/* -------------------------------------------------------------------------- * * OpenSim: SmoothSegmentedFunction.cpp * * -------------------------------------------------------------------------- * * The OpenSim API is a toolkit for musculoskeletal modeling and simulation. * * See http://opensim.stanford.edu and the NOTICE file for more information. * * OpenSim is developed at Stanford University and supported by the US * * National Institutes of Health (U54 GM072970, R24 HD065690) and by DARPA * * through the Warrior Web program. * * * * Copyright (c) 2005-2012 Stanford University and the Authors * * Author(s): Matthew Millard * * * * Licensed under the Apache License, Version 2.0 (the "License"); you may * * not use this file except in compliance with the License. You may obtain a * * copy of the License at http://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, * * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * * limitations under the License. * * -------------------------------------------------------------------------- */ /* Update: This is a port of the original code so that it will work with the multibody code RBDL written by Martin Felis. Author: Matthew Millard Date: Nov 2015 */ //============================================================================= // INCLUDES //============================================================================= #include "SmoothSegmentedFunction.h" #include #include //============================================================================= // STATICS //============================================================================= //using namespace SimTK; //using namespace OpenSim; using namespace std; using namespace RigidBodyDynamics::Addons::Geometry; static bool DEBUG = false; static double UTOL = std::numeric_limits::epsilon()*1e6; static double INTTOL = std::numeric_limits::epsilon()*1e2; static double SQRTEPS = std::sqrt(numeric_limits::epsilon()); static int MAXITER = 20; static int NUM_SAMPLE_PTS = 100; //============================================================================= // UTILITY FUNCTIONS //============================================================================= /* DETAILED COMPUTATIONAL COSTS: ========================================================================= WITHOUT INTEGRAL _________________________________________________________________________ Function Comp Div Mult Add Assignments _________________________________________________________________________ member assign M:2, 9 curve gen: m,m*100 m m*100 m m*100*(4) +m*100(3) +m*100*(3) Function detail Evaluations Function m SimTK::SplineFitter:: fitForSmoothingParameter(3,x,u,0).getSpline(); Cost: ? m*100 SegmentedQuinticBezierToolkit:: calcQuinticBezierCurveVal Cost: Mult Add Assignments 21 20 13 Total ~typically > 2100*m multiplications, additions, > 1000*m assignments > 100*m divisions _________________________________________________________________________ Comp Div Mult Add Assignments Total: m+m*100(3) m*100 m*100*21 m*100*20 m*100*13 +m+m*100*3 +m*100*4+9+M:2 + m*Cost(SimTK::SplineFitter ...) ========================================================================= ADDITIONAL COST OF COMPUTING THE INTEGRAL CURVE Comp Div Mult Add Assign RK45 Fn.Eval m*100*(156 12 618 390 456) RK45 Overhead m*100*(? ? ? ? ? ) Spline cost m*100*(? ? ? ? ? ) Total: ~typically > 100,000's mult, additions, assignments > 40,000 comparisions > 3000 divisions ========================================================================= M: Matrix V: Vector N.B. These costs are dependent on SegmentedQuinticBezierToolkit */ SmoothSegmentedFunction:: SmoothSegmentedFunction( const RigidBodyDynamics::Math::MatrixNd& mX, const RigidBodyDynamics::Math::MatrixNd& mY, double x0, double x1, double y0, double y1, double dydx0, double dydx1, const std::string& name): _x0(x0),_x1(x1),_y0(y0),_y1(y1),_dydx0(dydx0),_dydx1(dydx1), _name(name) { _numBezierSections = mX.cols(); _mXVec.resize(_numBezierSections); _mYVec.resize(_numBezierSections); for(int s=0; s < _numBezierSections; s++){ _mXVec[s] = mX.col(s); _mYVec[s] = mY.col(s); } } //============================================================================== SmoothSegmentedFunction::SmoothSegmentedFunction(): _x0(NAN),_x1(NAN), _y0(NAN),_y1(NAN), _dydx0(NAN),_dydx1(NAN),_name("NOT_YET_SET") { //_arraySplineUX.resize(0); _mXVec.resize(0); _mYVec.resize(0); //_splineYintX = SimTK::Spline(); _numBezierSections = (int)NAN; } //============================================================================== void SmoothSegmentedFunction:: updSmoothSegmentedFunction( const RigidBodyDynamics::Math::MatrixNd& mX, const RigidBodyDynamics::Math::MatrixNd& mY, double x0, double x1, double y0, double y1, double dydx0, double dydx1, const std::string& name) { if(mX.rows() != 6 || mY.rows() != 6 || mX.cols() != mY.cols() ){ cerr<<"SmoothSegmentedFunction::updSmoothSegmentedFunction " << _name.c_str() <<": matrices mX and mY must have 6 rows, and the same" <<" number of columns." << endl; assert(0); abort(); } _x0 =x0; _x1 =x1; _y0 =y0; _y1 =y1; _dydx0=dydx0; _dydx1=dydx1; if(mX.cols() != _mXVec.size()){ _mXVec.resize(mX.cols()); _mYVec.resize(mY.cols()); } _numBezierSections = mX.cols(); for(int s=0; s < mX.cols(); s++){ _mXVec[s] = mX.col(s); _mYVec[s] = mY.col(s); } _name = name; } //============================================================================== void SmoothSegmentedFunction::shift(double xShift, double yShift) { _x0 += xShift; _x1 += xShift; _y0 += yShift; _y1 += yShift; for(int i=0; i<_mXVec.size();++i){ for(int j=0; j<_mXVec.at(i).rows();++j){ _mXVec.at(i)[j] += xShift; _mYVec.at(i)[j] += yShift; } } } void SmoothSegmentedFunction::scale(double xScale, double yScale) { if( abs( xScale ) <= SQRTEPS){ cerr<<"SmoothSegmentedFunction::scale " << _name.c_str() <<": xScale must be greater than sqrt(eps). Setting xScale to such" <<" a small value will cause the slope of the curve to approach " <<" infinity, or become undefined." << endl; assert(0); abort(); } _x0 *= xScale; _x1 *= xScale; _y0 *= yScale; _y1 *= yScale; _dydx0 *= yScale/xScale; _dydx1 *= yScale/xScale; for(int i=0; i<_mXVec.size();++i){ for(int j=0; j<_mXVec.at(i).rows();++j){ _mXVec.at(i)[j] *= xScale; _mYVec.at(i)[j] *= yScale; } } } //============================================================================== /*Detailed Computational Costs ________________________________________________________________________ If x is in the Bezier Curve Name Comp. Div. Mult. Add. Assign. _______________________________________________________________________ SegmentedQuinticBezierToolkit:: calcIndex 3*m+2 1*m 3 *calcU 15 2 82 42 60 calcQuinticBezierCurveVal 21 20 13 total 15+3*m+2 2 103 62+1*m 76 *Approximate. Uses iteration ________________________________________________________________________ If x is in the linear region Name Comp. Div. Mult. Add. Assign. 1 1 2 1 ________________________________________________________________________ */ double SmoothSegmentedFunction::calcValue(double x) const { double yVal = 0; if(x >= _x0 && x <= _x1 ) { int idx = SegmentedQuinticBezierToolkit::calcIndex(x,_mXVec); double u = SegmentedQuinticBezierToolkit:: calcU(x,_mXVec[idx], UTOL, MAXITER); yVal = SegmentedQuinticBezierToolkit:: calcQuinticBezierCurveVal(u,_mYVec[idx]); }else{ if(x < _x0){ yVal = _y0 + _dydx0*(x-_x0); }else{ yVal = _y1 + _dydx1*(x-_x1); } } return yVal; } double SmoothSegmentedFunction::calcValue( const RigidBodyDynamics::Math::VectorNd& ax) const { if( !