Implemented Cascaded Shadow Maps

simple_math_single_header
Martin Felis 2018-07-07 23:09:34 +02:00
parent e76f5f1976
commit e9ba7f77cc
4 changed files with 142 additions and 115 deletions

View File

@ -1,30 +1,38 @@
#version 150 core
uniform sampler2D uColor;
uniform sampler2D uNormal;
uniform sampler2D uPosition;
uniform sampler2D uDepth;
uniform sampler2D uNormal;
uniform sampler2D uColor;
uniform sampler2D uAmbientOcclusion;
const int NUM_SPLITS = 3;
#define USE_SAMPLER2D_SHADOW 1
#ifdef USE_SAMPLER2D_SHADOW
uniform sampler2DShadow uShadowMap;
uniform sampler2DShadow uShadowMap[NUM_SPLITS];
#else
uniform sampler2D uShadowMap;
uniform sampler2D uShadowMaps[NUM_SPLITS];
#endif
uniform sampler2D uPosition;
uniform mat4 uViewToLightMatrix[NUM_SPLITS];
uniform float uNear;
uniform float uFar;
uniform vec4 uShadowSplits;
uniform vec3 uLightDirection;
uniform mat4 uLightSpaceMatrix;
uniform mat4 uViewToLightSpaceMatrix;
uniform float uShadowBias;
in vec2 ioFragTexCoords;
out vec3 outColor;
float ShadowCalculationPCF(vec4 frag_pos_light_space, vec3 frag_normal_light_space) {
#ifdef USE_SAMPLER2D_SHADOW
float ShadowCalculationPCF(sampler2DShadow shadow_map, vec4 frag_pos_light_space, vec3 frag_normal_light_space) {
#else
float ShadowCalculationPCF(sampler2D shadow_map, vec4 frag_pos_light_space, vec3 frag_normal_light_space) {
#endif
vec3 projected_coordinates = frag_pos_light_space.xyz / frag_pos_light_space.w;
projected_coordinates = projected_coordinates * 0.5 + 0.5;
@ -38,14 +46,14 @@ float ShadowCalculationPCF(vec4 frag_pos_light_space, vec3 frag_normal_light_spa
bias = max(0.001 * (1.0 - dot(frag_normal_light_space, uLightDirection)), uShadowBias);
float shadow = 0.0;
vec2 texel_size = 1.0 / textureSize(uShadowMap, 0);
vec2 texel_size = 1.0 / textureSize(shadow_map, 0);
for (int x = -1; x <= 1; ++x) {
for (int y = -1; y <= 1; ++y) {
#ifdef USE_SAMPLER2D_SHADOW
vec2 coordinate = projected_coordinates.xy + vec2(x, y) * texel_size;
float pcf_depth = texture(uShadowMap, vec3(coordinate, current_depth - bias));
float pcf_depth = texture(shadow_map, vec3(coordinate, current_depth - bias));
#else
float pcf_depth = texture(uShadowMap, projected_coordinates.xy).r;
float pcf_depth = texture(shadow_map, projected_coordinates.xy).r;
#endif
shadow += current_depth - bias > pcf_depth ? 1.0 : 0.0;
}
@ -56,28 +64,10 @@ float ShadowCalculationPCF(vec4 frag_pos_light_space, vec3 frag_normal_light_spa
return shadow;
}
float ShadowCalculation(vec4 frag_pos_light_space, vec3 frag_normal_light_space) {
vec3 projected_coordinates = frag_pos_light_space.xyz / frag_pos_light_space.w;
projected_coordinates = projected_coordinates * 0.5 + 0.5;
float current_depth = projected_coordinates.z;
float bias = 0.01;
#ifdef USE_SAMPLER2D_SHADOW
float closest_depth = texture(uShadowMap, vec3(projected_coordinates.xy, current_depth - bias));
#else
float closest_depth = texture(uShadowMap, projected_coordinates.xy).r;
bias = max(0.005 * (1.0 - dot(frag_normal_light_space, uLightDirection)), 0.003);
#endif
return current_depth - bias > closest_depth ? 1.0 : 0.0;
}
vec3 get_cascade_color (float depth) {
if (depth < 0.97) {
if (depth < uShadowSplits[1]) {
return vec3 (1.0, 0.0, 0.0);
} else if (depth < 0.99) {
} else if (depth < uShadowSplits[2]) {
return vec3 (0.0, 1.0, 0.0);
}
@ -108,13 +98,27 @@ void main() {
float spec = pow(max(dot(normal, halfway_dir), 0.0), 32);
vec3 specular = spec * vec3(0.5);
// shadow (need to transform position and normal to light space)
vec4 position_light_space = uViewToLightSpaceMatrix * vec4(position, 1.0);
vec3 normal_light_space = (transpose(inverse(uViewToLightSpaceMatrix)) * vec4(normal, 1.0)).xyz;
float shadow = ShadowCalculationPCF(position_light_space, normal);
// vec3 cascade = get_cascade_color(depth);
float shadow = 0;
float normalized_depth = (depth - uNear) / (uFar - uNear);
if (-position.z < uShadowSplits[1]) {
// shadow (need to transform position and normal to light space)
vec4 position_light_space = uViewToLightMatrix[0] * vec4(position, 1.0);
vec3 normal_light_space = (transpose(inverse(uViewToLightMatrix[0])) * vec4(normal, 1.0)).xyz;
shadow = ShadowCalculationPCF(uShadowMap[0], position_light_space, normal);
} else if (-position.z< uShadowSplits[2]) {
vec4 position_light_space = uViewToLightMatrix[1] * vec4(position, 1.0);
vec3 normal_light_space = (transpose(inverse(uViewToLightMatrix[1])) * vec4(normal, 1.0)).xyz;
shadow = ShadowCalculationPCF(uShadowMap[1], position_light_space, normal);
} else {
vec4 position_light_space = uViewToLightMatrix[2] * vec4(position, 1.0);
vec3 normal_light_space = (transpose(inverse(uViewToLightMatrix[2])) * vec4(normal, 1.0)).xyz;
shadow = ShadowCalculationPCF(uShadowMap[2], position_light_space, normal);
}
// vec3 cascade = get_cascade_color(-position.z);
// ambient = cascade;
outColor = (ambient + (1.0 - shadow) * (diffuse + specular)) * ambient_occlusion;
// outColor = diffuse;
// outColor = (ambient + (diffuse + specular)) * ambient_occlusion;
}

