protot/3rdparty/bgfx/examples/common/nanovg/nanovg.cpp

2891 lines
74 KiB
C++
Raw Normal View History

2016-08-29 22:31:11 +02:00
//
// Copyright (c) 2013 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <stdio.h>
#include <math.h>
#include "nanovg.h"
#include <bx/macros.h>
BX_PRAGMA_DIAGNOSTIC_IGNORED_MSVC(4701) // error C4701: potentially uninitialized local variable 'cint' used
// -Wunused-function and 4505 must be file scope, can't be disabled between push/pop.
BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wunused-function");
BX_PRAGMA_DIAGNOSTIC_IGNORED_MSVC(4505) // error C4505: '' : unreferenced local function has been removed
BX_PRAGMA_DIAGNOSTIC_PUSH();
BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wunused-parameter");
BX_PRAGMA_DIAGNOSTIC_IGNORED_GCC("-Wunused-result");
#define FONTSTASH_IMPLEMENTATION
#include "fontstash.h"
BX_PRAGMA_DIAGNOSTIC_POP();
BX_PRAGMA_DIAGNOSTIC_PUSH();
BX_PRAGMA_DIAGNOSTIC_IGNORED_MSVC(4127) // warning C4127: conditional expression is constant
#define LODEPNG_NO_COMPILE_ENCODER
#define LODEPNG_NO_COMPILE_DISK
#define LODEPNG_NO_COMPILE_ANCILLARY_CHUNKS
#define LODEPNG_NO_COMPILE_ERROR_TEXT
#define LODEPNG_NO_COMPILE_ALLOCATORS
#define LODEPNG_NO_COMPILE_CPP
#include <lodepng/lodepng.cpp>
BX_PRAGMA_DIAGNOSTIC_POP();
void* lodepng_malloc(size_t _size)
{
return ::malloc(_size);
}
void* lodepng_realloc(void* _ptr, size_t _size)
{
return ::realloc(_ptr, _size);
}
void lodepng_free(void* _ptr)
{
::free(_ptr);
}
BX_PRAGMA_DIAGNOSTIC_PUSH();
BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wmissing-field-initializers");
BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wshadow");
BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wint-to-pointer-cast")
#define STBI_MALLOC(_size) lodepng_malloc(_size)
#define STBI_REALLOC(_ptr, _size) lodepng_realloc(_ptr, _size)
#define STBI_FREE(_ptr) lodepng_free(_ptr)
#define STB_IMAGE_IMPLEMENTATION
#include <stb/stb_image.c>
BX_PRAGMA_DIAGNOSTIC_POP();
#ifdef _MSC_VER
#pragma warning(disable: 4100) // unreferenced formal parameter
#pragma warning(disable: 4127) // conditional expression is constant
#pragma warning(disable: 4204) // nonstandard extension used : non-constant aggregate initializer
#pragma warning(disable: 4706) // assignment within conditional expression
#endif
#define NVG_INIT_FONTIMAGE_SIZE 512
#define NVG_MAX_FONTIMAGE_SIZE 2048
#define NVG_MAX_FONTIMAGES 4
#define NVG_INIT_COMMANDS_SIZE 256
#define NVG_INIT_POINTS_SIZE 128
#define NVG_INIT_PATHS_SIZE 16
#define NVG_INIT_VERTS_SIZE 256
#define NVG_MAX_STATES 32
#define NVG_KAPPA90 0.5522847493f // Length proportional to radius of a cubic bezier handle for 90deg arcs.
#define NVG_COUNTOF(arr) (sizeof(arr) / sizeof(0[arr]))
enum NVGcommands {
NVG_MOVETO = 0,
NVG_LINETO = 1,
NVG_BEZIERTO = 2,
NVG_CLOSE = 3,
NVG_WINDING = 4,
};
enum NVGpointFlags
{
NVG_PT_CORNER = 0x01,
NVG_PT_LEFT = 0x02,
NVG_PT_BEVEL = 0x04,
NVG_PR_INNERBEVEL = 0x08,
};
struct NVGstate {
NVGcompositeOperationState compositeOperation;
NVGpaint fill;
NVGpaint stroke;
float strokeWidth;
float miterLimit;
int lineJoin;
int lineCap;
float alpha;
float xform[6];
NVGscissor scissor;
float fontSize;
float letterSpacing;
float lineHeight;
float fontBlur;
int textAlign;
int fontId;
};
typedef struct NVGstate NVGstate;
struct NVGpoint {
float x,y;
float dx, dy;
float len;
float dmx, dmy;
unsigned char flags;
};
typedef struct NVGpoint NVGpoint;
struct NVGpathCache {
NVGpoint* points;
int npoints;
int cpoints;
NVGpath* paths;
int npaths;
int cpaths;
NVGvertex* verts;
int nverts;
int cverts;
float bounds[4];
};
typedef struct NVGpathCache NVGpathCache;
struct NVGcontext {
NVGparams params;
float* commands;
int ccommands;
int ncommands;
float commandx, commandy;
NVGstate states[NVG_MAX_STATES];
int nstates;
NVGpathCache* cache;
float tessTol;
float distTol;
float fringeWidth;
float devicePxRatio;
struct FONScontext* fs;
int fontImages[NVG_MAX_FONTIMAGES];
int fontImageIdx;
int drawCallCount;
int fillTriCount;
int strokeTriCount;
int textTriCount;
};
static float nvg__sqrtf(float a) { return sqrtf(a); }
static float nvg__modf(float a, float b) { return fmodf(a, b); }
static float nvg__sinf(float a) { return sinf(a); }
static float nvg__cosf(float a) { return cosf(a); }
static float nvg__tanf(float a) { return tanf(a); }
static float nvg__atan2f(float a,float b) { return atan2f(a, b); }
static float nvg__acosf(float a) { return acosf(a); }
static int nvg__mini(int a, int b) { return a < b ? a : b; }
static int nvg__maxi(int a, int b) { return a > b ? a : b; }
static int nvg__clampi(int a, int mn, int mx) { return a < mn ? mn : (a > mx ? mx : a); }
static float nvg__minf(float a, float b) { return a < b ? a : b; }
static float nvg__maxf(float a, float b) { return a > b ? a : b; }
static float nvg__absf(float a) { return a >= 0.0f ? a : -a; }
static float nvg__signf(float a) { return a >= 0.0f ? 1.0f : -1.0f; }
static float nvg__clampf(float a, float mn, float mx) { return a < mn ? mn : (a > mx ? mx : a); }
static float nvg__cross(float dx0, float dy0, float dx1, float dy1) { return dx1*dy0 - dx0*dy1; }
static float nvg__normalize(float *x, float* y)
{
float d = nvg__sqrtf((*x)*(*x) + (*y)*(*y));
if (d > 1e-6f) {
float id = 1.0f / d;
*x *= id;
*y *= id;
}
return d;
}
static void nvg__deletePathCache(NVGpathCache* c)
{
if (c == NULL) return;
if (c->points != NULL) free(c->points);
if (c->paths != NULL) free(c->paths);
if (c->verts != NULL) free(c->verts);
free(c);
}
static NVGpathCache* nvg__allocPathCache(void)
{
NVGpathCache* c = (NVGpathCache*)malloc(sizeof(NVGpathCache));
if (c == NULL) goto error;
memset(c, 0, sizeof(NVGpathCache));
c->points = (NVGpoint*)malloc(sizeof(NVGpoint)*NVG_INIT_POINTS_SIZE);
if (!c->points) goto error;
c->npoints = 0;
