/* * Copyright 2011-2016 Branimir Karadzic. All rights reserved. * License: http://www.opensource.org/licenses/BSD-2-Clause */ #include #include "debugdraw.h" #include #include #include #include struct DebugVertex { float m_x; float m_y; float m_z; float m_len; uint32_t m_abgr; static void init() { ms_decl .begin() .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float) .add(bgfx::Attrib::TexCoord0, 1, bgfx::AttribType::Float) .add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true) .end(); } static bgfx::VertexDecl ms_decl; }; bgfx::VertexDecl DebugVertex::ms_decl; struct DebugShapeVertex { float m_x; float m_y; float m_z; uint8_t m_indices[4]; static void init() { ms_decl .begin() .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float) .add(bgfx::Attrib::Indices, 4, bgfx::AttribType::Uint8) .end(); } static bgfx::VertexDecl ms_decl; }; bgfx::VertexDecl DebugShapeVertex::ms_decl; static DebugShapeVertex s_cubeVertices[8] = { {-1.0f, 1.0f, 1.0f, { 0, 0, 0, 0 } }, { 1.0f, 1.0f, 1.0f, { 0, 0, 0, 0 } }, {-1.0f, -1.0f, 1.0f, { 0, 0, 0, 0 } }, { 1.0f, -1.0f, 1.0f, { 0, 0, 0, 0 } }, {-1.0f, 1.0f, -1.0f, { 0, 0, 0, 0 } }, { 1.0f, 1.0f, -1.0f, { 0, 0, 0, 0 } }, {-1.0f, -1.0f, -1.0f, { 0, 0, 0, 0 } }, { 1.0f, -1.0f, -1.0f, { 0, 0, 0, 0 } }, }; static const uint16_t s_cubeIndices[36] = { 0, 1, 2, // 0 1, 3, 2, 4, 6, 5, // 2 5, 6, 7, 0, 2, 4, // 4 4, 2, 6, 1, 5, 3, // 6 5, 7, 3, 0, 4, 1, // 8 4, 5, 1, 2, 3, 6, // 10 6, 3, 7, }; static const uint8_t s_circleLod[] = { 37, 29, 23, 17, 11, }; static uint8_t getCircleLod(uint8_t _lod) { _lod = _lod > BX_COUNTOF(s_circleLod)-1 ? BX_COUNTOF(s_circleLod)-1 : _lod; return s_circleLod[_lod]; } static void circle(float* _out, float _angle) { float sa = bx::fsin(_angle); float ca = bx::fcos(_angle); _out[0] = sa; _out[1] = ca; } static void squircle(float* _out, float _angle) { float sa = bx::fsin(_angle); float ca = bx::fcos(_angle); _out[0] = bx::fsqrt(bx::fabsolute(sa) ) * bx::fsign(sa); _out[1] = bx::fsqrt(bx::fabsolute(ca) ) * bx::fsign(ca); } uint32_t genSphere(uint8_t _subdiv0, void* _pos0 = NULL, uint16_t _posStride0 = 0, void* _normals0 = NULL, uint16_t _normalStride0 = 0) { if (NULL != _pos0) { struct Gen { Gen(void* _pos, uint16_t _posStride, void* _normals, uint16_t _normalStride, uint8_t _subdiv) : m_pos( (uint8_t*)_pos) , m_normals( (uint8_t*)_normals) , m_posStride(_posStride) , m_normalStride(_normalStride) { static const float scale = 1.0f; static const float golden = 1.6180339887f; static const float len = bx::fsqrt(golden*golden + 1.0f); static const float ss = 1.0f/len * scale; static const float ll = ss*golden; static const float vv[12][4] = { { -ll, 0.0f, -ss, 0.0f }, { ll, 0.0f, -ss, 0.0f }, { ll, 0.0f, ss, 0.0f }, { -ll, 0.0f, ss, 0.0f }, { -ss, ll, 0.0f, 0.0f }, { ss, ll, 0.0f, 0.0f }, { ss, -ll, 0.0f, 0.0f }, { -ss, -ll, 0.0f, 0.0f }, { 0.0f, -ss, ll, 0.0f }, { 0.0f, ss, ll, 0.0f }, { 0.0f, ss, -ll, 0.0f }, { 0.0f, -ss, -ll, 0.0f }, }; m_numVertices = 0; triangle(vv[ 0], vv[ 4], vv[ 3], scale, _subdiv); triangle(vv[ 0], vv[10], vv[ 4], scale, _subdiv); triangle(vv[ 4], vv[10], vv[ 5], scale, _subdiv); triangle(vv[ 5], vv[10], vv[ 1], scale, _subdiv); triangle(vv[ 5], vv[ 1], vv[ 2], scale, _subdiv); triangle(vv[ 5], vv[ 2], vv[ 9], scale, _subdiv); triangle(vv[ 5], vv[ 9], vv[ 4], scale, _subdiv); triangle(vv[ 3], vv[ 4], vv[ 9], scale, _subdiv); triangle(vv[ 0], vv[ 3], vv[ 7], scale, _subdiv); triangle(vv[ 0], vv[ 7], vv[11], scale, _subdiv); triangle(vv[11], vv[ 7], vv[ 6], scale, _subdiv); triangle(vv[11], vv[ 6], vv[ 1], scale, _subdiv); triangle(vv[ 1], vv[ 6], vv[ 2], scale, _subdiv); triangle(vv[ 2], vv[ 6], vv[ 8], scale, _subdiv); triangle(vv[ 8], vv[ 6], vv[ 7], scale, _subdiv); triangle(vv[ 8], vv[ 7], vv[ 3], scale, _subdiv); triangle(vv[ 0], vv[11], vv[10], scale, _subdiv); triangle(vv[ 1], vv[10], vv[11], scale, _subdiv); triangle(vv[ 2], vv[ 8], vv[ 9], scale, _subdiv); triangle(vv[ 3], vv[ 9], vv[ 8], scale, _subdiv); } void addVert(const float* _v) { float* verts = (float*)m_pos; verts[0] = _v[0]; verts[1] = _v[1]; verts[2] = _v[2]; m_pos += m_posStride; if (NULL != m_normals) { float* normals = (float*)m_normals; bx::vec3Norm(normals, _v); m_normals += m_normalStride; } m_numVertices++; } void triangle(const float* _v0, const float* _v1, const float* _v2, float _scale, uint8_t _subdiv) { if (0 == _subdiv) { addVert(_v0); addVert(_v1); addVert(_v2); } else { float tmp0[4]; float tmp1[4]; float v01[4]; bx::vec3Add(tmp0, _v0, _v1); bx::vec3Norm(tmp1, tmp0); bx::vec3Mul(v01, tmp1, _scale); float v12[4]; bx::vec3Add(tmp0, _v1, _v2); bx::vec3Norm(tmp1, tmp0); bx::vec3Mul(v12, tmp1, _scale); float v20[4]; bx::vec3Add(tmp0, _v2, _v0); bx::vec3Norm(tmp1, tmp0); bx::vec3Mul(v20, tmp1, _scale); --_subdiv; triangle(_v0, v01, v20, _scale, _subdiv); triangle(_v1, v12, v01, _scale, _subdiv); triangle(_v2, v20, v12, _scale, _subdiv); triangle(v01, v12, v20, _scale, _subdiv); } } uint8_t* m_pos; uint8_t* m_normals; uint16_t m_posStride; uint16_t m_normalStride; uint32_t