View File

@ -210,12 +210,12 @@ void Light::Initialize() {
| RenderTarget::EnableLinearizedDepthTexture);
for (int i = 0; i < cNumSplits; ++i) {
mSplits[i].mShadowMapTarget.Initialize(mShadowMapSize, mShadowMapSize,
mSplitTarget[i].Initialize(mShadowMapSize, mShadowMapSize,
RenderTarget::EnableColor
| RenderTarget::EnableDepthTexture
| RenderTarget::EnableLinearizedDepthTexture);
mSplits[i].mShadowMapTarget.mVertexArray = &gVertexArray;
mSplits[i].mShadowMapTarget.mQuadMesh = &gScreenQuad;
mSplitTarget[i].mVertexArray = &gVertexArray;
mSplitTarget[i].mQuadMesh = &gScreenQuad;
}
}
@ -257,7 +257,7 @@ void Light::DrawGui() {
if (sRendererSettings.ActiveShadowMapSplit == 3) {
shadow_split_target = &mShadowMapTarget;
} else {
shadow_split_target = &mSplits[sRendererSettings.ActiveShadowMapSplit].mShadowMapTarget;
shadow_split_target = &mSplitTarget[sRendererSettings.ActiveShadowMapSplit];
}
void* texture;
@ -295,14 +295,16 @@ void Light::UpdateSplits(const Camera& camera) {
Matrix44f light_matrix = LookAt (mPosition, mPosition + mDirection, Vector3f (0.f, 1.0f, 0.0f));
Matrix44f light_matrix_inv = light_matrix.inverse();
mShadowSplits[0] = near;
mShadowSplits[1] = near + length * 0.02;
mShadowSplits[2] = near + length * 0.2;
mShadowSplits[3] = far;
for (int i = 0; i < cNumSplits; ++i) {
ShadowSplitInfo &split = mSplits[i];
split_near = mShadowSplits[i];
float split_far = mShadowSplits[i + 1];
split_near = near + mShadowSplits[i] * length;
float split_far = near + mShadowSplits[i + 1] * length;
split.mViewFrustum =
look_at * Perspective (camera.mFov, aspect, split_near, split_far);
mSplitViewFrustum[i] = look_at * Perspective (camera.mFov, aspect, split_near, split_far);
float xn = split_near * tan_half_vfov;
float xf = split_far * tan_half_vfov;
@ -338,8 +340,8 @@ void Light::UpdateSplits(const Camera& camera) {
bbox_light.Update(v_light.block<3,1>(0,0));
}
split.mBoundsWorld = bbox_world;
split.mBoundsLight = bbox_light;
mSplitBoundsWorldSpace[i] = bbox_world;
mSplitBoundsLightSpace[i] = bbox_light;
// gLog ("min/max %.3f,%.3f, %.3f,%.3f, %.3f,%.3f",
// min_x, max_x,
@ -352,11 +354,11 @@ void Light::UpdateSplits(const Camera& camera) {
Vector3f dimensions = (bbox_light.mMax - bbox_light.mMin) * 0.5f;
Vector3f center = bbox_light.mMin + dimensions;
split.mCamera.mIsOrthographic = true;
split.mCamera.mViewMatrix = light_matrix;
mSplitCamera[i].mIsOrthographic = true;
mSplitCamera[i].mViewMatrix = light_matrix;
// TODO: values for near and far planes are off
split.mCamera.mProjectionMatrix = Ortho (
mSplitCamera[i].mProjectionMatrix = Ortho (
bbox_light.mMin[0], bbox_light.mMax[0],
bbox_light.mMin[1], bbox_light.mMax[1],
// mLight.mNear, bbox_light.mMax[2]
@ -365,9 +367,8 @@ void Light::UpdateSplits(const Camera& camera) {
// bbox_light.mMin[2], bbox_light.mMax[2]
);
split.mFrustum =
split.mCamera.mViewMatrix
* split.mCamera.mProjectionMatrix;
mSplitLightFrustum[i] = mSplitCamera[i].mViewMatrix
* mSplitCamera[i].mProjectionMatrix;
}
}
}
@ -643,8 +644,8 @@ void Renderer::Initialize(int width, int height) {
mLight.mShadowMapTarget.mLinearizeDepthProgram.RegisterFileModification();
for (int i = 0; i < cNumSplits; ++i) {
mLight.mSplits[i].mShadowMapTarget.mLinearizeDepthProgram = mRenderQuadProgramDepth;
