#ifndef _SIMPLEMATHGL_H_ #define _SIMPLEMATHGL_H_ #include "SimpleMath.h" #include namespace SimpleMath { typedef SimpleMath::Fixed::Matrix Vector3f; typedef SimpleMath::Fixed::Matrix Matrix33f; typedef SimpleMath::Fixed::Matrix Vector4f; typedef SimpleMath::Fixed::Matrix Matrix44f; namespace GL { inline Matrix33f RotateMat33 (float rot_deg, float x, float y, float z) { float c = cosf (rot_deg * M_PI / 180.f); float s = sinf (rot_deg * M_PI / 180.f); return Matrix33f ( x * x * (1.0f - c) + c, y * x * (1.0f - c) + z * s, x * z * (1.0f - c) - y * s, x * y * (1.0f - c) - z * s, y * y * (1.0f - c) + c, y * z * (1.0f - c) + x * s, x * z * (1.0f - c) + y * s, y * z * (1.0f - c) - x * s, z * z * (1.0f - c) + c ); } inline Matrix44f RotateMat44 (float rot_deg, float x, float y, float z) { float c = cosf (rot_deg * M_PI / 180.f); float s = sinf (rot_deg * M_PI / 180.f); return Matrix44f ( x * x * (1.0f - c) + c, y * x * (1.0f - c) + z * s, x * z * (1.0f - c) - y * s, 0.f, x * y * (1.0f - c) - z * s, y * y * (1.0f - c) + c, y * z * (1.0f - c) + x * s, 0.f, x * z * (1.0f - c) + y * s, y * z * (1.0f - c) - x * s, z * z * (1.0f - c) + c, 0.f, 0.f, 0.f, 0.f, 1.f ); } inline Matrix44f TranslateMat44 (float x, float y, float z) { return Matrix44f ( 1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, x, y, z, 1.f ); } inline Matrix44f ScaleMat44 (float x, float y, float z) { return Matrix44f ( x, 0.f, 0.f, 0.f, 0.f, y, 0.f, 0.f, 0.f, 0.f, z, 0.f, 0.f, 0.f, 0.f, 1.f ); } inline Matrix44f Ortho(float left, float right, float bottom, float top, float near, float far) { float tx = -(right + left) / (right - left); float ty = -(top + bottom) / (top - bottom); float tz = -(far + near) / (far - near); return Matrix44f( 2.0f / (right - left), 0.0f, 0.0f, 0.0f, 0, 2.0f / (top - bottom), 0.0f, 0.0f, 0.0f, 0.0f, -2.0f / (far - near), 0.0f, tx, ty, tz, 1.0f ); } inline Matrix44f Perspective(float fovy, float aspect, float near, float far) { float x = fovy / 2.0f; float f = cos(x) / sin(x); return Matrix44f( f / aspect, 0.0f, 0.0f, 0.0f, 0.0f, f, 0.0f, 0.0f, 0.0f, 0.0f, (far + near) / (near - far), -1.0f, 0.0f, 0.0f, (2.0f * far * near) / (near - far), 0.0f ); } inline Matrix44f LookAt( const Vector3f& eye, const Vector3f& poi, const Vector3f& up) { Vector3f d = (poi - eye).normalized(); Vector3f s = d.cross(up.normalized()); Vector3f u = s.cross(d); return Matrix44f( s[0], u[0], -d[0], 0.0f, s[1], u[1], -d[1], 0.0f, s[2], u[2], -d[2], 0.0f, -eye[0], -eye[1], -eye[2], 1.0f ); } /** Quaternion * * order: x,y,z,w */ class Quaternion : public Vector4f { public: Quaternion () : Vector4f (0.f, 0.f, 0.f, 1.f) {} Quaternion (const Vector4f vec4) : Vector4f (vec4) {} Quaternion (float x, float y, float z, float w): Vector4f (x, y, z, w) {} /** This function is equivalent to multiplicate their corresponding rotation matrices */ Quaternion operator* (const Quaternion &q) const { return Quaternion ( (*this)[3] * q[0] + (*this)[0] * q[3] + (*this)[1] * q[2] - (*this)[2] * q[1], (*this)[3] * q[1] + (*this)[1] * q[3] + (*this)[2] * q[0] - (*this)[0] * q[2], (*this)[3] * q[2] + (*this)[2] * q[3] + (*this)[0] * q[1] - (*this)[1] * q[0], (*this)[3] * q[3] - (*this)[0] * q[0] - (*this)[1] * q[1] - (*this)[2] * q[2] ); } Quaternion& operator*=(const Quaternion &q) { set ( (*this)[3] * q[0] + (*this)[0] * q[3] + (*this)[1] * q[2] - (*this)[2] * q[1], (*this)[3] * q[1] + (*this)[1] * q[3] + (*this)[2] * q[0] - (*this)[0] * q[2], (*this)[3] * q[2] + (*this)[2] * q[3] + (*this)[0] * q[1] - (*this)[1] * q[0], (*this)[3] * q[3] - (*this)[0] * q[0] - (*this)[1] * q[1] - (*this)[2] * q[2] ); return *this; } static Quaternion fromGLRotate (float angle, float x, float y, float z) { float st = sinf (angle * M_PI / 360.f); return Quaternion ( st * x, st * y, st * z, cosf (angle * M_PI / 360.f) ); } Quaternion normalize() { return Vector4f::normalize(); } Quaternion slerp (float alpha, const Quaternion &quat) const { // check whether one of the two has 0 length float s = sqrt (squaredNorm() * quat.squaredNorm()); // division by 0.f is unhealthy! assert (s != 0.f); float angle = acos (dot(quat) / s); if (angle == 0.f || std::isnan(angle)) { return *this; } assert(!std::isnan(angle)); float d = 1.f / sinf (angle); float p0 = sinf ((1.f - alpha) * angle); float p1 = sinf (alpha * angle); if (dot (quat) < 0.f) { return Quaternion( ((*this) * p0 - quat * p1) * d); } return Quaternion( ((*this) * p0 + quat * p1) * d); } Matrix44f toGLMatrix() const { float x = (*this)[0]; float y = (*this)[1]; float z = (*this)[2]; float w = (*this)[3]; return Matrix44f ( 1 - 2*y*y - 2*z*z, 2*x*y + 2*w*z, 2*x*z - 2*w*y, 0.f, 2*x*y - 2*w*z, 1 - 2*x*x - 2*z*z, 2*y*z + 2*w*x, 0.f, 2*x*z + 2*w*y, 2*y*z - 2*w*x, 1 - 2*x*x - 2*y*y, 0.f, 0.f, 0.f, 0.f, 1.f); } static Quaternion fromGLMatrix(const Matrix44f &mat) { float w = sqrt (1.f + mat(0,0) + mat(1,1) + mat(2,2)) * 0.5f; return Quaternion ( -(mat(2,1) - mat(1,2)) / (w * 4.f), -(mat(0,2) - mat(2,0)) / (w * 4.f), -(mat(1,0) - mat(0,1)) / (w * 4.f), w); } static Quaternion fromMatrix (const Matrix33f &mat) { float w = sqrt (1.f + mat(0,0) + mat(1,1) + mat(2,2)) * 0.5f; return Quaternion ( (mat(2,1) - mat(1,2)) / (w * 4.f), (mat(0,2) - mat(2,0)) / (w * 4.f), (mat(1,0) - mat(0,1)) / (w * 4.f), w); } static Quaternion fromAxisAngle (const Vector3f &axis, double angle_rad) { double d = axis.norm(); double s2 = std::sin (angle_rad * 0.5) / d; return Quaternion ( axis[0] * s2, axis[1] * s2, axis[2] * s2, std::cos(angle_rad * 0.5) ); } static Quaternion fromEulerZYX (const Vector3f &zyx_angles) { return Quaternion::fromAxisAngle (Vector3f (0., 0., 1.), zyx_angles[0]) * Quaternion::fromAxisAngle (Vector3f (0., 1., 0.), zyx_angles[1]) * Quaternion::fromAxisAngle (Vector3f (1., 0., 0.), zyx_angles[2]); } static Quaternion fromEulerYXZ (const Vector3f &yxz_angles) { return Quaternion::fromAxisAngle (Vector3f (0., 1., 0.), yxz_angles[0]) * Quaternion::fromAxisAngle (Vector3f (1., 0., 0.), yxz_angles[1]) * Quaternion::fromAxisAngle (Vector3f (0., 0., 1.), yxz_angles[2]); } static Quaternion fromEulerXYZ (const Vector3f &xyz_angles) { return Quaternion::fromAxisAngle (Vector3f (0., 0., 01.), xyz_angles[2]) * Quaternion::fromAxisAngle (Vector3f (0., 1., 0.), xyz_angles[1]) * Quaternion::fromAxisAngle (Vector3f (1., 0., 0.), xyz_angles[0]); } Vector3f toEulerZYX () const { return Vector3f (1.0f, 2.0f, 3.0f ); } Vector3f toEulerYXZ() const { return Vector3f ( atan2 (-2.f * (*this)[0] * (*this)[2] + 2.f * (*this)[3] * (*this)[1], (*this)[2] * (*this)[2] - (*this)[1] * (*this)[1] -(*this)[0] * (*this)[0] + (*this)[3] * (*this)[3]), asin (2.f * (*this)[1] * (*this)[2] + 2.f * (*this)[3] * (*this)[0]), atan2 (-2.f * (*this)[0] * (*this)[1] + 2.f * (*this)[3] * (*this)[2], (*this)[1] * (*this)[1] - (*this)[2] * (*this)[2] +(*this)[3] * (*this)[3] - (*this)[0] * (*this)[0] ) ); } Matrix33f toMatrix() const { float x = (*this)[0]; float y = (*this)[1]; float z = (*this)[2]; float w = (*this)[3]; return Matrix33f ( 1 - 2*y*y - 2*z*z, 2*x*y - 2*w*z, 2*x*z + 2*w*y, 2*x*y + 2*w*z, 1 - 2*x*x - 2*z*z, 2*y*z - 2*w*x, 2*x*z - 2*w*y, 2*y*z + 2*w*x, 1 - 2*x*x - 2*y*y ); } Quaternion conjugate() const { return Quaternion ( -(*this)[0], -(*this)[1], -(*this)[2], (*this)[3]); } Vector3f rotate (const Vector3f &vec) const { Vector3f vn (vec); Quaternion vec_quat (vn[0], vn[1], vn[2], 0.f), res_quat; res_quat = (*this) * vec_quat; res_quat = res_quat * conjugate(); return Vector3f (res_quat[0], res_quat[1], res_quat[2]); } }; // namespace GL } // namespace SimpleMath } /* _SIMPLEMATHGL_H_ */ #endif