c->cpoints = NVG_INIT_POINTS_SIZE;
c->paths = (NVGpath*)malloc(sizeof(NVGpath)*NVG_INIT_PATHS_SIZE);
if (!c->paths) goto error;
c->npaths = 0;
c->cpaths = NVG_INIT_PATHS_SIZE;
c->verts = (NVGvertex*)malloc(sizeof(NVGvertex)*NVG_INIT_VERTS_SIZE);
if (!c->verts) goto error;
c->nverts = 0;
c->cverts = NVG_INIT_VERTS_SIZE;
return c;
error:
nvg__deletePathCache(c);
return NULL;
}
static void nvg__setDevicePixelRatio(NVGcontext* ctx, float ratio)
{
ctx->tessTol = 0.25f / ratio;
ctx->distTol = 0.01f / ratio;
ctx->fringeWidth = 1.0f / ratio;
ctx->devicePxRatio = ratio;
}
static NVGcompositeOperationState nvg__compositeOperationState(int op)
{
// NVG_SOURCE_OVER
int sfactor = NVG_ONE;
int dfactor = NVG_ONE_MINUS_SRC_ALPHA;
if (op == NVG_SOURCE_IN)
{
sfactor = NVG_DST_ALPHA;
dfactor = NVG_ZERO;
}
else if (op == NVG_SOURCE_OUT)
{
sfactor = NVG_ONE_MINUS_DST_ALPHA;
dfactor = NVG_ZERO;
}
else if (op == NVG_ATOP)
{
sfactor = NVG_DST_ALPHA;
dfactor = NVG_ONE_MINUS_SRC_ALPHA;
}
else if (op == NVG_DESTINATION_OVER)
{
sfactor = NVG_ONE_MINUS_DST_ALPHA;
dfactor = NVG_ONE;
}
else if (op == NVG_DESTINATION_IN)
{
sfactor = NVG_ZERO;
dfactor = NVG_SRC_ALPHA;
}
else if (op == NVG_DESTINATION_OUT)
{
sfactor = NVG_ZERO;
dfactor = NVG_ONE_MINUS_SRC_ALPHA;
}
else if (op == NVG_DESTINATION_ATOP)
{
sfactor = NVG_ONE_MINUS_DST_ALPHA;
dfactor = NVG_SRC_ALPHA;
}
else if (op == NVG_LIGHTER)
{
sfactor = NVG_ONE;
dfactor = NVG_ONE;
}
else if (op == NVG_COPY)
{
sfactor = NVG_ONE;
dfactor = NVG_ZERO;
}
else if (op == NVG_XOR)
{
sfactor = NVG_ONE_MINUS_DST_ALPHA;
dfactor = NVG_ONE_MINUS_SRC_ALPHA;
}
NVGcompositeOperationState state;
state.srcRGB = sfactor;
state.dstRGB = dfactor;
state.srcAlpha = sfactor;
state.dstAlpha = dfactor;
return state;
}
static NVGstate* nvg__getState(NVGcontext* ctx)
{
return &ctx->states[ctx->nstates-1];
}
NVGcontext* nvgCreateInternal(NVGparams* params)
{
FONSparams fontParams;
NVGcontext* ctx = (NVGcontext*)malloc(sizeof(NVGcontext));
int i;
if (ctx == NULL) goto error;
memset(ctx, 0, sizeof(NVGcontext));
ctx->params = *params;
for (i = 0; i < NVG_MAX_FONTIMAGES; i++)
ctx->fontImages[i] = 0;
ctx->commands = (float*)malloc(sizeof(float)*NVG_INIT_COMMANDS_SIZE);
if (!ctx->commands) goto error;
ctx->ncommands = 0;
ctx->ccommands = NVG_INIT_COMMANDS_SIZE;
ctx->cache = nvg__allocPathCache();
if (ctx->cache == NULL) goto error;
nvgSave(ctx);
nvgReset(ctx);
nvg__setDevicePixelRatio(ctx, 1.0f);
if (ctx->params.renderCreate(ctx->params.userPtr) == 0) goto error;
// Init font rendering
memset(&fontParams, 0, sizeof(fontParams));
fontParams.width = NVG_INIT_FONTIMAGE_SIZE;
fontParams.height = NVG_INIT_FONTIMAGE_SIZE;
fontParams.flags = FONS_ZERO_TOPLEFT;
fontParams.renderCreate = NULL;
fontParams.renderUpdate = NULL;
fontParams.renderDraw = NULL;
fontParams.renderDelete = NULL;
fontParams.userPtr = NULL;
ctx->fs = fonsCreateInternal(&fontParams);
if (ctx->fs == NULL) goto error;
// Create font texture
ctx->fontImages[0] = ctx->params.renderCreateTexture(ctx->params.userPtr, NVG_TEXTURE_ALPHA, fontParams.width, fontParams.height, 0, NULL);
if (ctx->fontImages[0] == 0) goto error;
ctx->fontImageIdx = 0;
return ctx;
error:
nvgDeleteInternal(ctx);
return 0;
}
NVGparams* nvgInternalParams(NVGcontext* ctx)
{
return &ctx->params;
}
void nvgDeleteInternal(NVGcontext* ctx)
{
int i;
if (ctx == NULL) return;
if (ctx->commands != NULL) free(ctx->commands);
if (ctx->cache != NULL) nvg__deletePathCache(ctx->cache);
if (ctx->fs)
fonsDeleteInternal(ctx->fs);
for (i = 0; i < NVG_MAX_FONTIMAGES; i++) {
if (ctx->fontImages[i] != 0) {
nvgDeleteImage(ctx, ctx->fontImages[i]);
ctx->fontImages[i] = 0;
}
}
if (ctx->params.renderDelete != NULL)
ctx->params.renderDelete(ctx->params.userPtr);
free(ctx);
}
void nvgBeginFrame(NVGcontext* ctx, int windowWidth, int windowHeight, float devicePixelRatio)
{
/* printf("Tris: draws:%d fill:%d stroke:%d text:%d TOT:%d\n",
ctx->drawCallCount, ctx->fillTriCount, ctx->strokeTriCount, ctx->textTriCount,
ctx->fillTriCount+ctx->strokeTriCount+ctx->textTriCount);*/
ctx->nstates = 0;
nvgSave(ctx);
nvgReset(ctx);
nvg__setDevicePixelRatio(ctx, devicePixelRatio);
ctx->params.renderViewport(ctx->params.userPtr, windowWidth, windowHeight, devicePixelRatio);
ctx->drawCallCount = 0;
ctx->fillTriCount = 0;
ctx->strokeTriCount = 0;
ctx->textTriCount = 0;
}
void nvgCancelFrame(NVGcontext* ctx)
{
ctx->params.renderCancel(ctx->params.userPtr);
}
void nvgEndFrame(NVGcontext* ctx)
{
NVGstate* state = nvg__getState(ctx);
ctx->params.renderFlush(ctx->params.userPtr, state->compositeOperation);
if (ctx->fontImageIdx != 0) {
int fontImage = ctx->fontImages[ctx->fontImageIdx];
int i, j, iw, ih;
// delete images that smaller than current one
if (fontImage == 0)
return;
nvgImageSize(ctx, fontImage, &iw, &ih);
for (i = j = 0; i < ctx->fontImageIdx; i++) {
if (ctx->fontImages[i] != 0) {
int nw, nh;
nvgImageSize(ctx, ctx->fontImages[i], &nw, &nh);
if (nw < iw || nh < ih)
nvgDeleteImage(ctx, ctx->fontImages[i]);
else
ctx->fontImages[j++] = ctx->fontImages[i];
}
}
// make current font image to first
ctx->fontImages[j++] = ctx->fontImages[0];
ctx->fontImages[0] = fontImage;
ctx->fontImageIdx = 0;
// clear all images after j
for (i = j; i < NVG_MAX_FONTIMAGES; i++)
ctx->fontImages[i] = 0;
}
}
NVGcolor nvgRGB(unsigned char r, unsigned char g, unsigned char b)
{
return nvgRGBA(r,g,b,255);
}
NVGcolor nvgRGBf(float r, float g, float b)
{
return nvgRGBAf(r,g,b,1.0f);
}
NVGcolor nvgRGBA(unsigned char r, unsigned char g, unsigned char b, unsigned char a)
{
NVGcolor color;
// Use longer initialization to suppress warning.
color.r = r / 255.0f;
color.g = g / 255.0f;
color.b = b / 255.0f;
color.a = a / 255.0f;
return color;
}
NVGcolor nvgRGBAf(float r, float g, float b, float a)
{
NVGcolor color;
// Use longer initialization to suppress warning.
