = bgfx::createTexture2D(grid_size, grid_size, false, 1, bgfx::TextureFormat::RGBA8, BGFX_TEXTURE_NONE, bgfx::copy (texture_data, grid_size * grid_size * 4)); delete[] texture_data; // sceneDefaultTexture = bgfxutils::loadTexture("fieldstone-rgba.dds"); u_time = bgfx::createUniform("u_time", bgfx::UniformType::Vec4); u_color = bgfx::createUniform("u_color", bgfx::UniformType::Vec4); m_timeOffset = bx::getHPCounter(); // Initialize light std::cout << "Creating light uniforms..." << std::endl; lights[0].u_shadowMap = bgfx::createUniform("u_shadowMap", bgfx::UniformType::Int1); lights[0].u_shadowMapParams = bgfx::createUniform("u_shadowMapParams", bgfx::UniformType::Vec4); lights[0].u_lightPos = bgfx::createUniform("u_lightPos", bgfx::UniformType::Int1); lights[0].u_lightMtx = bgfx::createUniform("u_lightMtx", bgfx::UniformType::Int1); // Setup the light probe pass IBL::uniforms.init(); IBL::uniforms.m_glossiness = IBL::settings.m_glossiness; IBL::uniforms.m_reflectivity = IBL::settings.m_reflectivity; IBL::uniforms.m_exposure = IBL::settings.m_exposure; IBL::uniforms.m_bgType = IBL::settings.m_bgType; IBL::uniforms.m_metalOrSpec = float(IBL::settings.m_metalOrSpec); IBL::uniforms.m_doDiffuse = float(IBL::settings.m_doDiffuse); IBL::uniforms.m_doSpecular = float(IBL::settings.m_doSpecular); IBL::uniforms.m_doDiffuseIbl = float(IBL::settings.m_doDiffuseIbl); IBL::uniforms.m_doSpecularIbl = float(IBL::settings.m_doSpecularIbl); memcpy(IBL::uniforms.m_rgbDiff, IBL::settings.m_rgbDiff, 3*sizeof(float) ); memcpy(IBL::uniforms.m_rgbSpec, IBL::settings.m_rgbSpec, 3*sizeof(float) ); memcpy(IBL::uniforms.m_lightDir, IBL::settings.m_lightDir, 3*sizeof(float) ); memcpy(IBL::uniforms.m_lightCol, IBL::settings.m_lightCol, 3*sizeof(float) ); s_renderStates[RenderState::Skybox].m_program = bgfxutils::loadProgramFromFiles("shaders/src/vs_ibl_skybox.sc", "shaders/src/fs_ibl_skybox.sc"); // Get renderer capabilities info. const bgfx::Caps* caps = bgfx::getCaps(); // Shadow samplers are supported at least partially supported if texture // compare less equal feature is supported. bool shadowSamplerSupported = 0 != (caps->supported & BGFX_CAPS_TEXTURE_COMPARE_LEQUAL); if (shadowSamplerSupported) { // Depth textures and shadow samplers are supported. s_renderStates[RenderState::ShadowMap].m_program = bgfxutils::loadProgramFromFiles("shaders/src/vs_sms_mesh.sc", "shaders/src/fs_sms_shadow.sc"); s_renderStates[RenderState::Scene].m_program = bgfxutils::loadProgramFromFiles("shaders/src/vs_sms_mesh.sc", "shaders/src/fs_sms_mesh.sc"); s_renderStates[RenderState::SceneTextured].m_program = bgfxutils::loadProgramFromFiles("shaders/src/vs_sms_mesh_textured.sc", "shaders/src/fs_sms_mesh_textured.sc"); lights[0].shadowMapTexture= bgfx::createTexture2D(lights[0].shadowMapSize, lights[0].shadowMapSize, false, 1, bgfx::TextureFormat::D16, BGFX_TEXTURE_COMPARE_LEQUAL); bgfx::TextureHandle fbtextures[] = { lights[0].shadowMapTexture }; lights[0].shadowMapFB = bgfx::createFrameBuffer(BX_COUNTOF(fbtextures), fbtextures, true); } else { // Depth textures and shadow samplers are not supported. Use float // depth packing into color buffer instead. s_renderStates[RenderState::ShadowMap].m_program = bgfxutils::loadProgram("vs_sms_shadow_pd", "fs_sms_shadow_pd"); s_renderStates[RenderState::Scene].m_program = bgfxutils::loadProgram("vs_sms_mesh", "fs_sms_mesh_pd"); s_renderStates[RenderState::SceneTextured].m_program = bgfxutils::loadProgram("vs_sms_mesh_textured", "fs_sms_mesh_pd_textured"); lights[0].shadowMapTexture = bgfx::createTexture2D(lights[0].shadowMapSize, lights[0].shadowMapSize, false, 1, bgfx::TextureFormat::BGRA8, BGFX_TEXTURE_RT); bgfx::TextureHandle fbtextures[] = { lights[0].shadowMapTexture, bgfx::createTexture2D(lights[0].shadowMapSize, lights[0].shadowMapSize, false, 1, bgfx::TextureFormat::D16, BGFX_TEXTURE_RT_WRITE_ONLY), }; lights[0].shadowMapFB = bgfx::createFrameBuffer(BX_COUNTOF(fbtextures), fbtextures, true); } s_renderStates[RenderState::Debug].m_program = bgfxutils::loadProgramFromFiles("shaders/src/vs_debug.sc", "shaders/src/fs_debug.sc"); } void Renderer::setupRenderPasses() { // ShadowMap s_renderStates[RenderState::ShadowMap].m_viewId = RenderState::ShadowMap; // Scene s_renderStates[RenderState::Scene].m_viewId = RenderState::Scene; s_renderStates[RenderState::Scene].m_numTextures = 1; // Scene: shadow map texture s_renderStates[RenderState::Scene].m_textures[0].m_flags = UINT32_MAX; s_renderStates[RenderState::Scene].m_textures[0].m_stage = 0; s_renderStates[RenderState::Scene].m_textures[0].m_sampler = lights[0].u_shadowMap; s_renderStates[RenderState::Scene].m_textures[0].m_texture = lights[0].shadowMapTexture; // Scene: default texture s_renderStates[RenderState::SceneTextured].m_viewId = RenderState::SceneTextured; s_renderStates[RenderState::SceneTextured].m_numTextures = 2; s_renderStates[RenderState::SceneTextured].m_textures[0].m_flags = UINT32_MAX; s_renderStates[RenderState::SceneTextured].m_textures[0].m_stage = 0; s_renderStates[RenderState::SceneTextured].m_textures[0].m_sampler = lights[0].u_shadowMap; s_renderStates[RenderState::SceneTextured].m_textures[0].m_texture = lights[0].shadowMapTexture; s_renderStates[RenderState::SceneTextured].m_textures[1].m_flags = UINT32_MAX; s_renderStates[RenderState::SceneTextured].m_textures[1].m_stage = 1; s_renderStates[RenderState::SceneTextured].m_textures[1].m_sampler = sceneDefaultTextureSampler; s_renderStates[RenderState::SceneTextured].m_textures[1].m_texture = sceneDefaultTexture; // Debug s_renderStates[RenderState::Debug].m_viewId = RenderState::Debug; } // void Renderer::setupWindowX11 (Display* x11_display, int x11_window_id) { // bgfx::x11SetDisplayWindow(x11_display, x11_window_id); // } class BGFXCallbacks: public bgfx::CallbackI { virtual void fatal (bgfx::Fatal::Enum _code, const char *_str) { std::cerr << "Fatal (" << _code << "): " << _str << std::endl; } virtual void traceVargs (const char *_filePath, uint16_t _line, const char* _format, va_list _argList) { char output_buffer[255]; vsprintf (output_buffer, _format, _argList); std::cerr << "Trace " << _filePath << ":" << _line << " : " << output_buffer; } virtual uint32_t cacheReadSize(uint64_t _id) { return 0; } virtual bool cacheRead(uint64_t _id, void *_data, uint32_t _size) { return false; } virtual void cacheWrite(uint64_t _id, const void *_data, uint32_t _size) { } virtual