mLight.mSplits[i].mShadowMapTarget.mLinearizeDepthProgram.RegisterFileModification();
mLight.mSplitTarget[i].mLinearizeDepthProgram = mRenderQuadProgramDepth;
mLight.mSplitTarget[i].mLinearizeDepthProgram.RegisterFileModification();
}
// Model
@ -726,24 +727,24 @@ void Renderer::RenderGl() {
mCamera.UpdateMatrices();
mLight.UpdateMatrices();
mLight.UpdateSplits(mDebugCamera);
mLight.UpdateSplits(mCamera);
// Cascaded Shadow Maps
for (int i = 0; i < cNumSplits; i++) {
ShadowSplitInfo &split = mLight.mSplits[i];
split.mShadowMapTarget.Bind();
mLight.mSplitTarget[i].Bind();
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
glEnable(GL_DEPTH_TEST);
glUseProgram(mLight.mShadowMapProgram.mProgramId);
glViewport(0, 0, mLight.mShadowMapSize, mLight.mShadowMapSize);
if (mLight.mShadowMapProgram.SetMat44("uViewProjectionMatrix", split.mFrustum) == -1) {
if (mLight.mShadowMapProgram.SetMat44("uViewProjectionMatrix", mLight.mSplitLightFrustum[i]) == -1) {
gLog ("Warning: Uniform %s not found!", "uViewProjectionMatrix");
}
RenderScene(mLight.mShadowMapProgram, split.mCamera);
split.mShadowMapTarget.RenderToLinearizedDepth(mLight.mCamera.mNear, mLight.mCamera.mFar, true);
RenderScene(mLight.mShadowMapProgram, mLight.mSplitCamera[i]);
mLight.mSplitTarget[i].RenderToLinearizedDepth(mLight.mCamera.mNear, mLight.mCamera.mFar, true);
// glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
@ -766,8 +767,6 @@ void Renderer::RenderGl() {
glViewport(0, 0, mCamera.mWidth, mCamera.mHeight);
// glBindFramebuffer(GL_FRAMEBUFFER, 0);
Matrix44f model_matrix = TranslateMat44(0.0f, 0.0f, 0.0f);
Matrix44f model_view_projection =
model_matrix
@ -901,34 +900,54 @@ void Renderer::RenderGl() {
glClear(GL_COLOR_BUFFER_BIT);
glUseProgram(mDeferredLighting.mProgramId);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, mRenderTarget.mColorTexture);
mDeferredLighting.SetInt("uColorTexture", 0);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, mRenderTarget.mNormalTexture);
mDeferredLighting.SetInt("uNormal", 1);
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, mRenderTarget.mDepthTexture);
mDeferredLighting.SetInt("uDepth", 2);
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, mLight.mShadowMapTarget.mDepthTexture);
mDeferredLighting.SetInt("uShadowMap", 3);
mDeferredLighting.SetMat44("uLightSpaceMatrix", mLight.mLightSpaceMatrix);
Matrix44f view_to_light_matrix = mCamera.mViewMatrix.inverse() * mLight.mLightSpaceMatrix;
mDeferredLighting.SetMat44("uViewToLightSpaceMatrix", view_to_light_matrix);
// TODO: remove and reconstruct position from depth
glActiveTexture(GL_TEXTURE4);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, mRenderTarget.mPositionTexture);
mDeferredLighting.SetInt("uPosition", 4);
mDeferredLighting.SetInt("uPosition", 0);
glActiveTexture(GL_TEXTURE5);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, mRenderTarget.mDepthTexture);
mDeferredLighting.SetInt("uDepth", 1);
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, mRenderTarget.mNormalTexture);
mDeferredLighting.SetInt("uNormal", 2);
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, mRenderTarget.mColorTexture);
mDeferredLighting.SetInt("uColor", 3);
glActiveTexture(GL_TEXTURE4);
glBindTexture(GL_TEXTURE_2D, mSSAOBlurTarget.mColorTexture);