color.r = r;
color.g = g;
color.b = b;
color.a = a;
return color;
}
NVGcolor nvgTransRGBA(NVGcolor c, unsigned char a)
{
c.a = a / 255.0f;
return c;
}
NVGcolor nvgTransRGBAf(NVGcolor c, float a)
{
c.a = a;
return c;
}
NVGcolor nvgLerpRGBA(NVGcolor c0, NVGcolor c1, float u)
{
int i;
float oneminu;
NVGcolor cint;
u = nvg__clampf(u, 0.0f, 1.0f);
oneminu = 1.0f - u;
for( i = 0; i <4; i++ )
{
cint.rgba[i] = c0.rgba[i] * oneminu + c1.rgba[i] * u;
}
return cint;
}
NVGcolor nvgHSL(float h, float s, float l)
{
return nvgHSLA(h,s,l,255);
}
static float nvg__hue(float h, float m1, float m2)
{
if (h < 0) h += 1;
if (h > 1) h -= 1;
if (h < 1.0f/6.0f)
return m1 + (m2 - m1) * h * 6.0f;
else if (h < 3.0f/6.0f)
return m2;
else if (h < 4.0f/6.0f)
return m1 + (m2 - m1) * (2.0f/3.0f - h) * 6.0f;
return m1;
}
NVGcolor nvgHSLA(float h, float s, float l, unsigned char a)
{
float m1, m2;
NVGcolor col;
h = nvg__modf(h, 1.0f);
if (h < 0.0f) h += 1.0f;
s = nvg__clampf(s, 0.0f, 1.0f);
l = nvg__clampf(l, 0.0f, 1.0f);
m2 = l <= 0.5f ? (l * (1 + s)) : (l + s - l * s);
m1 = 2 * l - m2;
col.r = nvg__clampf(nvg__hue(h + 1.0f/3.0f, m1, m2), 0.0f, 1.0f);
col.g = nvg__clampf(nvg__hue(h, m1, m2), 0.0f, 1.0f);
col.b = nvg__clampf(nvg__hue(h - 1.0f/3.0f, m1, m2), 0.0f, 1.0f);
col.a = a/255.0f;
return col;
}
void nvgTransformIdentity(float* t)
{
t[0] = 1.0f; t[1] = 0.0f;
t[2] = 0.0f; t[3] = 1.0f;
t[4] = 0.0f; t[5] = 0.0f;
}
void nvgTransformTranslate(float* t, float tx, float ty)
{
t[0] = 1.0f; t[1] = 0.0f;
t[2] = 0.0f; t[3] = 1.0f;
t[4] = tx; t[5] = ty;
}
void nvgTransformScale(float* t, float sx, float sy)
{
t[0] = sx; t[1] = 0.0f;
t[2] = 0.0f; t[3] = sy;
t[4] = 0.0f; t[5] = 0.0f;
}
void nvgTransformRotate(float* t, float a)
{
float cs = nvg__cosf(a), sn = nvg__sinf(a);
t[0] = cs; t[1] = sn;
t[2] = -sn; t[3] = cs;
t[4] = 0.0f; t[5] = 0.0f;
}
void nvgTransformSkewX(float* t, float a)
{
t[0] = 1.0f; t[1] = 0.0f;
t[2] = nvg__tanf(a); t[3] = 1.0f;
t[4] = 0.0f; t[5] = 0.0f;
}
void nvgTransformSkewY(float* t, float a)
{
t[0] = 1.0f; t[1] = nvg__tanf(a);
t[2] = 0.0f; t[3] = 1.0f;
t[4] = 0.0f; t[5] = 0.0f;
}
void nvgTransformMultiply(float* t, const float* s)
{
float t0 = t[0] * s[0] + t[1] * s[2];
float t2 = t[2] * s[0] + t[3] * s[2];
float t4 = t[4] * s[0] + t[5] * s[2] + s[4];
t[1] = t[0] * s[1] + t[1] * s[3];
t[3] = t[2] * s[1] + t[3] * s[3];
t[5] = t[4] * s[1] + t[5] * s[3] + s[5];
t[0] = t0;
t[2] = t2;
t[4] = t4;
}
void nvgTransformPremultiply(float* t, const float* s)
{
float s2[6];
memcpy(s2, s, sizeof(float)*6);
nvgTransformMultiply(s2, t);
memcpy(t, s2, sizeof(float)*6);
}
int nvgTransformInverse(float* inv, const float* t)
{
double invdet, det = (double)t[0] * t[3] - (double)t[2] * t[1];
if (det > -1e-6 && det < 1e-6) {
nvgTransformIdentity(inv);
return 0;
}
invdet = 1.0 / det;
inv[0] = (float)(t[3] * invdet);
inv[2] = (float)(-t[2] * invdet);
inv[4] = (float)(((double)t[2] * t[5] - (double)t[3] * t[4]) * invdet);
inv[1] = (float)(-t[1] * invdet);
inv[3] = (float)(t[0] * invdet);
inv[5] = (float)(((double)t[1] * t[4] - (double)t[0] * t[5]) * invdet);
return 1;
}
void nvgTransformPoint(float* dx, float* dy, const float* t, float sx, float sy)
{
*dx = sx*t[0] + sy*t[2] + t[4];
*dy = sx*t[1] + sy*t[3] + t[5];
}
float nvgDegToRad(float deg)
{
return deg / 180.0f * NVG_PI;
}
float nvgRadToDeg(float rad)
{
return rad / NVG_PI * 180.0f;
}
static void nvg__setPaintColor(NVGpaint* p, NVGcolor color)
{
memset(p, 0, sizeof(*p));
nvgTransformIdentity(p->xform);
p->radius = 0.0f;
p->feather = 1.0f;
p->innerColor = color;
p->outerColor = color;
}
// State handling
void nvgSave(NVGcontext* ctx)
{
if (ctx->nstates >= NVG_MAX_STATES)
return;
if (ctx->nstates > 0)
memcpy(&ctx->states[ctx->nstates], &ctx->states[ctx->nstates-1], sizeof(NVGstate));
ctx->nstates++;
}
void nvgRestore(NVGcontext* ctx)
{
if (ctx->nstates <= 1)
return;
ctx->nstates--;
}
void nvgReset(NVGcontext* ctx)
{
NVGstate* state = nvg__getState(ctx);
memset(state, 0, sizeof(*state));
nvg__setPaintColor(&state->fill, nvgRGBA(255,255,255,255));
nvg__setPaintColor(&state->stroke, nvgRGBA(0,0,0,255));
state->compositeOperation = nvg__compositeOperationState(NVG_SOURCE_OVER);
state->strokeWidth = 1.0f;
state->miterLimit = 10.0f;
state->lineCap = NVG_BUTT;
state->lineJoin = NVG_MITER;
state->alpha = 1.0f;
nvgTransformIdentity(state->xform);
state->scissor.extent[0] = -1.0f;
state->scissor.extent[1] = -1.0f;
state->fontSize = 16.0f;
state->letterSpacing = 0.0f;
state->lineHeight = 1.0f;
state->fontBlur = 0.0f;
state->textAlign = NVG_ALIGN_LEFT | NVG_ALIGN_BASELINE;
state->fontId = 0;
}
// State setting
void nvgStrokeWidth(NVGcontext* ctx, float width)
{
NVGstate* state = nvg__getState(ctx);
state->strokeWidth = width;
}
void nvgMiterLimit(NVGcontext* ctx, float limit)
{
NVGstate* state = nvg__getState(ctx);
state->miterLimit = limit;
}
void nvgLineCap(NVGcontext* ctx, int cap)
{
NVGstate* state = nvg__getState(ctx);
state->lineCap = cap;
}
void nvgLineJoin(NVGcontext* ctx, int join)
{
NVGstate* state = nvg__getState(ctx);
state->lineJoin = join;
}
void nvgGlobalAlpha(NVGcontext* ctx, float alpha)
{
NVGstate* state = nvg__getState(ctx);
state->alpha = alpha;
}
void nvgTransform(NVGcontext* ctx, float a, float b, float c, float d, float e, float f)
{
NVGstate* state = nvg__getState(ctx);
float t[6] = { a, b, c, d, e, f };
nvgTransformPremultiply(state->xform, t);
}
void nvgResetTransform(NVGcontext* ctx)
{
NVGstate* state = nvg__getState(ctx);
nvgTransformIdentity(state->xform);
}
void nvgTranslate(NVGcontext* ctx, float x, float y)
{
NVGstate* state = nvg__getState(ctx);
float t[6];
nvgTransformTranslate(t, x,y);
nvgTransformPremultiply(state->xform, t);
}
void nvgRotate(NVGcontext* ctx, float angle)
{
NVGstate* state = nvg__getState(ctx);
float t[6];
nvgTransformRotate(t, angle);
nvgTransformPremultiply(state->xform, t);
}
void nvgSkewX(NVGcontext* ctx, float angle)
{
NVGstate* state = nvg__getState(ctx);
float t[6];
nvgTransformSkewX(t, angle);
nvgTransformPremultiply(state->xform, t);
}
void nvgSkewY(NVGcontext* ctx, float angle)
{
NVGstate* state = nvg__getState(ctx);
float t[6];
nvgTransformSkewY(t, angle);
nvgTransformPremultiply(state->xform, t);
}
void nvgScale(NVGcontext* ctx, float x, float y)