m_numVertices; } gen(_pos0, _posStride0, _normals0, _normalStride0, _subdiv0); } uint32_t numVertices = 20*3*bx::uint32_max(1, (uint32_t)bx::fpow(4.0f, _subdiv0) ); return numVertices; } void getPoint(float* _result, Axis::Enum _axis, float _x, float _y) { switch (_axis) { case Axis::X: _result[0] = 0.0f; _result[1] = _x; _result[2] = _y; break; case Axis::Y: _result[0] = _y; _result[1] = 0.0f; _result[2] = _x; break; default: _result[0] = _x; _result[1] = _y; _result[2] = 0.0f; break; } } #include "vs_debugdraw_lines.bin.h" #include "fs_debugdraw_lines.bin.h" #include "vs_debugdraw_lines_stipple.bin.h" #include "fs_debugdraw_lines_stipple.bin.h" #include "vs_debugdraw_fill.bin.h" #include "fs_debugdraw_fill.bin.h" #include "vs_debugdraw_fill_lit.bin.h" #include "fs_debugdraw_fill_lit.bin.h" struct EmbeddedShader { bgfx::RendererType::Enum type; const uint8_t* data; uint32_t size; }; #define BGFX_DECLARE_SHADER_EMBEDDED(_name) \ { \ { bgfx::RendererType::Direct3D9, BX_CONCATENATE(_name, _dx9 ), sizeof(BX_CONCATENATE(_name, _dx9 ) ) }, \ { bgfx::RendererType::Direct3D11, BX_CONCATENATE(_name, _dx11), sizeof(BX_CONCATENATE(_name, _dx11) ) }, \ { bgfx::RendererType::Direct3D12, BX_CONCATENATE(_name, _dx11), sizeof(BX_CONCATENATE(_name, _dx11) ) }, \ { bgfx::RendererType::OpenGL, BX_CONCATENATE(_name, _glsl), sizeof(BX_CONCATENATE(_name, _glsl) ) }, \ { bgfx::RendererType::OpenGLES, BX_CONCATENATE(_name, _glsl), sizeof(BX_CONCATENATE(_name, _glsl) ) }, \ { bgfx::RendererType::Vulkan, BX_CONCATENATE(_name, _glsl), sizeof(BX_CONCATENATE(_name, _glsl) ) }, \ { bgfx::RendererType::Metal, BX_CONCATENATE(_name, _mtl ), sizeof(BX_CONCATENATE(_name, _mtl ) ) }, \ { bgfx::RendererType::Count, NULL, 0 }, \ } static const EmbeddedShader s_embeddedShaders[][8] = { BGFX_DECLARE_SHADER_EMBEDDED(vs_debugdraw_lines), BGFX_DECLARE_SHADER_EMBEDDED(fs_debugdraw_lines), BGFX_DECLARE_SHADER_EMBEDDED(vs_debugdraw_lines_stipple), BGFX_DECLARE_SHADER_EMBEDDED(fs_debugdraw_lines_stipple), BGFX_DECLARE_SHADER_EMBEDDED(vs_debugdraw_fill), BGFX_DECLARE_SHADER_EMBEDDED(fs_debugdraw_fill), BGFX_DECLARE_SHADER_EMBEDDED(vs_debugdraw_fill_lit), BGFX_DECLARE_SHADER_EMBEDDED(fs_debugdraw_fill_lit), }; static bgfx::ShaderHandle createEmbeddedShader(bgfx::RendererType::Enum _type, uint32_t _index) { for (const EmbeddedShader* es = s_embeddedShaders[_index]; bgfx::RendererType::Count != es->type; ++es) { if (_type == es->type) { return bgfx::createShader(bgfx::makeRef(es->data, es->size) ); } } bgfx::ShaderHandle handle = BGFX_INVALID_HANDLE; return handle; } struct DebugDraw { DebugDraw() : m_depthTestLess(true) , m_state(State::Count) { } void init(bool _depthTestLess, bx::AllocatorI* _allocator) { m_allocator = _allocator; m_depthTestLess = _depthTestLess; #if BX_CONFIG_ALLOCATOR_CRT if (NULL == _allocator) { static bx::CrtAllocator allocator; m_allocator = &allocator; } #endif // BX_CONFIG_ALLOCATOR_CRT DebugVertex::init(); DebugShapeVertex::init(); bgfx::RendererType::Enum type = bgfx::getRendererType(); m_program[Program::Lines] = bgfx::createProgram(createEmbeddedShader(type, 0) , createEmbeddedShader(type, 1) , true ); m_program[Program::LinesStipple] = bgfx::createProgram(createEmbeddedShader(type, 2) , createEmbeddedShader(type, 3) , true ); m_program[Program::Fill] = bgfx::createProgram(createEmbeddedShader(type, 4) , createEmbeddedShader(type, 5) , true ); m_program[Program::FillLit] = bgfx::createProgram(createEmbeddedShader(type, 6) , createEmbeddedShader(type, 7) , true ); u_params = bgfx::createUniform("u_params", bgfx::UniformType::Vec4, 4); void* vertices[Mesh::Count] = {}; uint16_t* indices[Mesh::Count] = {}; uint16_t stride = DebugShapeVertex::ms_decl.getStride(); uint32_t startVertex = 0; uint32_t startIndex = 0; for (uint32_t mesh = 0; mesh < 4; ++mesh) { Mesh::Enum id = Mesh::Enum(Mesh::Sphere0+mesh); const uint8_t tess = uint8_t(3-mesh); const uint32_t numVertices = genSphere(tess); const uint32_t numIndices = numVertices; vertices[id] = BX_ALLOC(m_allocator, numVertices*stride); memset(vertices[id], 0, numVertices*stride); genSphere(tess, vertices[id], stride); uint16_t* trilist = (uint16_t*)BX_ALLOC(m_allocator, numIndices*sizeof(uint16_t) ); for (uint32_t ii = 0; ii < numIndices; ++ii) { trilist[ii] = uint16_t(ii); } uint32_t numLineListIndices = bgfx::topologyConvert(bgfx::TopologyConvert::TriListToLineList , NULL , 0 , trilist , numIndices , false ); indices[id] = (uint16_t*)BX_ALLOC(m_allocator, (numIndices + numLineListIndices)*sizeof(uint16_t) ); uint16_t* indicesOut = indices[id]; memcpy(indicesOut, trilist, numIndices*sizeof(uint16_t) ); bgfx::topologyConvert(bgfx::TopologyConvert::TriListToLineList , &indicesOut[numIndices] , numLineListIndices*sizeof(uint16_t) , trilist , numIndices , false ); m_mesh[id].m_startVertex = startVertex; m_mesh[id].m_numVertices = numVertices; m_mesh[id].m_startIndex[0] = startIndex; m_mesh[id].m_numIndices[0] = numIndices; m_mesh[id].m_startIndex[1] = startIndex+numIndices; m_mesh[id].m_numIndices[1] = numLineListIndices; startVertex += numVertices; startIndex += numIndices + numLineListIndices; BX_FREE(m_allocator, trilist); } for (uint32_t mesh = 0; mesh < 4; ++mesh) { Mesh::Enum id = Mesh::Enum(Mesh::Cone0+mesh); const uint32_t num = getCircleLod(uint8_t(mesh) ); const float step = bx::pi * 2.0f / num; const uint32_t numVertices = num+1; const uint32_t numIndices = num*6; const uint32_t numLineListIndices = num*4; vertices[id] = BX_ALLOC(m_allocator, numVertices*stride); indices[id] = (uint16_t*)BX_ALLOC(m_allocator, (numIndices + numLineListIndices)*sizeof(uint16_t) ); memset(indices[id], 0, (numIndices + numLineListIndices)*sizeof(uint16_t) ); DebugShapeVertex* vertex = (DebugShapeVertex*)vertices[id]; uint16_t* index = indices[id]; vertex[num].m_x = 0.0f; vertex[num].m_y = 0.0f; vertex[num].m_z = 0.0f; vertex[num].m_indices[0] = 1; for (uint32_t ii = 0; ii < num; ++ii) { const float angle = step * ii; float xy[2]; circle(xy, angle); vertex[ii].m_x = xy[1]; vertex[ii].m_y = 0.0f; vertex[ii].m_z = xy[0]; vertex[ii].m_indices[0] = 0; index[ii*3+0] = uint16_t(num); index[ii*3+1] = uint16_t( (ii+1)%num); index[ii*3+2] = uint16_t(ii); index[num*3+ii*3+0] = 0; index[num*3+ii*3+1] = uint16_t(ii); index[num*3+ii*3+2] = uint16_t( (ii+1)%num); index[numIndices+ii*2+0] = uint16_t(ii); index[numIndices+ii*2+1] = uint16_t(num); index[numIndices+num*2+ii*2+0] = uint16_t(ii); index[numIndices+num*2+ii*2+1] = uint16_t( (ii+1)%num); } m_mesh[id].m_startVertex = startVertex; m_mesh[id].m_numVertices = numVertices; m_mesh[id].m_startIndex[0] = startIndex; m_mesh[id].m_numIndices[0] = numIndices; m_mesh[id].m_startIndex[1] = startIndex+numIndices; m_mesh[id].m_numIndices[1] = numLineListIndices; startVertex += numVertices; startIndex += numIndices + numLineListIndices; } for (uint32_t mesh = 0; mesh < 4; ++mesh) { Mesh::Enum id = Mesh::Enum(Mesh::Cylinder0+mesh); const uint32_t num = getCircleLod(uint8_t(mesh) ); const float step = bx::pi * 2.0f / num; const uint32_t numVertices = num*2; const uint32_t numIndices = num*12; const uint32_t numLineListIndices = num*6; vertices[id] = BX_ALLOC(m_allocator, numVertices*stride); indices[id] = (uint16_t*)BX_ALLOC(m_allocator, (numIndices + numLineListIndices)*sizeof(uint16_t) ); memset(indices[id], 0, (numIndices + numLineListIndices)*sizeof(uint16_t) ); DebugShapeVertex* vertex = (DebugShapeVertex*)vertices[id]; uint16_t* index = indices[id]; for (uint32_t ii = 0; ii < num; ++ii) { const float angle = step * ii; float xy[2]; circle(xy, angle); vertex[ii].m_x = xy[1]; vertex[ii].m_y = 0.0f; vertex[ii].m_z = xy[0]; vertex[ii].m_indices[0] = 0; vertex[ii+num].m_x = xy[1]; vertex[ii+num].m_y = 0.0f; vertex[ii+num].m_z = xy[0]; vertex[ii+num].m_indices[0] = 1; index[ii*6+0] = uint16_t(ii+num); index[ii*6+1] = uint16_t( (ii+1)%num); index[ii*6+2] = uint16_t(ii); index[ii*6+3] = uint16_t(ii+num); index[ii*6+4] = uint16_t( (ii+1)%num+num); index[ii*6+5] = uint16_t( (ii+1)%num); index[num*6+ii*6+0] = uint16_t(0); index[num*6+ii*6+1] = uint16_t(ii); index[num*6+ii*6+2] = uint16_t( (ii+1)%num); index[num*6+ii*6+3] = uint16_t(num); index[num*6+ii*6+4] = uint16_t( (ii+1)%num+num); index[num*6+ii*6+5] = uint16_t(ii+num); index[numIndices+ii*2+0] = uint16_t(ii); index[numIndices+ii*2+1] = uint16_t(ii+num); index[numIndices+num*2+ii*2+0] = uint16_t(ii); index[numIndices+num*2+ii*2+1] = uint16_t( (ii+1)%num); index[numIndices+num*4+ii*2+0] = uint16_t(num + ii); index[numIndices+num*4+ii*2+1] = uint16_t(num + (ii+1)%num); } m_mesh[id].m_startVertex = startVertex; m_mesh[id].m_numVertices = numVertices; m_mesh[id].m_startIndex[0] = startIndex; m_mesh[id].m_numIndices[0] = numIndices; m_mesh[id].m_startIndex[1] = startIndex+numIndices; m_mesh[id].m_numIndices[1] = numLineListIndices; startVertex += numVertices; startIndex += numIndices + numLineListIndices; } for (uint32_t mesh = 0; mesh < 4; ++mesh) { Mesh::Enum id = Mesh::Enum(Mesh::Capsule0+mesh); const uint32_t num = getCircleLod(uint8_t(mesh) ); const float step = bx::pi * 2.0f / num; const uint32_t numVertices = num*2; const uint32_t numIndices = num*6; const uint32_t numLineListIndices = num*6; vertices[id] = BX_ALLOC(m_allocator, numVertices*stride); indices[id] = (uint16_t*)BX_ALLOC(m_allocator, (numIndices + numLineListIndices)*sizeof(uint16_t) ); memset(indices[id], 0, (numIndices + numLineListIndices)*sizeof(uint16_t) ); DebugShapeVertex* vertex = (DebugShapeVertex*)vertices[id]; uint16_t* index = indices[id]; for (uint32_t ii = 0; ii < num; ++ii) { const float angle = step * ii; float xy[2]; circle(xy, angle); vertex[ii].m_x = xy[1]; vertex[ii].m_y = 0.0f; vertex[ii].m_z = xy[0]; vertex[ii].m_indices[0] = 0; vertex[ii+num].m_x = xy[1]; vertex[ii+num].m_y = 0.0f; vertex[ii+num].m_z = xy[0]; vertex[ii+num].m_indices[0] = 