void screenShot(const char *_filePath, uint32_t _width, uint32_t _height, uint32_t _pitch, const void *_data, uint32_t _size, bool _yflip) { } virtual void captureBegin(uint32_t _width, uint32_t _height, uint32_t _pitch, bgfx::TextureFormat::Enum _format, bool _yflip) { } virtual void captureEnd() { }; virtual void captureFrame(const void *_data, uint32_t _size) { }; }; namespace bgfx { inline void glfwSetWindow(GLFWwindow* _window) { bgfx::PlatformData pd; # if BX_PLATFORM_LINUX || BX_PLATFORM_BSD pd.ndt = glfwGetX11Display(); pd.nwh = (void*)(uintptr_t)glfwGetGLXWindow(_window); pd.context = glfwGetGLXContext(_window); # elif BX_PLATFORM_OSX pd.ndt = NULL; pd.nwh = glfwGetCocoaWindow(_window); pd.context = glfwGetNSGLContext(_window); # elif BX_PLATFORM_WINDOWS pd.ndt = NULL; pd.nwh = glfwGetWin32Window(_window); pd.context = NULL; # endif // BX_PLATFORM_WINDOWS pd.backBuffer = NULL; pd.backBufferDS = NULL; bgfx::setPlatformData(pd); } } void Renderer::initialize(int width, int height) { this->width = width; this->height = height; uint32_t debug = BGFX_DEBUG_TEXT; uint32_t reset = BGFX_RESET_VSYNC; reset = BGFX_RESET_VSYNC | BGFX_RESET_MAXANISOTROPY | BGFX_RESET_MSAA_X16; bgfx::reset(width, height, reset); std::cout << "bla55aa" << std::endl; bgfx::setViewClear(0 , BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH , 0x303030ff , 1.0f , 0 ); bgfx::setViewRect(0, 0, 0, width, height); bgfx::RendererType::Enum renderer = bgfx::getRendererType(); flipV = false || renderer == bgfx::RendererType::OpenGL || renderer == bgfx::RendererType::OpenGLES ; bgfx::setDebug(debug); std::cout << "Creating Cameras" << std::endl; cameras.push_back (Camera()); activeCameraIndex = 0; lights.push_back (Light()); createGeometries(); setupShaders(); setupRenderPasses(); mLightProbes[LightProbe::Bolonga].load("bolonga"); mLightProbes[LightProbe::Kyoto ].load("kyoto"); mCurrentLightProbe = LightProbe::Bolonga; // Start the imgui frame such that widgets can be submitted imguiBeginFrame (inputState.mouseX, inputState.mouseY, inputState.mouseButton, inputState.mouseScroll, width, height); initialized = true; resize (width, height); bgfx::frame(); } void Renderer::shutdown() { bgfx::destroyIndexBuffer(cube_ibh); bgfx::destroyIndexBuffer(cube_edges_ibh); bgfx::destroyVertexBuffer(cube_vbh); bgfx::destroyIndexBuffer(plane_ibh); bgfx::destroyVertexBuffer(plane_vbh); bgfx::destroyUniform(u_camPos); bgfx::destroyUniform(u_flags); bgfx::destroyUniform(u_mtx); IBL::uniforms.destroy(); bgfx::destroyUniform(s_texCube); bgfx::destroyUniform(s_texCubeIrr); bgfx::destroyUniform(u_time); bgfx::destroyUniform(u_color); for (uint8_t ii = 0; ii < RenderState::Count; ++ii) { if (bgfx::isValid(s_renderStates[ii].m_program)) { bgfx::destroyProgram(s_renderStates[ii].m_program); } } for (uint8_t ii = 0; ii < LightProbe::Count; ++ii) { mLightProbes[ii].destroy(); } for (size_t i = 0; i < entities.size(); i++) { delete entities[i]; entities[i] = NULL; } for (size_t i = 0; i < meshes.size(); i++) { bgfxutils::meshUnload(meshes[i]); meshes[i] = NULL; } for (size_t i = 0; i < lights.size(); i++) { std::cout << "Destroying light uniforms for light " << i << std::endl; bgfx::destroyFrameBuffer(lights[i].shadowMapFB); bgfx::destroyUniform(lights[i].u_shadowMap); bgfx::destroyUniform(lights[i].u_shadowMapParams); bgfx::destroyUniform(lights[i].u_lightPos); bgfx::destroyUniform(lights[i].u_lightMtx); } lights.clear(); cameras.clear(); } void Renderer::resize (int width, int height) { if (initialized) { bgfx::reset (width, height); this->width = width; this->height = height; for (uint32_t i = 0; i < cameras.size(); i++) { cameras[i].width = static_cast(width); cameras[i].height = static_cast(height); } } } void Renderer::paintGLSimple() { // Set view 0 default viewport. bgfx::setViewRect(0, 0, 0, width, height); // This dummy draw call is here to make sure that view 0 is cleared // if no other draw calls are submitted to view 0. bgfx::touch(0); int64_t now = bx::getHPCounter(); static int64_t last = now; const int64_t frameTime = now - last; last = now; const double freq = double(bx::getHPFrequency() ); const double toMs = 1000.0/freq; // Use debug font to print information about this example. bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/00-helloworld"); bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Initialization and debug text."); bgfx::dbgTextPrintf(0, 3, 0x8f, "Frame: % 7.3f[ms]", double(frameTime)*toMs); // Advance to next frame. Rendering thread will be kicked to // process submitted rendering primitives. bgfx::frame(); bgfx::dbgTextClear(); } void Renderer::paintGL() { int64_t now = bx::getHPCounter(); static int64_t last = now; const int64_t frameTime = now - last; last = now; const double freq = double(bx::getHPFrequency() ); const double toMs = 1000.0/freq; float time = (float)( (now-m_timeOffset)/double(bx::getHPFrequency() ) ); bgfx::setUniform (u_time, &time); // Use debug font to print information about this example. bgfx::dbgTextClear(); // debug font is 8 pixels wide int num_chars = width / 8; bgfx::dbgTextPrintf(num_chars - 18, 0, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs); // submit the imgui widgets imguiEndFrame(); // This dummy draw call is here to make sure that view 0 is cleared // if no other draw calls are submitted to view 0. bgfx::touch(0); // update camera matrices for (uint32_t i = 0; i < cameras.size(); i++) { cameras[i].updateMatrices(); } // lights: update view and projection matrices and shadow map parameters for (uint32_t i = 0; i < lights.size(); i++) { bgfx::setUniform(lights[i].u_lightPos, lights[i].pos); float shadow_map_params[4]; shadow_map_params[0] = static_cast(lights[i].shadowMapSize); shadow_map_params[1] = lights[0].shadowMapBias; shadow_map_params[2] = 0.f; shadow_map_params[3] = 0.f; bgfx::setUniform(lights[i].u_shadowMapParams, &shadow_map_params); float eye[3]; eye[0] = lights[i].pos[0]; eye[1] = lights[i].pos[1]; eye[2] = lights[0].pos[2]; float at[3]; at[0] = - lights[i].pos[0] + lights[i].dir[0]; at[1] = - lights[i].pos[1] + lights[i].dir[1]; at[2] = - lights[i].pos[2] + lights[i].dir[2]; bx::mtxLookAt(lights[i].mtxView, eye, at); lights[i].area = 20.0f; lights[i].near = 0.f; lights[i].far = 40.f; // bx::mtxProj(lightProj, 20.0f, 1., 5.f, 10.0f); bx::mtxOrtho(lights[i].mtxProj, -lights[i].area, lights[i].area, -lights[i].area, lights[i].area, lights[i].near, lights[i].far); // lights: shadow matrix const float sy = flipV ? 