{
NVGstate* state = nvg__getState(ctx);
float t[6];
nvgTransformScale(t, x,y);
nvgTransformPremultiply(state->xform, t);
}
void nvgCurrentTransform(NVGcontext* ctx, float* xform)
{
NVGstate* state = nvg__getState(ctx);
if (xform == NULL) return;
memcpy(xform, state->xform, sizeof(float)*6);
}
void nvgStrokeColor(NVGcontext* ctx, NVGcolor color)
{
NVGstate* state = nvg__getState(ctx);
nvg__setPaintColor(&state->stroke, color);
}
void nvgStrokePaint(NVGcontext* ctx, NVGpaint paint)
{
NVGstate* state = nvg__getState(ctx);
state->stroke = paint;
nvgTransformMultiply(state->stroke.xform, state->xform);
}
void nvgFillColor(NVGcontext* ctx, NVGcolor color)
{
NVGstate* state = nvg__getState(ctx);
nvg__setPaintColor(&state->fill, color);
}
void nvgFillPaint(NVGcontext* ctx, NVGpaint paint)
{
NVGstate* state = nvg__getState(ctx);
state->fill = paint;
nvgTransformMultiply(state->fill.xform, state->xform);
}
int nvgCreateImage(NVGcontext* ctx, const char* filename, int imageFlags)
{
int w, h, n, image;
unsigned char* img;
stbi_set_unpremultiply_on_load(1);
stbi_convert_iphone_png_to_rgb(1);
img = stbi_load(filename, &w, &h, &n, 4);
if (img == NULL) {
// printf("Failed to load %s - %s\n", filename, stbi_failure_reason());
return 0;
}
image = nvgCreateImageRGBA(ctx, w, h, imageFlags, img);
stbi_image_free(img);
return image;
}
int nvgCreateImageMem(NVGcontext* ctx, int imageFlags, unsigned char* data, int ndata)
{
int w, h, n, image;
unsigned char* img = stbi_load_from_memory(data, ndata, &w, &h, &n, 4);
if (img == NULL) {
// printf("Failed to load %s - %s\n", filename, stbi_failure_reason());
return 0;
}
image = nvgCreateImageRGBA(ctx, w, h, imageFlags, img);
stbi_image_free(img);
return image;
}
int nvgCreateImageRGBA(NVGcontext* ctx, int w, int h, int imageFlags, const unsigned char* data)
{
return ctx->params.renderCreateTexture(ctx->params.userPtr, NVG_TEXTURE_RGBA, w, h, imageFlags, data);
}
void nvgUpdateImage(NVGcontext* ctx, int image, const unsigned char* data)
{
int w, h;
ctx->params.renderGetTextureSize(ctx->params.userPtr, image, &w, &h);
ctx->params.renderUpdateTexture(ctx->params.userPtr, image, 0,0, w,h, data);
}
void nvgImageSize(NVGcontext* ctx, int image, int* w, int* h)
{
ctx->params.renderGetTextureSize(ctx->params.userPtr, image, w, h);
}
void nvgDeleteImage(NVGcontext* ctx, int image)
{
ctx->params.renderDeleteTexture(ctx->params.userPtr, image);
}
NVGpaint nvgLinearGradient(NVGcontext* ctx,
float sx, float sy, float ex, float ey,
NVGcolor icol, NVGcolor ocol)
{
NVGpaint p;
float dx, dy, d;
const float large = 1e5;
NVG_NOTUSED(ctx);
memset(&p, 0, sizeof(p));
// Calculate transform aligned to the line
dx = ex - sx;
dy = ey - sy;
d = sqrtf(dx*dx + dy*dy);
if (d > 0.0001f) {
dx /= d;
dy /= d;
} else {
dx = 0;
dy = 1;
}
p.xform[0] = dy; p.xform[1] = -dx;
p.xform[2] = dx; p.xform[3] = dy;
p.xform[4] = sx - dx*large; p.xform[5] = sy - dy*large;
p.extent[0] = large;
p.extent[1] = large + d*0.5f;
p.radius = 0.0f;
p.feather = nvg__maxf(1.0f, d);
p.innerColor = icol;
p.outerColor = ocol;
return p;
}
NVGpaint nvgRadialGradient(NVGcontext* ctx,
float cx, float cy, float inr, float outr,
NVGcolor icol, NVGcolor ocol)
{
NVGpaint p;
float r = (inr+outr)*0.5f;
float f = (outr-inr);
NVG_NOTUSED(ctx);
memset(&p, 0, sizeof(p));
nvgTransformIdentity(p.xform);
p.xform[4] = cx;
p.xform[5] = cy;
p.extent[0] = r;
p.extent[1] = r;
p.radius = r;
p.feather = nvg__maxf(1.0f, f);
p.innerColor = icol;
p.outerColor = ocol;
return p;
}
NVGpaint nvgBoxGradient(NVGcontext* ctx,
float x, float y, float w, float h, float r, float f,
NVGcolor icol, NVGcolor ocol)
{
NVGpaint p;
NVG_NOTUSED(ctx);
memset(&p, 0, sizeof(p));
nvgTransformIdentity(p.xform);
p.xform[4] = x+w*0.5f;
p.xform[5] = y+h*0.5f;
p.extent[0] = w*0.5f;
p.extent[1] = h*0.5f;
p.radius = r;
p.feather = nvg__maxf(1.0f, f);
p.innerColor = icol;
p.outerColor = ocol;
return p;
}
NVGpaint nvgImagePattern(NVGcontext* ctx,
float cx, float cy, float w, float h, float angle,
int image, float alpha)
{
NVGpaint p;
NVG_NOTUSED(ctx);
memset(&p, 0, sizeof(p));
nvgTransformRotate(p.xform, angle);
p.xform[4] = cx;
p.xform[5] = cy;
p.extent[0] = w;
p.extent[1] = h;
p.image = image;
p.innerColor = p.outerColor = nvgRGBAf(1,1,1,alpha);
return p;
}
// Scissoring
void nvgScissor(NVGcontext* ctx, float x, float y, float w, float h)
{
NVGstate* state = nvg__getState(ctx);
w = nvg__maxf(0.0f, w);
h = nvg__maxf(0.0f, h);
nvgTransformIdentity(state->scissor.xform);
state->scissor.xform[4] = x+w*0.5f;
state->scissor.xform[5] = y+h*0.5f;
nvgTransformMultiply(state->scissor.xform, state->xform);
state->scissor.extent[0] = w*0.5f;
state->scissor.extent[1] = h*0.5f;
}
static void nvg__isectRects(float* dst,
float ax, float ay, float aw, float ah,
float bx, float by, float bw, float bh)
{
float minx = nvg__maxf(ax, bx);
float miny = nvg__maxf(ay, by);
float maxx = nvg__minf(ax+aw, bx+bw);
float maxy = nvg__minf(ay+ah, by+bh);
dst[0] = minx;
dst[1] = miny;
dst[2] = nvg__maxf(0.0f, maxx - minx);
dst[3] = nvg__maxf(0.0f, maxy - miny);
}
void nvgIntersectScissor(NVGcontext* ctx, float x, float y, float w, float h)
{
NVGstate* state = nvg__getState(ctx);
float pxform[6], invxorm[6];
float rect[4];
float ex, ey, tex, tey;
// If no previous scissor has been set, set the scissor as current scissor.
if (state->scissor.extent[0] < 0) {
nvgScissor(ctx, x, y, w, h);
return;
}
// Transform the current scissor rect into current transform space.
// If there is difference in rotation, this will be approximation.
memcpy(pxform, state->scissor.xform, sizeof(float)*6);
ex = state->scissor.extent[0];
ey = state->scissor.extent[1];
nvgTransformInverse(invxorm, state->xform);
nvgTransformMultiply(pxform, invxorm);
tex = ex*nvg__absf(pxform[0]) + ey*nvg__absf(pxform[2]);
tey = ex*nvg__absf(pxform[1]) + ey*nvg__absf(pxform[3]);
// Intersect rects.
nvg__isectRects(rect, pxform[4]-tex,pxform[5]-tey,tex*2,tey*2, x,y,w,h);
nvgScissor(ctx, rect[0], rect[1], rect[2], rect[3]);
}
void nvgResetScissor(NVGcontext* ctx)
{
NVGstate* state = nvg__getState(ctx);
memset(state->scissor.xform, 0, sizeof(state->scissor.xform));
state->scissor.extent[0] = -1.0f;
state->scissor.extent[1] = -1.0f;
}
// Global composite operation.