1; index[ii*6+0] = uint16_t(ii+num); index[ii*6+1] = uint16_t( (ii+1)%num); index[ii*6+2] = uint16_t(ii); index[ii*6+3] = uint16_t(ii+num); index[ii*6+4] = uint16_t( (ii+1)%num+num); index[ii*6+5] = uint16_t( (ii+1)%num); // index[num*6+ii*6+0] = uint16_t(0); // index[num*6+ii*6+1] = uint16_t(ii); // index[num*6+ii*6+2] = uint16_t( (ii+1)%num); // index[num*6+ii*6+3] = uint16_t(num); // index[num*6+ii*6+4] = uint16_t( (ii+1)%num+num); // index[num*6+ii*6+5] = uint16_t(ii+num); index[numIndices+ii*2+0] = uint16_t(ii); index[numIndices+ii*2+1] = uint16_t(ii+num); index[numIndices+num*2+ii*2+0] = uint16_t(ii); index[numIndices+num*2+ii*2+1] = uint16_t( (ii+1)%num); index[numIndices+num*4+ii*2+0] = uint16_t(num + ii); index[numIndices+num*4+ii*2+1] = uint16_t(num + (ii+1)%num); } m_mesh[id].m_startVertex = startVertex; m_mesh[id].m_numVertices = numVertices; m_mesh[id].m_startIndex[0] = startIndex; m_mesh[id].m_numIndices[0] = numIndices; m_mesh[id].m_startIndex[1] = startIndex+numIndices; m_mesh[id].m_numIndices[1] = numLineListIndices; startVertex += numVertices; startIndex += numIndices + numLineListIndices; } m_mesh[Mesh::Cube].m_startVertex = startVertex; m_mesh[Mesh::Cube].m_numVertices = BX_COUNTOF(s_cubeVertices); m_mesh[Mesh::Cube].m_startIndex[0] = startIndex; m_mesh[Mesh::Cube].m_numIndices[0] = BX_COUNTOF(s_cubeIndices); m_mesh[Mesh::Cube].m_startIndex[1] = 0; m_mesh[Mesh::Cube].m_numIndices[1] = 0; startVertex += m_mesh[Mesh::Cube].m_numVertices; startIndex += m_mesh[Mesh::Cube].m_numIndices[0]; const bgfx::Memory* vb = bgfx::alloc(startVertex*stride); const bgfx::Memory* ib = bgfx::alloc(startIndex*sizeof(uint16_t) ); for (uint32_t mesh = Mesh::Sphere0; mesh < Mesh::Cube; ++mesh) { Mesh::Enum id = Mesh::Enum(mesh); memcpy(&vb->data[m_mesh[id].m_startVertex * stride] , vertices[id] , m_mesh[id].m_numVertices*stride ); memcpy(&ib->data[m_mesh[id].m_startIndex[0] * sizeof(uint16_t)] , indices[id] , (m_mesh[id].m_numIndices[0]+m_mesh[id].m_numIndices[1])*sizeof(uint16_t) ); BX_FREE(m_allocator, vertices[id]); BX_FREE(m_allocator, indices[id]); } memcpy(&vb->data[m_mesh[Mesh::Cube].m_startVertex * stride] , s_cubeVertices , sizeof(s_cubeVertices) ); memcpy(&ib->data[m_mesh[Mesh::Cube].m_startIndex[0] * sizeof(uint16_t)] , s_cubeIndices , sizeof(s_cubeIndices) ); m_vbh = bgfx::createVertexBuffer(vb, DebugShapeVertex::ms_decl); m_ibh = bgfx::createIndexBuffer(ib); m_mtx = 0; m_viewId = 0; m_pos = 0; m_indexPos = 0; m_vertexPos = 0; } void shutdown() { bgfx::destroyIndexBuffer(m_ibh); bgfx::destroyVertexBuffer(m_vbh); for (uint32_t ii = 0; ii < Program::Count; ++ii) { bgfx::destroyProgram(m_program[ii]); } bgfx::destroyUniform(u_params); } void begin(uint8_t _viewId) { BX_CHECK(State::Count == m_state); m_viewId = _viewId; m_mtx = 0; m_state = State::None; m_stack = 0; Attrib& attrib = m_attrib[0]; attrib.m_state = 0 | BGFX_STATE_RGB_WRITE | (m_depthTestLess ? BGFX_STATE_DEPTH_TEST_LESS : BGFX_STATE_DEPTH_TEST_GREATER) | BGFX_STATE_CULL_CW | BGFX_STATE_DEPTH_WRITE ; attrib.m_scale = 1.0f; attrib.m_offset = 0.0f; attrib.m_abgr = UINT32_MAX; attrib.m_stipple = false; attrib.m_wireframe = false; attrib.m_lod = 0; } void end() { BX_CHECK(0 == m_stack, "Invalid stack %d.", m_stack); flush(); m_state = State::Count; } void push() { BX_CHECK(State::Count != m_state); ++m_stack; m_attrib[m_stack] = m_attrib[m_stack-1]; } void pop() { BX_CHECK(State::Count != m_state); const Attrib& curr = m_attrib[m_stack]; const Attrib& prev = m_attrib[m_stack-1]; if (curr.m_stipple != prev.m_stipple || curr.m_state != prev.m_state) { flush(); } --m_stack; } void setTransform(const void* _mtx) { BX_CHECK(State::Count != m_state); flush(); if (NULL == _mtx) { m_mtx = 0; return; } bgfx::Transform transform; m_mtx = bgfx::allocTransform(&transform, 1); memcpy(transform.data, _mtx, 64); } void setTranslate(float _x, float _y, float _z) { float mtx[16]; bx::mtxTranslate(mtx, _x, _y, _z); setTransform(mtx); } void setTranslate(const float* _pos) { setTranslate(_pos[0], _pos[1], _pos[2]); } void setState(bool _depthTest, bool _depthWrite, bool _clockwise) { const uint64_t depthTest = m_depthTestLess ? BGFX_STATE_DEPTH_TEST_LESS : BGFX_STATE_DEPTH_TEST_GREATER ; m_attrib[m_stack].m_state &= ~(0 | BGFX_STATE_DEPTH_TEST_MASK | BGFX_STATE_DEPTH_WRITE | BGFX_STATE_CULL_CW | BGFX_STATE_CULL_CCW ); m_attrib[m_stack].m_state |= _depthTest ? depthTest : 0 ; m_attrib[m_stack].m_state |= _depthWrite ? BGFX_STATE_DEPTH_WRITE : 0 ; m_attrib[m_stack].m_state |= _clockwise ? BGFX_STATE_CULL_CW : BGFX_STATE_CULL_CCW ; } void setColor(uint32_t _abgr) { BX_CHECK(State::Count != m_state); m_attrib[m_stack].m_abgr = _abgr; } void setLod(uint8_t _lod) { BX_CHECK(State::Count != m_state); m_attrib[m_stack].m_lod = _lod; } void setWireframe(bool _wireframe) { BX_CHECK(State::Count != m_state); m_attrib[m_stack].m_wireframe = _wireframe; } void setStipple(bool _stipple, float _scale = 1.0f, float _offset = 0.0f) { BX_CHECK(State::Count != m_state); Attrib& attrib = m_attrib[m_stack]; if (attrib.m_stipple != _stipple) { flush(); } attrib.m_stipple = _stipple; attrib.m_offset = _offset; attrib.m_scale = _scale; } void moveTo(float _x, float _y, float _z = 0.0f) { BX_CHECK(State::Count != m_state); softFlush(); m_state = State::MoveTo; DebugVertex& vertex = m_cache[m_pos]; vertex.m_x = _x; vertex.m_y = _y; vertex.m_z = _z; Attrib& attrib = m_attrib[m_stack]; vertex.m_abgr = attrib.m_abgr; vertex.m_len = attrib.m_offset; m_vertexPos = m_pos; } void moveTo(const void* _pos) { BX_CHECK(State::Count != m_state); const float* pos = (const float*)_pos; moveTo(pos[0], pos[1], pos[2]); } void moveTo(Axis::Enum _axis, float _x, float _y) { float pos[3]; getPoint(pos, _axis, _x, _y); moveTo(pos); } void lineTo(float _x, float _y, float _z = 0.0f) { BX_CHECK(State::Count != m_state); if (State::None == m_state) { moveTo(_x, _y, _z); return; } if (m_pos+2 > uint16_t(BX_COUNTOF(m_cache) ) ) { uint32_t pos = m_pos; uint32_t vertexPos = m_vertexPos; flush(); memcpy(&m_cache[0], &m_cache[vertexPos], sizeof(DebugVertex) ); if (vertexPos == pos) { m_pos = 1; } else { memcpy(&m_cache[1], &m_cache[pos - 1], sizeof(DebugVertex) ); m_pos = 2; } m_state = State::LineTo; } else if (State::MoveTo == m_state) { ++m_pos; m_state = State::LineTo; } uint16_t prev = m_pos-1; uint16_t curr = m_pos++; DebugVertex& vertex = m_cache[curr]; vertex.m_x = _x; vertex.m_y = _y; vertex.m_z = _z; Attrib& attrib = m_attrib[m_stack]; vertex.m_abgr = attrib.m_abgr; vertex.m_len = attrib.m_offset; float tmp[3]; bx::vec3Sub(tmp, &vertex.m_x, &m_cache[prev].m_x); float len = bx::vec3Length(tmp) * attrib.m_scale; vertex.m_len = m_cache[prev].m_len + len; m_indices[m_indexPos++] = prev; m_indices[m_indexPos++] = curr; } void lineTo(const void* _pos) { BX_CHECK(State::Count != m_state); const float* pos = (const float*)_pos; lineTo(pos[0], pos[1], pos[2]); } void lineTo(Axis::Enum _axis, float _x, float _y) { float pos[3]; getPoint(pos, _axis, _x, _y); lineTo(pos); } void close() { BX_CHECK(State::Count != m_state); DebugVertex& vertex = m_cache[m_vertexPos]; lineTo(vertex.m_x, vertex.m_y, vertex.m_z); m_state = State::None; } void draw(const Aabb& _aabb) { moveTo(_aabb.m_min[0], _aabb.m_min[1], _aabb.m_min[2]); lineTo(_aabb.m_max[0], _aabb.m_min[1], _aabb.m_min[2]); lineTo(_aabb.m_max[0], _aabb.m_max[1], _aabb.m_min[2]); lineTo(_aabb.m_min[0], _aabb.m_max[1], _aabb.m_min[2]); close(); moveTo(_aabb.m_min[0], _aabb.m_min[1], _aabb.m_max[2]); lineTo(_aabb.m_max[0], _aabb.m_min[1], _aabb.m_max[2]); lineTo(_aabb.m_max[0], _aabb.m_max[1], _aabb.m_max[2]); lineTo(_aabb.m_min[0], _aabb.m_max[1], _aabb.m_max[2]); close(); moveTo(_aabb.m_min[0], _aabb.m_min[1], _aabb.m_min[2]); lineTo(_aabb.m_min[0], _aabb.m_min[1], _aabb.m_max[2]); moveTo(_aabb.m_max[0], _aabb.m_min[1], _aabb.m_min[2]); lineTo(_aabb.m_max[0], _aabb.m_min[1], _aabb.m_max[2]); moveTo(_aabb.m_min[0], _aabb.m_max[1], _aabb.m_min[2]); lineTo(_aabb.m_min[0], _aabb.m_max[1], _aabb.m_max[2]); moveTo(_aabb.m_max[0], _aabb.m_max[1], _aabb.m_min[2]); lineTo(_aabb.m_max[0], _aabb.m_max[1], _aabb.m_max[2]); } void draw(const Cylinder& _cylinder, bool _capsule) { drawCylinder(_cylinder.m_pos, _cylinder.m_end, _cylinder.m_radius, _capsule); } void draw(const Disk& _disk) { BX_UNUSED(_disk); } void draw(const Obb& _obb) { const Attrib& attrib = m_attrib[m_stack]; if (attrib.m_wireframe) { setTransform(_obb.m_mtx); moveTo(-1.0f, -1.0f, -1.0f); lineTo( 1.0f, -1.0f, -1.0f); lineTo( 1.0f, 1.0f, -1.0f); lineTo(-1.0f, 1.0f, -1.0f); close(); moveTo(-1.0f, 1.0f, 1.0f); lineTo( 1.0f, 1.0f, 1.0f); lineTo( 1.0f, -1.0f, 1.0f); lineTo(-1.0f, -1.0f, 1.0f); close(); moveTo( 1.0f, -1.0f, -1.0f); lineTo( 1.0f, -1.0f, 1.0f); moveTo( 1.0f, 1.0f, -1.0f); lineTo( 1.0f, 1.0f, 1.0f); moveTo(-1.0f, 1.0f, -1.0f); lineTo(-1.0f, 1.0f, 1.0f); moveTo(-1.0f, -1.0f, -1.0f); lineTo(-1.0f, -1.0f, 1.0f); setTransform(NULL); } else { draw(Mesh::Cube, _obb.m_mtx, 1, false); } } void draw(const Sphere& _sphere) { const Attrib& attrib = m_attrib[m_stack]; float mtx[16]; bx::mtxSRT(mtx , _sphere.m_radius , _sphere.m_radius , _sphere.m_radius , 0.0f , 0.0f , 0.0f , _sphere.m_center[0] , _sphere.m_center[1] , _sphere.m_center[2] ); uint8_t lod = attrib.m_lod > Mesh::SphereMaxLod ? uint8_t(Mesh::SphereMaxLod) : attrib.m_lod ; draw(Mesh::Enum(Mesh::Sphere0 + lod), mtx, 1, attrib.m_wireframe); } void drawFrustum(const float* _viewProj) { Plane planes[6]; buildFrustumPlanes(planes, _viewProj); float points[24]; intersectPlanes(&points[ 0], planes[0], planes[2], planes[4]); intersectPlanes(&points[ 3], planes[0], planes[3], planes[4]); intersectPlanes(&points[ 6], planes[0], planes[3], planes[5]); intersectPlanes(&points[ 9], planes[0], planes[2], planes[5]); intersectPlanes(&points[12], planes[1], planes[2], planes[4]); intersectPlanes(&points[15], planes[1], planes[3], planes[4]); intersectPlanes(&points[18], planes[1], planes[3], planes[5]); intersectPlanes(&points[21], planes[1], planes[2], planes[5]); moveTo(&points[ 0]); lineTo(&points[ 3]); lineTo(&points[ 6]); lineTo(&points[ 9]); close(); moveTo(&points[12]); lineTo(&points[15]); lineTo(&points[18]); lineTo(&points[21]); close(); moveTo(&points[ 0]); lineTo(&points[12]); moveTo(&points[ 3]); lineTo(&points[15]); moveTo(&points[ 