(ax.size() == 1) ){ cerr<<"SmoothSegmentedFunction::calcValue " << _name.c_str() <<": Argument x must have only 1 element, as this function is " << "designed only for 1D functions, but a function with " << ax.size() << " elements was entered" << endl; assert(0); abort(); } return calcValue(ax[0]); } /*Detailed Computational Costs ________________________________________________________________________ If x is in the Bezier Curve, and dy/dx is being evaluated Name Comp. Div. Mult. Add. Assign. _______________________________________________________________________ Overhead: SegmentedQuinticBezierToolkit:: calcIndex 3*m+2 1*m 3 *calcU 15 2 82 42 60 Derivative Evaluation: **calcQuinticBezierCurveDYDX 21 20 13 dy/du 20 19 11 dx/du 20 19 11 dy/dx 1 total 17+3*m 3 143 m+100 98 *Approximate. Uses iteration **Higher order derivatives cost more ________________________________________________________________________ If x is in the linear region Name Comp. Div. Mult. Add. Assign. 1 1 ________________________________________________________________________ */ double SmoothSegmentedFunction::calcDerivative(double x, int order) const { //return calcDerivative( SimTK::Array_(order,0), // RigidBodyDynamics::Math::VectorNd(1,x)); double yVal = 0; //QUINTIC SPLINE if(order==0){ yVal = calcValue(x); }else{ if(x >= _x0 && x <= _x1){ int idx = SegmentedQuinticBezierToolkit::calcIndex(x,_mXVec); double u = SegmentedQuinticBezierToolkit:: calcU(x,_mXVec[idx],UTOL,MAXITER); yVal = SegmentedQuinticBezierToolkit:: calcQuinticBezierCurveDerivDYDX(u, _mXVec[idx], _mYVec[idx], order); /* std::cout << _mX(3, idx) << std::endl; std::cout << _mX(idx) << std::endl;*/ }else{ if(order == 1){ if(x < _x0){ yVal = _dydx0; }else{ yVal = _dydx1;} }else{ yVal = 0;} } } return yVal; } double SmoothSegmentedFunction:: calcDerivative( const std::vector& derivComponents, const RigidBodyDynamics::Math::VectorNd& ax) const { /* for(int i=0; i < (signed)derivComponents.size(); i++){ SimTK_ERRCHK2_ALWAYS( derivComponents[i] == 0, "SmoothSegmentedFunction::calcDerivative", "%s: derivComponents can only be populated with 0's because " "SmoothSegmentedFunction is only valid for a 1D function, but " "derivComponents had a value of %i in it", _name.c_str(), derivComponents[i]); } SimTK_ERRCHK2_ALWAYS( derivComponents.size() <= 6, "SmoothSegmentedFunction::calcDerivative", "%s: calcDerivative is only valid up to a 6th order derivative" " but derivComponents had a size of %i", _name.c_str(), derivComponents.size()); SimTK_ERRCHK2_ALWAYS( ax.size() == 1, "SmoothSegmentedFunction::calcValue", "%s: Argument x must have only 1 element, as this function is " "designed only for 1D functions, but ax had a size of %i", _name.c_str(), ax.size()); */ for(int i=0; i < (signed)derivComponents.size(); i++){ if( !(derivComponents[i] == 0)){ cerr << "SmoothSegmentedFunction::calcDerivative " << _name.c_str() <<": derivComponents can only be populated with 0's because " << "SmoothSegmentedFunction is only valid for a 1D function," << " but derivComponents had a value of " << derivComponents[i] << " in it" << endl; assert(0); abort(); } } if( !(derivComponents.size() <= 6)){ cerr << "SmoothSegmentedFunction::calcDerivative " << _name.c_str() << ": calcDerivative is only valid up to a 6th order derivative" << " but derivComponents had a size of " << derivComponents.size() << endl; assert(0); abort(); } if( !(ax.size() == 1) ){ cerr << "SmoothSegmentedFunction::calcValue " << _name.c_str() << ": Argument x must have only 1 element, as this function is " << "designed only for 1D functions, but ax had a size of " << ax.size() << endl; assert(0); abort(); } return calcDerivative(ax[0], derivComponents.size()); } /*Detailed Computational Costs ________________________________________________________________________ If x is in the Bezier Curve, and dy/dx is being evaluated Name Comp. Div. Mult. Add. Assign. _______________________________________________________________________ *spline.calcValue 7 2 3 1 *Approximate cost of evaluating a cubic spline with 100 knots, where the bisection method is used to find the correct index ________________________________________________________________________ If x is in the linear region Name