void nvgGlobalCompositeOperation(NVGcontext* ctx, int op)
{
NVGstate* state = nvg__getState(ctx);
state->compositeOperation = nvg__compositeOperationState(op);
}
void nvgGlobalCompositeBlendFunc(NVGcontext* ctx, int sfactor, int dfactor)
{
nvgGlobalCompositeBlendFuncSeparate(ctx, sfactor, dfactor, sfactor, dfactor);
}
void nvgGlobalCompositeBlendFuncSeparate(NVGcontext* ctx, int srcRGB, int dstRGB, int srcAlpha, int dstAlpha)
{
NVGcompositeOperationState op;
op.srcRGB = srcRGB;
op.dstRGB = dstRGB;
op.srcAlpha = srcAlpha;
op.dstAlpha = dstAlpha;
NVGstate* state = nvg__getState(ctx);
state->compositeOperation = op;
}
static int nvg__ptEquals(float x1, float y1, float x2, float y2, float tol)
{
float dx = x2 - x1;
float dy = y2 - y1;
return dx*dx + dy*dy < tol*tol;
}
static float nvg__distPtSeg(float x, float y, float px, float py, float qx, float qy)
{
float pqx, pqy, dx, dy, d, t;
pqx = qx-px;
pqy = qy-py;
dx = x-px;
dy = y-py;
d = pqx*pqx + pqy*pqy;
t = pqx*dx + pqy*dy;
if (d > 0) t /= d;
if (t < 0) t = 0;
else if (t > 1) t = 1;
dx = px + t*pqx - x;
dy = py + t*pqy - y;
return dx*dx + dy*dy;
}
static void nvg__appendCommands(NVGcontext* ctx, float* vals, int nvals)
{
NVGstate* state = nvg__getState(ctx);
int i;
if (ctx->ncommands+nvals > ctx->ccommands) {
float* commands;
int ccommands = ctx->ncommands+nvals + ctx->ccommands/2;
commands = (float*)realloc(ctx->commands, sizeof(float)*ccommands);
if (commands == NULL) return;
ctx->commands = commands;
ctx->ccommands = ccommands;
}
if ((int)vals[0] != NVG_CLOSE && (int)vals[0] != NVG_WINDING) {
ctx->commandx = vals[nvals-2];
ctx->commandy = vals[nvals-1];
}
// transform commands
i = 0;
while (i < nvals) {
int cmd = (int)vals[i];
switch (cmd) {
case NVG_MOVETO:
nvgTransformPoint(&vals[i+1],&vals[i+2], state->xform, vals[i+1],vals[i+2]);
i += 3;
break;
case NVG_LINETO:
nvgTransformPoint(&vals[i+1],&vals[i+2], state->xform, vals[i+1],vals[i+2]);
i += 3;
break;
case NVG_BEZIERTO:
nvgTransformPoint(&vals[i+1],&vals[i+2], state->xform, vals[i+1],vals[i+2]);
nvgTransformPoint(&vals[i+3],&vals[i+4], state->xform, vals[i+3],vals[i+4]);
nvgTransformPoint(&vals[i+5],&vals[i+6], state->xform, vals[i+5],vals[i+6]);
i += 7;
break;
case NVG_CLOSE:
i++;
break;
case NVG_WINDING:
i += 2;
break;
default:
i++;
}
}
memcpy(&ctx->commands[ctx->ncommands], vals, nvals*sizeof(float));
ctx->ncommands += nvals;
}
static void nvg__clearPathCache(NVGcontext* ctx)
{
ctx->cache->npoints = 0;
ctx->cache->npaths = 0;
}
static NVGpath* nvg__lastPath(NVGcontext* ctx)
{
if (ctx->cache->npaths > 0)
return &ctx->cache->paths[ctx->cache->npaths-1];
return NULL;
}
static void nvg__addPath(NVGcontext* ctx)
{
NVGpath* path;
if (ctx->cache->npaths+1 > ctx->cache->cpaths) {
NVGpath* paths;
int cpaths = ctx->cache->npaths+1 + ctx->cache->cpaths/2;
paths = (NVGpath*)realloc(ctx->cache->paths, sizeof(NVGpath)*cpaths);
if (paths == NULL) return;
ctx->cache->paths = paths;
ctx->cache->cpaths = cpaths;
}
path = &ctx->cache->paths[ctx->cache->npaths];
memset(path, 0, sizeof(*path));
path->first = ctx->cache->npoints;
path->winding = NVG_CCW;
ctx->cache->npaths++;
}
static NVGpoint* nvg__lastPoint(NVGcontext* ctx)
{
if (ctx->cache->npoints > 0)
return &ctx->cache->points[ctx->cache->npoints-1];
return NULL;
}
static void nvg__addPoint(NVGcontext* ctx, float x, float y, int flags)
{
NVGpath* path = nvg__lastPath(ctx);
NVGpoint* pt;
if (path == NULL) return;
if (path->count > 0 && ctx->cache->npoints > 0) {
pt = nvg__lastPoint(ctx);
if (nvg__ptEquals(pt->x,pt->y, x,y, ctx->distTol)) {
pt->flags |= flags;
return;
}
}
if (ctx->cache->npoints+1 > ctx->cache->cpoints) {
NVGpoint* points;
int cpoints = ctx->cache->npoints+1 + ctx->cache->cpoints/2;
points = (NVGpoint*)realloc(ctx->cache->points, sizeof(NVGpoint)*cpoints);
if (points == NULL) return;
ctx->cache->points = points;
ctx->cache->cpoints = cpoints;
}
pt = &ctx->cache->points[ctx->cache->npoints];
memset(pt, 0, sizeof(*pt));
pt->x = x;
pt->y = y;
pt->flags = (unsigned char)flags;
ctx->cache->npoints++;
path->count++;
}
static void nvg__closePath(NVGcontext* ctx)
{
NVGpath* path = nvg__lastPath(ctx);
if (path == NULL) return;
path->closed = 1;
}
static void nvg__pathWinding(NVGcontext* ctx, int winding)
{
NVGpath* path = nvg__lastPath(ctx);
if (path == NULL) return;
path->winding = winding;
}
static float nvg__getAverageScale(float *t)
{
float sx = sqrtf(t[0]*t[0] + t[2]*t[2]);
float sy = sqrtf(t[1]*t[1] + t[3]*t[3]);
return (sx + sy) * 0.5f;
}
static NVGvertex* nvg__allocTempVerts(NVGcontext* ctx, int nverts)
{
if (nverts > ctx->cache->cverts) {
NVGvertex* verts;
int cverts = (nverts + 0xff) & ~0xff; // Round up to prevent allocations when things change just slightly.
verts = (NVGvertex*)realloc(ctx->cache->verts, sizeof(NVGvertex)*cverts);
if (verts == NULL) return NULL;
ctx->cache->verts = verts;
ctx->cache->cverts = cverts;
}
return ctx->cache->verts;
}
static float nvg__triarea2(float ax, float ay, float bx, float by, float cx, float cy)
{
float abx = bx - ax;
float aby = by - ay;
float acx = cx - ax;
float acy = cy - ay;
return acx*aby - abx*acy;
}
static float nvg__polyArea(NVGpoint* pts, int npts)
{
int i;
float area = 0;
for (i = 2; i < npts; i++) {
NVGpoint* a = &pts[0];
NVGpoint* b = &pts[i-1];
NVGpoint* c = &pts[i];
area += nvg__triarea2(a->x,a->y, b->x,b->y, c->x,c->y);
}
return area * 0.5f;
}
static void nvg__polyReverse(NVGpoint* pts, int npts)
{
NVGpoint tmp;
int i = 0, j = npts-1;
while (i < j) {
tmp = pts[i];
pts[i] = pts[j];
pts[j] = tmp;
i++;
j--;
}
}
static void nvg__vset(NVGvertex* vtx, float x, float y, float u, float v)
{
vtx->x = x;
vtx->y = y;
vtx->u = u;
vtx->v = v;
}
static void nvg__tesselateBezier(NVGcontext* ctx,
float x1, float y1, float x2, float y2,
float x3, float y3, float x4, float y4,
int level, int type)
{
float x12,y12,x23,y23,x34,y34,x123,y123,x234,y234,x1234,y1234;
float dx,dy,d2,d3;
if (level > 10) return;
x12 = (x1+x2)*0.5f;
y12 = (y1+y2)*0.5f;
x23 = (x2+x3)*0.5f;
y23 = (y2+y3)*0.5f;
x34 = (x3+x4)*0.5f;
y34 = (y3+y4)*0.5f;
x123 = (x12+x23)*0.5f;
y123 = (y12+y23)*0.5f;
dx = x4 - x1;
dy = y4 - y1;
d2 = nvg__absf(((x2 - x4) * dy - (y2 - y4) * dx));
d3 = nvg__absf(((x3 - x4) * dy - (y3 - y4) * dx));
if ((d2 + d3)*(d2 + d3) < ctx->tessTol * (dx*dx + dy*dy)) {
nvg__addPoint(ctx, x4, y4, type);
return;
}
/* if (nvg__absf(x1+x3-x2-x2) + nvg__absf(y1+y3-y2-y2) + nvg__absf(x2+x4-x3-x3) + nvg__absf(y2+y4-y3-y3) < ctx->tessTol) {
nvg__addPoint(ctx, x4, y4, type);
return;
}*/
x234 = (x23+x34)*0.5f;
y234 = (y23+y34)*0.5f;
x1234 = (x123+x234)*0.5f;
y1234 = (y123+y234)*0.5f;
nvg__tesselateBezier(ctx, x1,y1, x12,y12, x123,y123, x1234,y1234, level+1, 0);
nvg__tesselateBezier(ctx, x1234,y1234, x234,y234, x34,y34, x4,y4, level+1, type);
}
static void nvg__flattenPaths(NVGcontext* ctx)
{
NVGpathCache* cache = ctx->cache;
// NVGstate* state = nvg__getState(ctx);
NVGpoint* last;
NVGpoint* p0;
NVGpoint* p1;
NVGpoint* pts;
NVGpath* path;
int i, j;
float* cp1;
float* cp2;
float* p;
float area;
if (cache->npaths > 0)
return;
// Flatten
i = 0;
while (i < ctx->ncommands) {
int cmd = (int)ctx->commands[i];
switch (cmd) {
case NVG_MOVETO:
nvg__addPath(ctx);
p = &ctx->commands[i+1];
nvg__addPoint(ctx, p[0], p[1], NVG_PT_CORNER);
i += 3;
break;
case NVG_LINETO:
p = &ctx->commands[i+1];
nvg__addPoint(ctx, p[0], p[1], NVG_PT_CORNER);
i += 3;
break;
case NVG_BEZIERTO:
last = nvg__lastPoint(ctx);
if (last != NULL) {
cp1 = &ctx->commands[i+1];
cp2 = &ctx->commands[i+3];
p = &ctx->commands[i+5];
nvg__tesselateBezier(ctx, last->x,last->y, cp1[0],cp1[1], cp2[0],cp2[1], p[0],p[1], 0, NVG_PT_CORNER);
}
i += 7;
break;
case NVG_CLOSE:
nvg__closePath(ctx);
i++;
break;
case NVG_WINDING:
nvg__pathWinding(ctx, (int)ctx->commands[i+1]);
i += 2;
break;
default:
i++;
}
}
cache->bounds[0] = cache->bounds[1] = 1e6f;
cache->bounds[2] = cache->bounds[3] = -1e6f;
// Calculate the direction and length of line segments.