mDeferredLighting.SetInt("uAmbientOcclusion", 5);
mDeferredLighting.SetInt("uAmbientOcclusion", 4);
// Shadow Map Cascades
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, mLight.mSplitTarget[0].mDepthTexture);
glActiveTexture(GL_TEXTURE6);
glBindTexture(GL_TEXTURE_2D, mLight.mSplitTarget[1].mDepthTexture);
glActiveTexture(GL_TEXTURE7);
glBindTexture(GL_TEXTURE_2D, mLight.mSplitTarget[2].mDepthTexture);
GLint shadow_maps[3];
shadow_maps[0] = 5;
shadow_maps[1] = 6;
shadow_maps[2] = 7;
mDeferredLighting.SetIntArray("uShadowMap", 3, shadow_maps);
Matrix44f light_matrices[3];
for (int i = 0; i < cNumSplits; ++i) {
light_matrices[i] = mCamera.mViewMatrix.inverse()
* mLight.mSplitLightFrustum[i];
}
mDeferredLighting.SetMat44Array("uViewToLightMatrix", 3, light_matrices);
mDeferredLighting.SetFloat("uNear", mCamera.mNear);
mDeferredLighting.SetFloat("uFar", mCamera.mFar);
mDeferredLighting.SetVec4("uShadowSplits", mLight.mShadowSplits);
mDeferredLighting.SetMat44("uViewMatrix", mCamera.mViewMatrix);
Matrix33f view_mat_rot = mCamera.mViewMatrix.block<3,3>(0,0);
@ -963,14 +982,13 @@ void Renderer::DebugDrawShadowCascades() {
glUseProgram(mSimpleProgram.mProgramId);
for (int i = 0; i < cNumSplits; ++i) {
const ShadowSplitInfo& split = mLight.mSplits[i];
const BBox& bbox_light = split.mBoundsLight;
const BBox& bbox_world = split.mBoundsWorld;
const BBox& bbox_light = mLight.mSplitBoundsLightSpace[i];
const BBox& bbox_world = mLight.mSplitBoundsWorldSpace[i];
// Draw view split frustum
if (mLight.mDebugDrawSplitViewBounds) {
Matrix44f model_view_projection =
split.mViewFrustum.inverse()
Matrix44f model_view_projection =
mLight.mSplitViewFrustum[i].inverse()
* mCamera.mViewMatrix
* mCamera.mProjectionMatrix;
@ -999,7 +1017,7 @@ void Renderer::DebugDrawShadowCascades() {
// Draw bounding boxes in light space
if (mLight.mDebugDrawSplitLightBounds) {
Matrix44f model_view_projection =
mLight.mSplits[i].mFrustum.inverse()
mLight.mSplitLightFrustum[i].inverse()
* mCamera.mViewMatrix
* mCamera.mProjectionMatrix;
@ -1007,19 +1025,18 @@ void Renderer::DebugDrawShadowCascades() {
mSimpleProgram.SetVec4("uColor", Vector4f (0.0f, 0.0f, 1.0f, 1.0f));
gUnitCubeLines.Draw(GL_LINES);
}
}
// // Draw bounding box in light space
// if (mLight.mDebugDrawSplitLightBounds) {
Matrix44f model_view_projection =
mLight.mLightSpaceMatrix.inverse()
* mCamera.mViewMatrix
* mCamera.mProjectionMatrix;
mSimpleProgram.SetMat44("uModelViewProj", model_view_projection);
mSimpleProgram.SetVec4("uColor", Vector4f (0.0f, 1.0f, 1.0f, 1.0f));
gUnitCubeLines.Draw(GL_LINES);
// Matrix44f model_view_projection =
// mLight.mLightSpaceMatrix.inverse()
// * mCamera.mViewMatrix
// * mCamera.mProjectionMatrix;
//
// mSimpleProgram.SetMat44("uModelViewProj", model_view_projection);
// mSimpleProgram.SetVec4("uColor", Vector4f (0.0f, 1.0f, 1.0f, 1.0f));
// gUnitCubeLines.Draw(GL_LINES);
// }
// Disable wireframe
@ -1043,7 +1060,6 @@ void Renderer::RenderScene(RenderProgram &program, const Camera& camera) {
program.SetMat33("uNormalMatrix", normal_matrix);
program.SetVec4("uColor", Vector4f (1.0f, 1.0f, 1.0f, 1.0f));
// program.SetVec3("uLightDirection", light_dir.normalize());
program.SetVec3("uLightDirection", mLight.mDirection);
program.SetVec3("uViewPosition", camera.mEye);