Comp. Div. Mult. Add. Assign. *spline.calcValue 1 2 3 1 integral eval 2 4 5 1 total 3 6 8 2 *Approximate cost of evaluating a cubic spline at its last knot point ________________________________________________________________________ */ /* double SmoothSegmentedFunction::calcIntegral(double x) const { SimTK_ERRCHK1_ALWAYS(_computeIntegral, "SmoothSegmentedFunction::calcIntegral", "%s: This curve was not constructed with its integral because" "computeIntegral was false",_name.c_str()); double yVal = 0; if(x >= _x0 && x <= _x1){ yVal = _splineYintX.calcValue(RigidBodyDynamics::Math::VectorNd(1,x)); }else{ //LINEAR EXTRAPOLATION if(x < _x0){ RigidBodyDynamics::Math::VectorNd tmp(1); tmp(0) = _x0; double ic = _splineYintX.calcValue(tmp); if(_intx0x1){//Integrating left to right yVal = _y0*(x-_x0) + _dydx0*(x-_x0)*(x-_x0)*0.5 + ic; }else{//Integrating right to left yVal = -_y0*(x-_x0) - _dydx0*(x-_x0)*(x-_x0)*0.5 + ic; } }else{ RigidBodyDynamics::Math::VectorNd tmp(1); tmp(0) = _x1; double ic = _splineYintX.calcValue(tmp); if(_intx0x1){ yVal = _y1*(x-_x1) + _dydx1*(x-_x1)*(x-_x1)*0.5 + ic; }else{ yVal = -_y1*(x-_x1) - _dydx1*(x-_x1)*(x-_x1)*0.5 + ic; } } } return yVal; } */ /* bool SmoothSegmentedFunction::isIntegralAvailable() const { return _computeIntegral; } */ /* bool SmoothSegmentedFunction::isIntegralComputedLeftToRight() const { return _intx0x1; } */ int SmoothSegmentedFunction::getArgumentSize() const { return 1; } int SmoothSegmentedFunction::getMaxDerivativeOrder() const { return 6; } std::string SmoothSegmentedFunction::getName() const { return _name; } void SmoothSegmentedFunction::setName(const std::string &name) { _name = name; } RigidBodyDynamics::Math::VectorNd SmoothSegmentedFunction::getCurveDomain() const { RigidBodyDynamics::Math::VectorNd xrange(2); xrange[0] = 0; xrange[1] = 0; if (!_mXVec.empty()) { xrange[0] = _mXVec[0][0]; xrange[1] = _mXVec[_mXVec.size()-1][_mXVec[0].size()-1]; } return xrange; } /////////////////////////////////////////////////////////////////////////////// // Utility functions /////////////////////////////////////////////////////////////////////////////// /*Detailed Computational Costs _______________________________________________________________________ Name Comp. Div. Mult. Add. Assign. _______________________________________________________________________ *overhead (17+3*m 2 82 42+m 63)*7 119+21*m 14 574 294+7m 441 calcValue 21 20 13 calcDerivative: dy/dx 1 40 38 22 : d2y/dx2 2 78 73 23 : d3y/dx3 4 118 105 58 : d4y/dx4 5 168 137 71 : d5y/dx5 7 236 170 88 : d6y/dx6 9 334 209 106 **calcIntegral 7 2 3 1 total per point 126+21*m 42 1571 1049 823 total per elbow 126k+21k*m 42k 1571k 1049k 823k *Approximate. Overhead associated with finding the correct Bezier spline section, and evaluating u(x). Assumes 2 Newton iterations in calcU **Approximate. Includes estimated cost of evaluating a cubic spline with 100 knots */ RigidBodyDynamics::Math::MatrixNd SmoothSegmentedFunction::calcSampledCurve(int maxOrder, double domainMin, double domainMax) const{ int pts = 1; //Number of points between each of the spline points used //to fit u(x), and also the integral spline if( !(maxOrder <= getMaxDerivativeOrder()) ){ cerr << "SmoothSegmentedFunction::calcSampledCurve " << "Derivative order past the maximum computed order requested" << endl; assert(0); abort(); } double x0,x1,delta; //y,dy,d1y,d2y,d3y,d4y,d5y,d6y,iy RigidBodyDynamics::Math::VectorNd midX(NUM_SAMPLE_PTS*_numBezierSections-(_numBezierSections-1)); RigidBodyDynamics::Math::VectorNd x(NUM_SAMPLE_PTS); //Generate a sample of X values inside of the curve that is denser where //the curve is more curvy. double u; int idx = 0; for(int s=0; s < _numBezierSections; s++){ //Sample the local set for u and x for(int i=0;i 1){ //Skip the last point of a set that has another set of points //after it. Why? The last point and the starting point of the //next set are identical in