for (j = 0; j < cache->npaths; j++) {
path = &cache->paths[j];
pts = &cache->points[path->first];
// If the first and last points are the same, remove the last, mark as closed path.
p0 = &pts[path->count-1];
p1 = &pts[0];
if (nvg__ptEquals(p0->x,p0->y, p1->x,p1->y, ctx->distTol)) {
path->count--;
p0 = &pts[path->count-1];
path->closed = 1;
}
// Enforce winding.
if (path->count > 2) {
area = nvg__polyArea(pts, path->count);
if (path->winding == NVG_CCW && area < 0.0f)
nvg__polyReverse(pts, path->count);
if (path->winding == NVG_CW && area > 0.0f)
nvg__polyReverse(pts, path->count);
}
for(i = 0; i < path->count; i++) {
// Calculate segment direction and length
p0->dx = p1->x - p0->x;
p0->dy = p1->y - p0->y;
p0->len = nvg__normalize(&p0->dx, &p0->dy);
// Update bounds
cache->bounds[0] = nvg__minf(cache->bounds[0], p0->x);
cache->bounds[1] = nvg__minf(cache->bounds[1], p0->y);
cache->bounds[2] = nvg__maxf(cache->bounds[2], p0->x);
cache->bounds[3] = nvg__maxf(cache->bounds[3], p0->y);
// Advance
p0 = p1++;
}
}
}
static int nvg__curveDivs(float r, float arc, float tol)
{
float da = acosf(r / (r + tol)) * 2.0f;
return nvg__maxi(2, (int)ceilf(arc / da));
}
static void nvg__chooseBevel(int bevel, NVGpoint* p0, NVGpoint* p1, float w,
float* x0, float* y0, float* x1, float* y1)
{
if (bevel) {
*x0 = p1->x + p0->dy * w;
*y0 = p1->y - p0->dx * w;
*x1 = p1->x + p1->dy * w;
*y1 = p1->y - p1->dx * w;
} else {
*x0 = p1->x + p1->dmx * w;
*y0 = p1->y + p1->dmy * w;
*x1 = p1->x + p1->dmx * w;
*y1 = p1->y + p1->dmy * w;
}
}
static NVGvertex* nvg__roundJoin(NVGvertex* dst, NVGpoint* p0, NVGpoint* p1,
float lw, float rw, float lu, float ru, int ncap, float fringe)
{
int i, n;
float dlx0 = p0->dy;
float dly0 = -p0->dx;
float dlx1 = p1->dy;
float dly1 = -p1->dx;
NVG_NOTUSED(fringe);
if (p1->flags & NVG_PT_LEFT) {
float lx0,ly0,lx1,ly1,a0,a1;
nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, lw, &lx0,&ly0, &lx1,&ly1);
a0 = atan2f(-dly0, -dlx0);
a1 = atan2f(-dly1, -dlx1);
if (a1 > a0) a1 -= NVG_PI*2;
nvg__vset(dst, lx0, ly0, lu,1); dst++;
nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++;
n = nvg__clampi((int)ceilf(((a0 - a1) / NVG_PI) * ncap), 2, ncap);
for (i = 0; i < n; i++) {
float u = i/(float)(n-1);
float a = a0 + u*(a1-a0);
float rx = p1->x + cosf(a) * rw;
float ry = p1->y + sinf(a) * rw;
nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++;
nvg__vset(dst, rx, ry, ru,1); dst++;
}
nvg__vset(dst, lx1, ly1, lu,1); dst++;
nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++;
} else {
float rx0,ry0,rx1,ry1,a0,a1;
nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, -rw, &rx0,&ry0, &rx1,&ry1);
a0 = atan2f(dly0, dlx0);
a1 = atan2f(dly1, dlx1);
if (a1 < a0) a1 += NVG_PI*2;
nvg__vset(dst, p1->x + dlx0*rw, p1->y + dly0*rw, lu,1); dst++;
nvg__vset(dst, rx0, ry0, ru,1); dst++;
n = nvg__clampi((int)ceilf(((a1 - a0) / NVG_PI) * ncap), 2, ncap);
for (i = 0; i < n; i++) {
float u = i/(float)(n-1);
float a = a0 + u*(a1-a0);
float lx = p1->x + cosf(a) * lw;
float ly = p1->y + sinf(a) * lw;
nvg__vset(dst, lx, ly, lu,1); dst++;
nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++;
}
nvg__vset(dst, p1->x + dlx1*rw, p1->y + dly1*rw, lu,1); dst++;
nvg__vset(dst, rx1, ry1, ru,1); dst++;
}
return dst;
}
static NVGvertex* nvg__bevelJoin(NVGvertex* dst, NVGpoint* p0, NVGpoint* p1,
float lw, float rw, float lu, float ru, float fringe)
{
float rx0,ry0,rx1,ry1;
float lx0,ly0,lx1,ly1;
float dlx0 = p0->dy;
float dly0 = -p0->dx;
float dlx1 = p1->dy;
float dly1 = -p1->dx;
NVG_NOTUSED(fringe);
if (p1->flags & NVG_PT_LEFT) {
nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, lw, &lx0,&ly0, &lx1,&ly1);
nvg__vset(dst, lx0, ly0, lu,1); dst++;
nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++;
if (p1->flags & NVG_PT_BEVEL) {
nvg__vset(dst, lx0, ly0, lu,1); dst++;
nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++;
nvg__vset(dst, lx1, ly1, lu,1); dst++;
nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++;
} else {
rx0 = p1->x - p1->dmx * rw;
ry0 = p1->y - p1->dmy * rw;
nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++;
nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++;
nvg__vset(dst, rx0, ry0, ru,1); dst++;
nvg__vset(dst, rx0, ry0, ru,1); dst++;
nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++;
nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++;
}
nvg__vset(dst, lx1, ly1, lu,1); dst++;
nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++;
} else {
nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, -rw, &rx0,&ry0, &rx1,&ry1);
nvg__vset(dst, p1->x + dlx0*lw, p1->y + dly0*lw, lu,1); dst++;
nvg__vset(dst, rx0, ry0, ru,1); dst++;
if (p1->flags & NVG_PT_BEVEL) {
nvg__vset(dst, p1->x + dlx0*lw, p1->y + dly0*lw, lu,1); dst++;
nvg__vset(dst, rx0, ry0, ru,1); dst++;
nvg__vset(dst, p1->x + dlx1*lw, p1->y + dly1*lw, lu,1); dst++;
nvg__vset(dst, rx1, ry1, ru,1); dst++;
} else {
lx0 = p1->x + p1->dmx * lw;
ly0 = p1->y + p1->dmy * lw;
nvg__vset(dst, p1->x + dlx0*lw, p1->y + dly0*lw, lu,1); dst++;
nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++;
nvg__vset(dst, lx0, ly0, lu,1); dst++;
nvg__vset(dst, lx0, ly0, lu,1); dst++;
nvg__vset(dst, p1->x + dlx1*lw, p1->y + dly1*lw, lu,1); dst++;
nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++;
}
nvg__vset(dst, p1->x + dlx1*lw, p1->y + dly1*lw, lu,1); dst++;
nvg__vset(dst, rx1, ry1, ru,1); dst++;
}
return dst;
}
static NVGvertex* nvg__buttCapStart(NVGvertex* dst, NVGpoint* p,
float dx, float dy, float w, float d, float aa)
{
float px = p->x - dx*d;
float py = p->y - dy*d;
float dlx = dy;
float dly = -dx;
nvg__vset(dst, px + dlx*w - dx*aa, py + dly*w - dy*aa, 0,0); dst++;
nvg__vset(dst, px - dlx*w - dx*aa, py - dly*w - dy*aa, 1,0); dst++;
nvg__vset(dst, px + dlx*w, py + dly*w, 0,1); dst++;
nvg__vset(dst, px - dlx*w, py - dly*w, 1,1); dst++;
return dst;
}
static NVGvertex* nvg__buttCapEnd(NVGvertex* dst, NVGpoint* p,
float dx, float dy, float w, float d, float aa)
{
float px = p->x + dx*d;
float py = p->y + dy*d;
float dlx = dy;
float dly = -dx;
nvg__vset(dst, px + dlx*w, py + dly*w, 0,1); dst++;
nvg__vset(dst, px - dlx*w, py - dly*w, 1,1); dst++;
nvg__vset(dst, px + dlx*w + dx*aa, py + dly*w + dy*aa, 0,0); dst++;
nvg__vset(dst, px - dlx*w + dx*aa, py - dly*w + dy*aa, 1,0); dst++;
return dst;
}
static NVGvertex* nvg__roundCapStart(NVGvertex* dst, NVGpoint* p,
float dx, float dy, float w, int ncap, float aa)
{
int i;
float px = p->x;
float py = p->y;
float dlx = dy;
float dly = -dx;
NVG_NOTUSED(aa);
for (i = 0; i < ncap; i++) {
float a = i/(float)(ncap-1)*NVG_PI;
float ax = cosf(a) * w, ay = sinf(a) * w;
nvg__vset(dst, px - dlx*ax - dx*ay, py - dly*ax - dy*ay, 0,1); dst++;
nvg__vset(dst, px, py, 0.5f,1); dst++;
}
nvg__vset(dst, px + dlx*w, py + dly*w, 0,1); dst++;
nvg__vset(dst, px - dlx*w, py - dly*w, 1,1); dst++;
return dst;
}
static NVGvertex* nvg__roundCapEnd(NVGvertex* dst, NVGpoint* p,
float dx, float dy, float w, int ncap, float aa)
{
int i;
float px = p->x;
float py = p->y;
float dlx = dy;
float dly = -dx;
NVG_NOTUSED(aa);
nvg__vset(dst, px + dlx*w, py + dly*w, 0,1); dst++;
nvg__vset(dst, px - dlx*w, py - dly*w, 1,1); dst++;
for (i = 0; i < ncap; i++) {
float a = i/(float)(ncap-1)*NVG_PI;
float ax = cosf(a) * w, ay = sinf(a) * w;
nvg__vset(dst, px, py, 0.5f,1); dst++;
nvg__vset(dst, px - dlx*ax + dx*ay, py - dly*ax + dy*ay, 0,1); dst++;
}
return dst;
}
static void nvg__calculateJoins(NVGcontext* ctx, float w, int lineJoin, float miterLimit)
{
NVGpathCache* cache = ctx->cache;
int i, j;
float iw = 0.0f;
if (w > 0.0f) iw = 1.0f / w;
// Calculate which joins needs extra vertices to append, and gather vertex count.