0.5f : -0.5f; const float mtxCrop[16] = { 0.5f, 0.0f, 0.0f, 0.0f, 0.0f, sy, 0.0f, 0.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, }; float mtxTmp[16]; bx::mtxMul(mtxTmp, lights[i].mtxProj, mtxCrop); bx::mtxMul(lights[i].mtxShadow, lights[i].mtxView, mtxTmp); } // setup render passes float view[16]; float proj[16]; bx::mtxIdentity(view); bx::mtxOrtho(proj, 0.f, 1.f, 1.f, 0.f, 0.f, 100.0f); bgfx::setViewRect(RenderState::Skybox, 0, 0, width, height); bgfx::setViewTransform(RenderState::Skybox, view, proj); bgfx::setViewRect(RenderState::ShadowMap, 0, 0, lights[0].shadowMapSize, lights[0].shadowMapSize); bgfx::setViewFrameBuffer(RenderState::ShadowMap, lights[0].shadowMapFB); bgfx::setViewTransform(RenderState::ShadowMap, lights[0].mtxView, lights[0].mtxProj); bgfx::setViewRect(RenderState::Scene, 0, 0, width, height); bgfx::setViewTransform(RenderState::Scene, cameras[activeCameraIndex].mtxView, cameras[activeCameraIndex].mtxProj); bgfx::setViewRect(RenderState::SceneTextured, 0, 0, width, height); bgfx::setViewTransform(RenderState::SceneTextured, cameras[activeCameraIndex].mtxView, cameras[activeCameraIndex].mtxProj); bgfx::setViewRect(RenderState::Debug, 0, 0, width, height); bgfx::setViewTransform(RenderState::Debug, cameras[activeCameraIndex].mtxView, cameras[activeCameraIndex].mtxProj); // setup floor float mtxFloor[16]; bx::mtxSRT(mtxFloor , 10.0f, 10.0f, 10.0f , 0.0f, 0.0f, 0.0f , 0.0f, 0.0f, 0.0f ); float lightMtx[16]; // Floor. bx::mtxMul(lightMtx, mtxFloor, lights[0].mtxShadow); bgfx::setUniform(lights[0].u_lightMtx, lightMtx); // Clear backbuffer and shadowmap framebuffer at beginning. bgfx::setViewClear(RenderState::Skybox , BGFX_CLEAR_COLOR | BGFX_CLEAR_DEPTH , 0xf03030ff, 1.0f, 0 ); bgfx::setViewClear(RenderState::ShadowMap , BGFX_CLEAR_COLOR | BGFX_CLEAR_DEPTH , 0x303030ff, 1.0f, 0 ); // bgfx::setViewClear(RenderState::Scene // , BGFX_CLEAR_COLOR | BGFX_CLEAR_DEPTH // , 0x303030ff, 1.0f, 0 // ); bgfx::touch(RenderState::Scene); bgfx::touch(RenderState::Skybox); // Skybox pass memcpy (IBL::uniforms.m_cameraPos, cameras[activeCameraIndex].eye.data(), 3 * sizeof(float)); const float amount = bx::fmin(0.012/0.12f, 1.0f); IBL::settings.m_envRotCurr = bx::flerp(IBL::settings.m_envRotCurr, IBL::settings.m_envRotDest, amount); float mtxEnvRot[16]; float env_rot_cur = 0.0f; float mtx_u_mtx[16]; bx::mtxRotateY(mtxEnvRot, env_rot_cur); bx::mtxMul(IBL::uniforms.m_mtx, cameras[activeCameraIndex].mtxEnv, mtxEnvRot); // Used for Skybox. bgfx::setTexture(0, s_texCube, mLightProbes[mCurrentLightProbe].m_tex); bgfx::setTexture(1, s_texCubeIrr, mLightProbes[mCurrentLightProbe].m_texIrr); bgfx::setState(BGFX_STATE_RGB_WRITE|BGFX_STATE_ALPHA_WRITE); screenSpaceQuad( (float)cameras[activeCameraIndex].width, (float)cameras[activeCameraIndex].height, true); IBL::uniforms.submit(); bgfx::submit(RenderState::Skybox, s_renderStates[RenderState::Skybox].m_program); // render the plane uint32_t cached = bgfx::setTransform(mtxFloor); for (uint32_t pass = 0; pass < RenderState::Count; ++pass) { // Only draw plane textured or during the shadow map passes if (pass != RenderState::SceneTextured && pass != RenderState::ShadowMap) continue; const RenderState& st = s_renderStates[pass]; if (!isValid(st.m_program)) { continue; } bgfx::setTransform(cached); for (uint8_t tex = 0; tex < st.m_numTextures; ++tex) { const RenderState::Texture& texture = st.m_textures[tex]; bgfx::setTexture(texture.m_stage , texture.m_sampler , texture.m_texture , texture.m_flags ); } bgfx::setUniform(lights[0].u_lightMtx, lightMtx); bgfx::setUniform(u_color, Vector4f(1.f, 1.f, 1.f, 1.f).data(), 4); bgfx::setIndexBuffer(plane_ibh); bgfx::setVertexBuffer(plane_vbh); bgfx::setState(st.m_state); bgfx::submit(st.m_viewId, st.m_program); } // render entities for (size_t i = 0; i < entities.size(); i++) { // shadow map pass bx::mtxMul(lightMtx, entities[i]->transform, lights[0].mtxShadow); bgfx::setUniform(lights[0].u_lightMtx, lightMtx); bgfx::setUniform(u_color, entities[i]->color, 4); meshSubmit(entities[i]->mesh, &s_renderStates[RenderState::ShadowMap], 1, entities[i]->transform); // scene pass bx::mtxMul(lightMtx, entities[i]->transform, lights[0].mtxShadow); bgfx::setUniform(lights[0].u_lightMtx, lightMtx); bgfx::setUniform(u_color, entities[i]->color, 4); meshSubmit(entities[i]->mesh, &s_renderStates[RenderState::Scene], 1, entities[i]->transform); } // render debug information if (drawDebug) { float tmp[16]; // render light frustums for (uint32_t i = 0; i < lights.size(); i++) { bx::mtxMul (tmp, lights[i].mtxView, lights[i].mtxProj); float mtxLightViewProjInv[16]; bx::mtxInverse (mtxLightViewProjInv, tmp); bgfx::setUniform(u_color, Vector4f(1.f, 1.f, 0.3f, 1.0f).data(), 4); const RenderState& st = s_renderStates[RenderState::Debug]; bgfx::setTransform(mtxLightViewProjInv); bgfx::setIndexBuffer(cube_edges_ibh); bgfx::setVertexBuffer(cube_vbh); bgfx::setState(st.m_state); bgfx::submit(st.m_viewId, st.m_program); } // render camera frustums for (uint32_t i = 0; i < cameras.size(); i++) { bx::mtxMul (tmp, cameras[i].mtxView, cameras[i].mtxProj); float mtxCameraViewProjInv[16]; bx::mtxInverse (mtxCameraViewProjInv, tmp); bgfx::setUniform(u_color, Vector4f(0.5f, 0.5f, 0.8f, 1.f).data(), 4); const RenderState& st = s_renderStates[RenderState::Debug]; bgfx::setTransform(mtxCameraViewProjInv); bgfx::setIndexBuffer(cube_edges_ibh); bgfx::setVertexBuffer(cube_vbh); bgfx::setState(st.m_state); bgfx::submit(st.m_viewId, st.m_program); } // debug commands bgfx::setUniform(u_color, Vector4f(1.0f, 1.0f, 1.0f, 1.f).data(), 4); // assemble lines for alls debug lines uint32_t line_count = 0; for (uint32_t i = 0; i < debugCommands.size(); i++) { if (debugCommands[i].type == DebugCommand::Line) { line_count++; } } // create buffer data for the lines uint16_t* line_idx_buf = new uint16_t[line_count * 2]; PosColorVertex *line_vert_buf = new PosColorVertex[line_count * 2]; for (uint32_t i = 0; i < debugCommands.size(); i++) { if (debugCommands[i].type == DebugCommand::Line) { // from coordinates line_vert_buf[2 * i].m_x = debugCommands[i].from[0]; line_vert_buf[2 * i].m_y = debugCommands[i].from[1]; line_vert_buf[2 * i].m_z = debugCommands[i].from[2]; uint32_t color = (0xff << 24) + (static_cast(debugCommands[i].color[0]) * 255 << 0) + (static_cast(debugCommands[i].color[1]) * 