6]); lineTo(&points[18]); moveTo(&points[ 9]); lineTo(&points[21]); } void drawFrustum(const void* _viewProj) { drawFrustum( (const float*)_viewProj); } void drawArc(Axis::Enum _axis, float _x, float _y, float _z, float _radius, float _degrees) { const Attrib& attrib = m_attrib[m_stack]; const uint32_t num = getCircleLod(attrib.m_lod); const float step = bx::pi * 2.0f / num; _degrees = bx::fwrap(_degrees, 360.0f); float pos[3]; getPoint(pos, _axis , bx::fsin(step * 0)*_radius , bx::fcos(step * 0)*_radius ); moveTo(pos[0] + _x, pos[1] + _y, pos[2] + _z); uint32_t n = uint32_t(num*_degrees/360.0f); for (uint32_t ii = 1; ii < n+1; ++ii) { getPoint(pos, _axis , bx::fsin(step * ii)*_radius , bx::fcos(step * ii)*_radius ); lineTo(pos[0] + _x, pos[1] + _y, pos[2] + _z); } moveTo(_x, _y, _z); getPoint(pos, _axis , bx::fsin(step * 0)*_radius , bx::fcos(step * 0)*_radius ); lineTo(pos[0] + _x, pos[1] + _y, pos[2] + _z); getPoint(pos, _axis , bx::fsin(step * n)*_radius , bx::fcos(step * n)*_radius ); moveTo(pos[0] + _x, pos[1] + _y, pos[2] + _z); lineTo(_x, _y, _z); } void drawCircle(const float* _normal, const float* _center, float _radius, float _weight) { const Attrib& attrib = m_attrib[m_stack]; const uint32_t num = getCircleLod(attrib.m_lod); const float step = bx::pi * 2.0f / num; _weight = bx::fclamp(_weight, 0.0f, 2.0f); Plane plane = { { _normal[0], _normal[1], _normal[2] }, 0.0f }; float udir[3]; float vdir[3]; calcPlaneUv(plane, udir, vdir); float pos[3]; float tmp0[3]; float tmp1[3]; float xy0[2]; float xy1[2]; circle(xy0, 0.0f); squircle(xy1, 0.0f); bx::vec3Mul(pos, udir, bx::flerp(xy0[0], xy1[0], _weight)*_radius); bx::vec3Mul(tmp0, vdir, bx::flerp(xy0[1], xy1[1], _weight)*_radius); bx::vec3Add(tmp1, pos, tmp0); bx::vec3Add(pos, tmp1, _center); moveTo(pos); for (uint32_t ii = 1; ii < num; ++ii) { float angle = step * ii; circle(xy0, angle); squircle(xy1, angle); bx::vec3Mul(pos, udir, bx::flerp(xy0[0], xy1[0], _weight)*_radius); bx::vec3Mul(tmp0, vdir, bx::flerp(xy0[1], xy1[1], _weight)*_radius); bx::vec3Add(tmp1, pos, tmp0); bx::vec3Add(pos, tmp1, _center); lineTo(pos); } close(); } void drawCircle(const void* _normal, const void* _center, float _radius, float _weight) { drawCircle( (const float*)_normal, (const float*)_center, _radius, _weight); } void drawCircle(Axis::Enum _axis, float _x, float _y, float _z, float _radius, float _weight) { const Attrib& attrib = m_attrib[m_stack]; const uint32_t num = getCircleLod(attrib.m_lod); const float step = bx::pi * 2.0f / num; _weight = bx::fclamp(_weight, 0.0f, 2.0f); float xy0[2]; float xy1[2]; circle(xy0, 0.0f); squircle(xy1, 0.0f); float pos[3]; getPoint(pos, _axis , bx::flerp(xy0[0], xy1[0], _weight)*_radius , bx::flerp(xy0[1], xy1[1], _weight)*_radius ); moveTo(pos[0] + _x, pos[1] + _y, pos[2] + _z); for (uint32_t ii = 1; ii < num; ++ii) { float angle = step * ii; circle(xy0, angle); squircle(xy1, angle); getPoint(pos, _axis , bx::flerp(xy0[0], xy1[0], _weight)*_radius , bx::flerp(xy0[1], xy1[1], _weight)*_radius ); lineTo(pos[0] + _x, pos[1] + _y, pos[2] + _z); } close(); } void drawCone(const float* _from, const float* _to, float _radius) { const Attrib& attrib = m_attrib[m_stack]; float tmp0[3]; bx::vec3Sub(tmp0, _from, _to); float normal[3]; bx::vec3Norm(normal, tmp0); float mtx[2][16]; bx::mtxFromNormal(mtx[0], normal, _radius, _from); memcpy(mtx[1], mtx[0], 64); mtx[1][12] = _to[0]; mtx[1][13] = _to[1]; mtx[1][14] = _to[2]; uint8_t lod = attrib.m_lod > Mesh::ConeMaxLod ? uint8_t(Mesh::ConeMaxLod) : attrib.m_lod ; draw(Mesh::Enum(Mesh::Cone0 + lod), mtx[0], 2, attrib.m_wireframe); } void drawCone(const void* _from, const void* _to, float _radius) { drawCone( (const float*)_from, (const float*)_to, _radius); } void drawCylinder(const float* _from, const float* _to, float _radius, bool _capsule) { const Attrib& attrib = m_attrib[m_stack]; float tmp0[3]; bx::vec3Sub(tmp0, _from, _to); float normal[3]; bx::vec3Norm(normal, tmp0); float mtx[2][16]; bx::mtxFromNormal(mtx[0], normal, _radius, _from); memcpy(mtx[1], mtx[0], 64); mtx[1][12] = _to[0]; mtx[1][13] = _to[1]; mtx[1][14] = _to[2]; if (_capsule) { uint8_t lod = attrib.m_lod > Mesh::CapsuleMaxLod ? uint8_t(Mesh::CapsuleMaxLod) : attrib.m_lod ; draw(Mesh::Enum(Mesh::Capsule0 + lod), mtx[0], 2, attrib.m_wireframe); Sphere sphere; bx::vec3Move(sphere.m_center, _from); sphere.m_radius = _radius; draw(sphere); bx::vec3Move(sphere.m_center, _to); draw(sphere); } else { uint8_t lod = attrib.m_lod > Mesh::CylinderMaxLod ? uint8_t(Mesh::CylinderMaxLod) : attrib.m_lod ; draw(Mesh::Enum(Mesh::Cylinder0 + lod), mtx[0], 2, attrib.m_wireframe); } } void drawCylinder(const void* _from, const void* _to, float _radius, bool _capsule) { drawCylinder( (const float*)_from, (const float*)_to, _radius, _capsule); } void drawAxis(float _x, float _y, float _z, float _len, Axis::Enum _highlight, float _thickness) { push(); if (_thickness > 0.0f) { float from[3] = { _x, _y, _z }; float mid[3]; float to[3]; setColor(Axis::X == _highlight ? 