for (i = 0; i < cache->npaths; i++) {
NVGpath* path = &cache->paths[i];
NVGpoint* pts = &cache->points[path->first];
NVGpoint* p0 = &pts[path->count-1];
NVGpoint* p1 = &pts[0];
int nleft = 0;
path->nbevel = 0;
for (j = 0; j < path->count; j++) {
float dlx0, dly0, dlx1, dly1, dmr2, cross, limit;
dlx0 = p0->dy;
dly0 = -p0->dx;
dlx1 = p1->dy;
dly1 = -p1->dx;
// Calculate extrusions
p1->dmx = (dlx0 + dlx1) * 0.5f;
p1->dmy = (dly0 + dly1) * 0.5f;
dmr2 = p1->dmx*p1->dmx + p1->dmy*p1->dmy;
if (dmr2 > 0.000001f) {
float scale = 1.0f / dmr2;
if (scale > 600.0f) {
scale = 600.0f;
}
p1->dmx *= scale;
p1->dmy *= scale;
}
// Clear flags, but keep the corner.
p1->flags = (p1->flags & NVG_PT_CORNER) ? NVG_PT_CORNER : 0;
// Keep track of left turns.
cross = p1->dx * p0->dy - p0->dx * p1->dy;
if (cross > 0.0f) {
nleft++;
p1->flags |= NVG_PT_LEFT;
}
// Calculate if we should use bevel or miter for inner join.
limit = nvg__maxf(1.01f, nvg__minf(p0->len, p1->len) * iw);
if ((dmr2 * limit*limit) < 1.0f)
p1->flags |= NVG_PR_INNERBEVEL;
// Check to see if the corner needs to be beveled.
if (p1->flags & NVG_PT_CORNER) {
if ((dmr2 * miterLimit*miterLimit) < 1.0f || lineJoin == NVG_BEVEL || lineJoin == NVG_ROUND) {
p1->flags |= NVG_PT_BEVEL;
}
}
if ((p1->flags & (NVG_PT_BEVEL | NVG_PR_INNERBEVEL)) != 0)
path->nbevel++;
p0 = p1++;
}
path->convex = (nleft == path->count) ? 1 : 0;
}
}
static int nvg__expandStroke(NVGcontext* ctx, float w, int lineCap, int lineJoin, float miterLimit)
{
NVGpathCache* cache = ctx->cache;
NVGvertex* verts;
NVGvertex* dst;
int cverts, i, j;
float aa = ctx->fringeWidth;
int ncap = nvg__curveDivs(w, NVG_PI, ctx->tessTol); // Calculate divisions per half circle.
nvg__calculateJoins(ctx, w, lineJoin, miterLimit);
// Calculate max vertex usage.
cverts = 0;
for (i = 0; i < cache->npaths; i++) {
NVGpath* path = &cache->paths[i];
int loop = (path->closed == 0) ? 0 : 1;
if (lineJoin == NVG_ROUND)
cverts += (path->count + path->nbevel*(ncap+2) + 1) * 2; // plus one for loop
else
cverts += (path->count + path->nbevel*5 + 1) * 2; // plus one for loop
if (loop == 0) {
// space for caps
if (lineCap == NVG_ROUND) {
cverts += (ncap*2 + 2)*2;
} else {
cverts += (3+3)*2;
}
}
}
verts = nvg__allocTempVerts(ctx, cverts);
if (verts == NULL) return 0;
for (i = 0; i < cache->npaths; i++) {
NVGpath* path = &cache->paths[i];
NVGpoint* pts = &cache->points[path->first];
NVGpoint* p0;
NVGpoint* p1;
int s, e, loop;
float dx, dy;
path->fill = 0;
path->nfill = 0;
// Calculate fringe or stroke
loop = (path->closed == 0) ? 0 : 1;
dst = verts;
path->stroke = dst;
if (loop) {
// Looping
p0 = &pts[path->count-1];
p1 = &pts[0];
s = 0;
e = path->count;
} else {
// Add cap
p0 = &pts[0];
p1 = &pts[1];
s = 1;
e = path->count-1;
}
if (loop == 0) {
// Add cap
dx = p1->x - p0->x;
dy = p1->y - p0->y;
nvg__normalize(&dx, &dy);
if (lineCap == NVG_BUTT)
dst = nvg__buttCapStart(dst, p0, dx, dy, w, -aa*0.5f, aa);
else if (lineCap == NVG_BUTT || lineCap == NVG_SQUARE)
dst = nvg__buttCapStart(dst, p0, dx, dy, w, w-aa, aa);
else if (lineCap == NVG_ROUND)
dst = nvg__roundCapStart(dst, p0, dx, dy, w, ncap, aa);
}
for (j = s; j < e; ++j) {
if ((p1->flags & (NVG_PT_BEVEL | NVG_PR_INNERBEVEL)) != 0) {
if (lineJoin == NVG_ROUND) {
dst = nvg__roundJoin(dst, p0, p1, w, w, 0, 1, ncap, aa);
} else {
dst = nvg__bevelJoin(dst, p0, p1, w, w, 0, 1, aa);
}
} else {
nvg__vset(dst, p1->x + (p1->dmx * w), p1->y + (p1->dmy * w), 0,1); dst++;
nvg__vset(dst, p1->x - (p1->dmx * w), p1->y - (p1->dmy * w), 1,1); dst++;
}
p0 = p1++;
}
if (loop) {
// Loop it
nvg__vset(dst, verts[0].x, verts[0].y, 0,1); dst++;
nvg__vset(dst, verts[1].x, verts[1].y, 1,1); dst++;
} else {
// Add cap
dx = p1->x - p0->x;
dy = p1->y - p0->y;
nvg__normalize(&dx, &dy);
if (lineCap == NVG_BUTT)
dst = nvg__buttCapEnd(dst, p1, dx, dy, w, -aa*0.5f, aa);
else if (lineCap == NVG_BUTT || lineCap == NVG_SQUARE)
dst = nvg__buttCapEnd(dst, p1, dx, dy, w, w-aa, aa);
else if (lineCap == NVG_ROUND)
dst = nvg__roundCapEnd(dst, p1, dx, dy, w, ncap, aa);
}
path->nstroke = (int)(dst - verts);
verts = dst;
}
return 1;
}
static int nvg__expandFill(NVGcontext* ctx, float w, int lineJoin, float miterLimit)
{
NVGpathCache* cache = ctx->cache;
NVGvertex* verts;
NVGvertex* dst;
int cverts, convex, i, j;
float aa = ctx->fringeWidth;
int fringe = w > 0.0f;
nvg__calculateJoins(ctx, w, lineJoin, miterLimit);
// Calculate max vertex usage.