value. if(i<(NUM_SAMPLE_PTS-1) || s == (_numBezierSections-1)){ midX[idx] = x[i]; idx++; } }else{ midX[idx] = x[i]; idx++; } } } RigidBodyDynamics::Math::VectorNd xsmpl(pts*(midX.size()-1)+2*10*pts); RigidBodyDynamics::Math::MatrixNd results; /* if(_computeIntegral){ results.resize(pts*(midX.size()-1)+2*10*pts,maxOrder+2+1); }else{ } */ results.resize(pts*(midX.size()-1)+2*10*pts,maxOrder+2); //Array initialization is so ugly ... std::vector d1y(1),d2y(2),d3y(3),d4y(4),d5y(5),d6y(6); d1y[0]=0; d2y[0] = 0; d2y[1] = 0; for(int i=0;i<3;i++) d3y[i]=0; for(int i=0;i<4;i++) d4y[i]=0; for(int i=0;i<5;i++) d5y[i]=0; for(int i=0;i<6;i++) d6y[i]=0; //generate some sample points in the extrapolated region idx = 0; x0 = _x0 - 0.1*(_x1-_x0); if(domainMin < x0) x0 = domainMin; x1 = _x0; delta = (0.1)*(x1-x0)/(pts); for(int j=0; j x1) x1 = domainMax; delta = (1.0/9.0)*(x1-x0)/(pts); for(int j=0;j=1) results(i,2) = calcDerivative(d1y,ax); if(maxOrder>=2) results(i,3) = calcDerivative(d2y,ax); if(maxOrder>=3) results(i,4) = calcDerivative(d3y,ax); if(maxOrder>=4) results(i,5) = calcDerivative(d4y,ax); if(maxOrder>=5) results(i,6) = calcDerivative(d5y,ax); if(maxOrder>=6) results(i,7) = calcDerivative(d6y,ax); /* if(_computeIntegral){ results(i,maxOrder+2) = calcIntegral(ax(0)); } */ } return results; } void SmoothSegmentedFunction::getXControlPoints( RigidBodyDynamics::Math::MatrixNd& mat) const { mat.resize(_mXVec.size(), _mXVec.at(0).size()); for(int i=0; i<_mXVec.size();++i){ for(int j=0; j<_mXVec.size();++j){ mat(i,j) = _mXVec.at(i)[j]; } } } void SmoothSegmentedFunction::getYControlPoints( RigidBodyDynamics::Math::MatrixNd& mat) const { mat.resize(_mYVec.size(), _mYVec.at(0).size()); for(int i=0; i<_mYVec.size();++i){ for(int j=0; j<_mYVec.size();++j){ mat(i,j) = _mYVec.at(i)[j]; } } } /*Detailed Computational Costs _______________________________________________________________________ Name Comp. Div. Mult. Add. Assign. _______________________________________________________________________ *overhead (17+3*m 2 82 42+m 63)*3 51+9m 6 246 126+3m 189 calcValue 21 20 13 calcDerivative : dy/dx 1 40 38 22 : d2y/dx2 2 78 73 23 **calcIntegral 7 2 3 1 total per point 58+9m 9 387 260+3m 248 total per elbow 5.8k+900m 900 38.7k 26k+300m 24.8k *Approximate. Overhead associated with finding the correct Bezier spline section, and evaluating u(x). Assumes 2 Newton iterations in calcU **Approximate. Includes estimated cost of evaluating a cubic spline with 100 knots */ void SmoothSegmentedFunction::printCurveToCSVFile( const std::string& path, const std::string& fileNameWithoutExtension, double domainMin, double domainMax) const { //Only compute up to the 2nd derivative RigidBodyDynamics::Math::MatrixNd results = calcSampledCurve(2,domainMin,domainMax); std::vector colNames(results.cols()); colNames[0] = "x"; colNames[1] = "y"; colNames[2] = "dy/dx"; colNames[3] = "d2y/dx2"; /* if(results.cols() == 5){ colNames[4] = "int_y(x)"; } */ std::string fname = fileNameWithoutExtension; fname.append(".csv"); printMatrixToFile(results,colNames,path,fname); } /* This function will print cvs file of the column vector col0 and the matrix data */ void SmoothSegmentedFunction:: printMatrixToFile( RigidBodyDynamics::Math::MatrixNd& data, std::vector& colNames, const std::string& path, const std::string& filename) const { ofstream datafile; std::string fullpath = path; if(fullpath.length() > 0) fullpath.append("/"); fullpath.append(filename); datafile.open(fullpath.c_str(),std::ios::out); if(!datafile){ datafile.close(); cerr << "SmoothSegmentedFunction::printMatrixToFile " << _name.c_str() << ": Failed to open the file path: " << fullpath.c_str() << endl; assert(0); abort(); } for(int i = 0; i < (signed)colNames.size(); i++){ if(i < (signed)colNames.size()-1) datafile << colNames[i] << ","; else datafile << colNames[i] << "\n"; } for(int i = 0; i < data.rows(); i++){ for(int j = 0; j < data.cols(); j++){ if(j