255 << 8) + (static_cast(debugCommands[i].color[2]) * 255 << 16); // from color line_vert_buf[2 * i].m_abgr = color; // from index line_idx_buf[2 * i] = 2 * i; // to coordinates line_vert_buf[2 * i + 1].m_x = debugCommands[i].to[0]; line_vert_buf[2 * i + 1].m_y = debugCommands[i].to[1]; line_vert_buf[2 * i + 1].m_z = debugCommands[i].to[2]; // to color line_vert_buf[2 * i + 1].m_abgr = color; // to index line_idx_buf[2 * i + 1] = 2 * i + 1; } } // update buffer from buffer data bgfx::updateDynamicVertexBuffer (debug_lines_vbh, 0, bgfx::copy(line_vert_buf, sizeof(PosColorVertex) * line_count * 2) ); bgfx::updateDynamicIndexBuffer (debug_lines_ibh, 0, bgfx::copy(line_idx_buf, sizeof(uint16_t) * line_count * 2) ); // submit data const RenderState& st = s_renderStates[RenderState::Debug]; bgfx::setIndexBuffer(debug_lines_ibh); bgfx::setVertexBuffer(debug_lines_vbh); bgfx::setState(st.m_state); bgfx::submit(st.m_viewId, st.m_program); // free buffer data delete[] line_vert_buf; delete[] line_idx_buf; } // Advance to next frame. Rendering thread will be kicked to // process submitted rendering primitives. bgfx::frame(); // Start the next imgui frame imguiBeginFrame (inputState.mouseX, inputState.mouseY, inputState.mouseButton, inputState.mouseScroll, width, height); ImGui::SetNextWindowSize (ImVec2(400.f, 100.0f), ImGuiSetCond_Once); ImGui::SetNextWindowPos (ImVec2(10.f, 300.0f), ImGuiSetCond_Once); ImGui::Begin("Render Settings"); ImGui::Checkbox("Draw Debug", &drawDebug); for (int i = 0; i < lights.size(); i++) { ImGui::SliderFloat("Bias", &lights[i].shadowMapBias, 0.0001f, 0.10f ); } ImGui::End(); // clear debug commands as they have to be issued every frame debugCommands.clear(); } Entity* Renderer::createEntity() { Entity* result = new Entity(); entities.push_back(result); return result; } bool Renderer::destroyEntity(Entity* entity) { int i = 0; for (i = 0; i < entities.size(); i++) { if (entities[i] == entity) { break; } } if (i != entities.size()) { if (entity->mesh != nullptr) { meshUnload (entity->mesh); entity->mesh = nullptr; } delete entity; entities.erase(entities.begin() + i); return true; } return false; } bgfxutils::Mesh* Renderer::loadMesh(const char* filename) { MeshIdMap::iterator mesh_iter = meshIdMap.find (filename); bgfxutils::Mesh* result = NULL; if (mesh_iter == meshIdMap.end()) { std::string filename_str (filename); if (filename_str.substr(filename_str.size() - 4, 4) == ".obj") { std::vector shapes; std::vector materials; std::string err; bool result = tinyobj::LoadObj(shapes, materials, err, filename); if (!result) { std::cerr << "Error loading '" << filename << "': " << err << std::endl; exit(-1); } // result = bgfxutils::createMeshFromVBO (vbo); } else { result = bgfxutils::meshLoad(filename); } meshes.push_back (result); meshIdMap[filename] = meshes.size() - 1; } else { result = meshes[mesh_iter->second]; } return result; } // debug commands void Renderer::drawDebugLine ( const SimpleMath::Vector3f &from, const SimpleMath::Vector3f &to, const SimpleMath::Vector3f &color) { DebugCommand cmd; cmd.type = DebugCommand::Line; cmd.from = from; cmd.to = to; cmd.color = color; debugCommands.push_back(cmd); }