0xff00ffff : 0xff0000ff); mid[0] = _x + _len - _thickness; mid[1] = _y; mid[2] = _z; to[0] = _x + _len; to[1] = _y; to[2] = _z; drawCylinder(from, mid, _thickness, false); drawCone(mid, to, _thickness); setColor(Axis::Y == _highlight ? 0xff00ffff : 0xff00ff00); mid[0] = _x; mid[1] = _y + _len - _thickness; mid[2] = _z; to[0] = _x; to[1] = _y + _len; to[2] = _z; drawCylinder(from, mid, _thickness, false); drawCone(mid, to, _thickness); setColor(Axis::Z == _highlight ? 0xff00ffff : 0xffff0000); mid[0] = _x; mid[1] = _y; mid[2] = _z + _len - _thickness; to[0] = _x; to[1] = _y; to[2] = _z + _len; drawCylinder(from, mid, _thickness, false); drawCone(mid, to, _thickness); } else { setColor(Axis::X == _highlight ? 0xff00ffff : 0xff0000ff); moveTo(_x, _y, _z); lineTo(_x + _len, _y, _z); setColor(Axis::Y == _highlight ? 0xff00ffff : 0xff00ff00); moveTo(_x, _y, _z); lineTo(_x, _y + _len, _z); setColor(Axis::Z == _highlight ? 0xff00ffff : 0xffff0000); moveTo(_x, _y, _z); lineTo(_x, _y, _z + _len); } pop(); } void drawGrid(const float* _normal, const float* _center, uint32_t _size, float _step) { float udir[3]; float vdir[3]; Plane plane = { { _normal[0], _normal[1], _normal[2] }, 0.0f }; calcPlaneUv(plane, udir, vdir); bx::vec3Mul(udir, udir, _step); bx::vec3Mul(vdir, vdir, _step); const uint32_t num = (_size/2)*2+1; const float halfExtent = float(_size/2); float umin[3]; bx::vec3Mul(umin, udir, -halfExtent); float umax[3]; bx::vec3Mul(umax, udir, halfExtent); float vmin[3]; bx::vec3Mul(vmin, vdir, -halfExtent); float vmax[3]; bx::vec3Mul(vmax, vdir, halfExtent); float tmp[3]; float xs[3]; float xe[3]; bx::vec3Add(tmp, umin, vmin); bx::vec3Add(xs, _center, tmp); bx::vec3Add(tmp, umax, vmin); bx::vec3Add(xe, _center, tmp); float ys[3]; float ye[3]; bx::vec3Add(tmp, umin, vmin); bx::vec3Add(ys, _center, tmp); bx::vec3Add(tmp, umin, vmax); bx::vec3Add(ye, _center, tmp); for (uint32_t ii = 0; ii < num; ++ii) { moveTo(xs); lineTo(xe); bx::vec3Add(xs, xs, vdir); bx::vec3Add(xe, xe, vdir); moveTo(ys); lineTo(ye); bx::vec3Add(ys, ys, udir); bx::vec3Add(ye, ye, udir); } } void drawGrid(const void* _normal, const void* _center, uint32_t _size, float _step) { drawGrid( (const float*)_normal, (const float*)_center, _size, _step); } void drawGrid(Axis::Enum _axis, const float* _center, uint32_t _size, float _step) { push(); setTranslate(_center); const uint32_t num = (_size/2)*2-1; const float halfExtent = float(_size/2) * _step; setColor(0xff606060); float yy = -halfExtent + _step; for (uint32_t ii = 0; ii < num; ++ii) { moveTo(_axis, -halfExtent, yy); lineTo(_axis, halfExtent, yy); moveTo(_axis, yy, -halfExtent); lineTo(_axis, yy, halfExtent); yy += _step; } setColor(0xff101010); moveTo(_axis, -halfExtent, -halfExtent); lineTo(_axis, -halfExtent, halfExtent); lineTo(_axis, halfExtent, halfExtent); lineTo(_axis, halfExtent, -halfExtent); close(); moveTo(_axis, -halfExtent, 0.0f); lineTo(_axis, halfExtent, 0.0f); moveTo(_axis, 0.0f, -halfExtent); lineTo(_axis, 0.0f, halfExtent); pop(); } void drawGrid(Axis::Enum _axis, const void* _center, uint32_t _size, float _step) { drawGrid(_axis, (const float*)_center, _size, _step); } void drawOrb(float _x, float _y, float _z, float _radius, Axis::Enum _hightlight) { push(); setColor(Axis::X == _hightlight ? 0xff00ffff : 0xff0000ff); drawCircle(Axis::X, _x, _y, _z, _radius, 0.0f); setColor(Axis::Y == _hightlight ? 0xff00ffff : 0xff00ff00); drawCircle(Axis::Y, _x, _y, _z, _radius, 0.0f); setColor(Axis::Z == _hightlight ? 0xff00ffff : 0xffff0000); drawCircle(Axis::Z, _x, _y, _z, _radius, 0.0f); pop(); } private: struct Mesh { enum Enum { Sphere0, Sphere1, Sphere2, Sphere3, Cone0, Cone1, Cone2, Cone3, Cylinder0, Cylinder1, Cylinder2, Cylinder3, Capsule0, Capsule1, Capsule2, Capsule3, Cube, Count, SphereMaxLod = Sphere3 - Sphere0, ConeMaxLod = Cone3 - Cone0, CylinderMaxLod = Cylinder3 - Cylinder0, CapsuleMaxLod = Capsule3 - Capsule0, }; uint32_t m_startVertex; uint32_t m_numVertices; uint32_t m_startIndex[2]; uint32_t m_numIndices[2]; }; struct Program { enum Enum { Lines, LinesStipple, Fill, FillLit, Count }; }; void draw(Mesh::Enum _mesh, const float* _mtx, uint16_t _num, bool _wireframe) const { const Mesh& mesh = m_mesh[_mesh]; const Attrib& attrib = m_attrib[m_stack]; if (0 != mesh.m_numIndices[_wireframe]) { bgfx::setIndexBuffer(m_ibh , mesh.m_startIndex[_wireframe] , mesh.m_numIndices[_wireframe] ); } const float flip = 0 == (attrib.m_state & BGFX_STATE_CULL_CCW) ? 