View File

@ -14,15 +14,6 @@
#include "Globals.h"
#include "RenderUtils.h"
struct ShadowSplitInfo {
BBox mBoundsLight;
BBox mBoundsWorld;
Matrix44f mViewFrustum;
Matrix44f mFrustum;
RenderTarget mShadowMapTarget;
Camera mCamera;
};
struct Light {
Vector3f mPosition;
Vector3f mDirection;
@ -47,7 +38,13 @@ struct Light {
Matrix44f mLightSpaceMatrix;
Vector4f mShadowSplits = Vector4f (0.0, 0.1, 0.4, 1.0);
ShadowSplitInfo mSplits[4];
Matrix44f mSplitViewFrustum[3];
Matrix44f mSplitLightFrustum[3];
RenderTarget mSplitTarget[3];
BBox mSplitBoundsLightSpace[3];
BBox mSplitBoundsWorldSpace[3];
Camera mSplitCamera[3];
Light() :
mPosition (Vector3f(0.f, 3, 0.0f)),

View File

@ -232,6 +232,11 @@ struct RenderProgram : AFileModificationListener {
glUniform1i(location, val);
return location;
}
GLint SetIntArray(const char* name, const int count, const int* array) {
GLint location = glGetUniformLocation(mProgramId, name);
glUniform1iv(location, count, array);
return location;
}
GLint SetFloat(const char* name, const float& val) {
GLint location = glGetUniformLocation(mProgramId, name);
glUniform1f(location, val);
@ -242,7 +247,7 @@ struct RenderProgram : AFileModificationListener {
glUniform3fv(location, 1, vec.data());
return location;
}
GLint SetVec3Array(const char* name, int count, const float* array) {
GLint SetVec3Array(const char* name, const int count, const float* array) {
GLint location = glGetUniformLocation(mProgramId, name);
glUniform3fv(location, count, array);
return location;
@ -262,6 +267,11 @@ struct RenderProgram : AFileModificationListener {
glUniformMatrix4fv(location, 1, GL_FALSE, mat.data());
return location;
}
GLint SetMat44Array (const char* name, int count, const Matrix44f* mat_array) {
GLint location = glGetUniformLocation(mProgramId, name);
glUniformMatrix4fv(location, count, GL_FALSE, mat_array[0].data());
return location;
}
GLint SetMat33 (const char* name, const Matrix33f& mat) {
GLint location = glGetUniformLocation(mProgramId, name);
glUniformMatrix3fv(location, 1, GL_FALSE, mat.data());