1.0f : -1.0f; const uint8_t alpha = attrib.m_abgr>>24; float params[4][4] = { { // lightDir 0.0f * flip, -1.0f * flip, 0.0f * flip, 3.0f, // shininess }, { // skyColor 1.0f, 0.9f, 0.8f, 0.0f, // unused }, { // groundColor.xyz0 0.2f, 0.22f, 0.5f, 0.0f, // unused }, { // matColor ( (attrib.m_abgr )&0xff)/255.0f, ( (attrib.m_abgr>> 8)&0xff)/255.0f, ( (attrib.m_abgr>>16)&0xff)/255.0f, ( alpha )/255.0f, }, }; bx::vec3Norm(params[0], params[0]); bgfx::setUniform(u_params, params, 4); bgfx::setTransform(_mtx, _num); bgfx::setVertexBuffer(m_vbh, mesh.m_startVertex, mesh.m_numVertices); bgfx::setState(0 | attrib.m_state | (_wireframe ? BGFX_STATE_PT_LINES|BGFX_STATE_LINEAA|BGFX_STATE_BLEND_ALPHA : (alpha < 0xff) ? BGFX_STATE_BLEND_ALPHA : 0) ); bgfx::submit(m_viewId, m_program[_wireframe ? Program::Fill : Program::FillLit]); } void softFlush() { if (m_pos == uint16_t(BX_COUNTOF(m_cache) ) ) { flush(); } } void flush() { if (0 != m_pos) { if (bgfx::checkAvailTransientBuffers(m_pos, DebugVertex::ms_decl, m_indexPos) ) { bgfx::TransientVertexBuffer tvb; bgfx::allocTransientVertexBuffer(&tvb, m_pos, DebugVertex::ms_decl); memcpy(tvb.data, m_cache, m_pos * DebugVertex::ms_decl.m_stride); bgfx::TransientIndexBuffer tib; bgfx::allocTransientIndexBuffer(&tib, m_indexPos); memcpy(tib.data, m_indices, m_indexPos * sizeof(uint16_t) ); const Attrib& attrib = m_attrib[m_stack]; bgfx::setVertexBuffer(&tvb); bgfx::setIndexBuffer(&tib); bgfx::setState(0 | BGFX_STATE_RGB_WRITE | BGFX_STATE_PT_LINES | attrib.m_state | BGFX_STATE_LINEAA | BGFX_STATE_BLEND_ALPHA ); bgfx::setTransform(m_mtx); bgfx::ProgramHandle program = m_program[attrib.m_stipple ? 1 : 0]; bgfx::submit(m_viewId, program); } m_state = State::None; m_pos = 0; m_indexPos = 0; m_vertexPos = 0; } } struct State { enum Enum { None, MoveTo, LineTo, Count }; }; static const uint32_t cacheSize = 1024; static const uint32_t stackSize = 16; BX_STATIC_ASSERT(cacheSize >= 3, "Cache must be at least 3 elements."); DebugVertex m_cache[cacheSize+1]; uint32_t m_mtx; uint16_t m_indices[cacheSize*2]; uint16_t m_pos; uint16_t m_indexPos; uint16_t m_vertexPos; uint8_t m_viewId; uint8_t m_stack; bool m_depthTestLess; struct Attrib { uint64_t m_state; float m_offset; float m_scale; uint32_t m_abgr; bool m_stipple; bool m_wireframe; uint8_t m_lod; }; Attrib m_attrib[stackSize]; State::Enum m_state; Mesh m_mesh[Mesh::Count]; bgfx::ProgramHandle m_program[Program::Count]; bgfx::UniformHandle u_params; bgfx::VertexBufferHandle m_vbh; bgfx::IndexBufferHandle m_ibh; bx::AllocatorI* m_allocator; }; static DebugDraw s_dd; void ddInit(bool _depthTestLess, bx::AllocatorI* _allocator) { s_dd.init(_depthTestLess, _allocator); } void ddShutdown() { s_dd.shutdown(); } void ddBegin(uint8_t _viewId) { s_dd.begin(_viewId); } void ddEnd() { s_dd.end(); } void ddPush() { s_dd.push(); } void ddPop() { s_dd.pop(); } void ddSetState(bool _depthTest, bool _depthWrite, bool _clockwise) { s_dd.setState(_depthTest, _depthWrite, _clockwise); } void ddSetColor(uint32_t _abgr) { s_dd.setColor(_abgr); } void ddSetLod(uint8_t _lod) { s_dd.setLod(_lod); } void ddSetWireframe(bool _wireframe) { s_dd.setWireframe(_wireframe); } void ddSetStipple(bool _stipple, float _scale, float _offset) { s_dd.setStipple(_stipple, _scale, _offset); } void ddSetTransform(const void* _mtx) { s_dd.setTransform(_mtx); } void ddSetTranslate(float _x, float _y, float _z) { s_dd.setTranslate(_x, _y, _z); } void ddMoveTo(float _x, float _y, float _z) { s_dd.moveTo(_x, _y, _z); } void ddMoveTo(const void* _pos) { s_dd.moveTo(_pos); } void ddLineTo(float _x, float _y, float _z) { s_dd.lineTo(_x, _y, _z); } void ddLineTo(const void* _pos) { s_dd.lineTo(_pos); } void ddClose() { s_dd.close(); } void ddDraw(const Aabb& _aabb) { s_dd.draw(_aabb); } void ddDraw(const Cylinder& _cylinder, bool _capsule) { s_dd.draw(_cylinder, _capsule); } void ddDraw(const Disk& _disk) { s_dd.draw(_disk); } void ddDraw(const Obb& _obb) { s_dd.draw(_obb); } void ddDraw(const Sphere& _sphere) { s_dd.draw(_sphere); } void ddDrawFrustum(const void* _viewProj) { s_dd.drawFrustum(_viewProj); } void ddDrawArc(Axis::Enum _axis, float _x, float _y, float _z, float _radius, float _degrees) { s_dd.drawArc(_axis, _x, _y, _z, _radius, _degrees); } void ddDrawCircle(const void* _normal, const void* _center, float _radius, float _weight) { s_dd.drawCircle(_normal, _center, _radius, _weight); } void ddDrawCircle(Axis::Enum _axis, float _x, float _y, float _z, float _radius, float _weight) { s_dd.drawCircle(_axis, _x, _y, _z, _radius, _weight); } void ddDrawCone(const void* _from, const void* _to, float _radius) { s_dd.drawCone(_from, _to, _radius); } void ddDrawCylinder(const void* _from, const void* _to, float _radius, bool _capsule) { if (_capsule) { s_dd.push(); s_dd.setLod(0); s_dd.drawCylinder(_from, _to, _radius, true); s_dd.pop(); } else { s_dd.drawCylinder(_from, _to, _radius, false); } } void ddDrawCapsule(const void* _from, const void* _to, float _radius) { s_dd.drawCylinder(_from, _to, _radius, true); } void ddDrawAxis(float _x, float _y, float _z, float _len, Axis::Enum _hightlight, float _thickness) { s_dd.drawAxis(_x, _y, _z, _len, _hightlight, _thickness); } void ddDrawGrid(const void* _normal, const void* _center, uint32_t _size, float _step) { s_dd.drawGrid(_normal, _center, _size, _step); } void ddDrawGrid(Axis::Enum _axis, const void* _center, uint32_t _size, float _step) { s_dd.drawGrid(_axis, _center, _size, _step); } void ddDrawOrb(float _x, float _y, float _z, float _radius, Axis::Enum _hightlight) { s_dd.drawOrb(_x, _y, _z, _radius, _hightlight); }