cverts = 0;
for (i = 0; i < cache->npaths; i++) {
NVGpath* path = &cache->paths[i];
cverts += path->count + path->nbevel + 1;
if (fringe)
cverts += (path->count + path->nbevel*5 + 1) * 2; // plus one for loop
}
verts = nvg__allocTempVerts(ctx, cverts);
if (verts == NULL) return 0;
convex = cache->npaths == 1 && cache->paths[0].convex;
for (i = 0; i < cache->npaths; i++) {
NVGpath* path = &cache->paths[i];
NVGpoint* pts = &cache->points[path->first];
NVGpoint* p0;
NVGpoint* p1;
float rw, lw, woff;
float ru, lu;
// Calculate shape vertices.
woff = 0.5f*aa;
dst = verts;
path->fill = dst;
if (fringe) {
// Looping
p0 = &pts[path->count-1];
p1 = &pts[0];
for (j = 0; j < path->count; ++j) {
if (p1->flags & NVG_PT_BEVEL) {
float dlx0 = p0->dy;
float dly0 = -p0->dx;
float dlx1 = p1->dy;
float dly1 = -p1->dx;
if (p1->flags & NVG_PT_LEFT) {
float lx = p1->x + p1->dmx * woff;
float ly = p1->y + p1->dmy * woff;
nvg__vset(dst, lx, ly, 0.5f,1); dst++;
} else {
float lx0 = p1->x + dlx0 * woff;
float ly0 = p1->y + dly0 * woff;
float lx1 = p1->x + dlx1 * woff;
float ly1 = p1->y + dly1 * woff;
nvg__vset(dst, lx0, ly0, 0.5f,1); dst++;
nvg__vset(dst, lx1, ly1, 0.5f,1); dst++;
}
} else {
nvg__vset(dst, p1->x + (p1->dmx * woff), p1->y + (p1->dmy * woff), 0.5f,1); dst++;
}
p0 = p1++;
}
} else {
for (j = 0; j < path->count; ++j) {
nvg__vset(dst, pts[j].x, pts[j].y, 0.5f,1);
dst++;
}
}
path->nfill = (int)(dst - verts);
verts = dst;
// Calculate fringe
if (fringe) {
lw = w + woff;
rw = w - woff;
lu = 0;
ru = 1;
dst = verts;
path->stroke = dst;
// Create only half a fringe for convex shapes so that
// the shape can be rendered without stenciling.
if (convex) {
lw = woff; // This should generate the same vertex as fill inset above.
lu = 0.5f; // Set outline fade at middle.
}
// Looping
p0 = &pts[path->count-1];
p1 = &pts[0];
for (j = 0; j < path->count; ++j) {
if ((p1->flags & (NVG_PT_BEVEL | NVG_PR_INNERBEVEL)) != 0) {
dst = nvg__bevelJoin(dst, p0, p1, lw, rw, lu, ru, ctx->fringeWidth);
} else {
nvg__vset(dst, p1->x + (p1->dmx * lw), p1->y + (p1->dmy * lw), lu,1); dst++;
nvg__vset(dst, p1->x - (p1->dmx * rw), p1->y - (p1->dmy * rw), ru,1); dst++;
}
p0 = p1++;
}
// Loop it
nvg__vset(dst, verts[0].x, verts[0].y, lu,1); dst++;
nvg__vset(dst, verts[1].x, verts[1].y, ru,1); dst++;
path->nstroke = (int)(dst - verts);
verts = dst;
} else {
path->stroke = NULL;
path->nstroke = 0;
}
}
return 1;
}
// Draw
void nvgBeginPath(NVGcontext* ctx)
{
ctx->ncommands = 0;
nvg__clearPathCache(ctx);
}
void nvgMoveTo(NVGcontext* ctx, float x, float y)
{
float vals[] = { NVG_MOVETO, x, y };
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals));
}
void nvgLineTo(NVGcontext* ctx, float x, float y)
{
float vals[] = { NVG_LINETO, x, y };
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals));
}
void nvgBezierTo(NVGcontext* ctx, float c1x, float c1y, float c2x, float c2y, float x, float y)
{
float vals[] = { NVG_BEZIERTO, c1x, c1y, c2x, c2y, x, y };
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals));
}
void nvgQuadTo(NVGcontext* ctx, float cx, float cy, float x, float y)
{
float x0 = ctx->commandx;
float y0 = ctx->commandy;
float vals[] = { NVG_BEZIERTO,
x0 + 2.0f/3.0f*(cx - x0), y0 + 2.0f/3.0f*(cy - y0),
x + 2.0f/3.0f*(cx - x), y + 2.0f/3.0f*(cy - y),
x, y };
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals));
}
void nvgArcTo(NVGcontext* ctx, float x1, float y1, float x2, float y2, float radius)
{
float x0 = ctx->commandx;
float y0 = ctx->commandy;
float dx0,dy0, dx1,dy1, a, d, cx,cy, a0,a1;
int dir;
if (ctx->ncommands == 0) {
return;
}
// Handle degenerate cases.
if (nvg__ptEquals(x0,y0, x1,y1, ctx->distTol) ||
nvg__ptEquals(x1,y1, x2,y2, ctx->distTol) ||
nvg__distPtSeg(x1,y1, x0,y0, x2,y2) < ctx->distTol*ctx->distTol ||
radius < ctx->distTol) {
nvgLineTo(ctx, x1,y1);
return;
}
// Calculate tangential circle to lines (x0,y0)-(x1,y1) and (x1,y1)-(x2,y2).
dx0 = x0-x1;
dy0 = y0-y1;
dx1 = x2-x1;
dy1 = y2-y1;
nvg__normalize(&dx0,&dy0);
nvg__normalize(&dx1,&dy1);
a = nvg__acosf(dx0*dx1 + dy0*dy1);
d = radius / nvg__tanf(a/2.0f);
// printf("a=%f° d=%f\n", a/NVG_PI*180.0f, d);
if (d > 10000.0f) {
nvgLineTo(ctx, x1,y1);
return;
}
if (nvg__cross(dx0,dy0, dx1,dy1) > 0.0f) {
cx = x1 + dx0*d + dy0*radius;
cy = y1 + dy0*d + -dx0*radius;
a0 = nvg__atan2f(dx0, -dy0);
a1 = nvg__atan2f(-dx1, dy1);
dir = NVG_CW;
// printf("CW c=(%f, %f) a0=%f° a1=%f°\n", cx, cy, a0/NVG_PI*180.0f, a1/NVG_PI*180.0f);
} else {
cx = x1 + dx0*d + -dy0*radius;
cy = y1 + dy0*d + dx0*radius;
a0 = nvg__atan2f(-dx0, dy0);
a1 = nvg__atan2f(dx1, -dy1);
dir = NVG_CCW;
// printf("CCW c=(%f, %f) a0=%f° a1=%f°\n", cx, cy, a0/NVG_PI*180.0f, a1/NVG_PI*180.0f);
}
nvgArc(ctx, cx, cy, radius, a0, a1, dir);
}
void nvgClosePath(NVGcontext* ctx)
{
float vals[] = { NVG_CLOSE };
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals));
}
void nvgPathWinding(NVGcontext* ctx, int dir)
{
float vals[] = { NVG_WINDING, (float)dir };
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals));
}
void nvgArc(NVGcontext* ctx, float cx, float cy, float r, float a0, float a1, int dir)
{
float a = 0, da = 0, hda = 0, kappa = 0;
float dx = 0, dy = 0, x = 0, y = 0, tanx = 0, tany = 0;
float px = 0, py = 0, ptanx = 0, ptany = 0;
float vals[3 + 5*7 + 100];
int i, ndivs, nvals;
int move = ctx->ncommands > 0 ? NVG_LINETO : NVG_MOVETO;
// Clamp angles
da = a1 - a0;
if (dir == NVG_CW) {
if (nvg__absf(da) >= NVG_PI*2) {
da = NVG_PI*2;
} else {
while (da < 0.0f) da += NVG_PI*2;
}
} else {
if (nvg__absf(da) >= NVG_PI*2) {
da = -NVG_PI*2;
} else {
while (da > 0.0f) da -= NVG_PI*2;
}
}
// Split arc into max 90 degree segments.
ndivs = nvg__maxi(1, nvg__mini((int)(nvg__absf(da) / (NVG_PI*0.5f) + 0.5f), 5));
hda = (da / (float)ndivs) / 2.0f;
kappa = nvg__absf(4.0f / 3.0f * (1.0f - nvg__cosf(hda)) / nvg__sinf(hda));
if (dir == NVG_CCW)
kappa = -kappa;
nvals = 0;
for (i = 0; i <= ndivs; i++) {
a = a0 + da * (i/(float)ndivs);
dx = nvg__cosf(a);
dy = nvg__sinf(a);
x = cx + dx*r;
y = cy + dy*r;
tanx = -dy*r*kappa;
tany = dx*r*kappa;
if (i == 0) {
vals[nvals++] = (float)move;
vals[nvals++] = x;
vals[nvals++] = y;
} else {
vals[nvals++] = NVG_BEZIERTO;
vals[nvals++] = px+ptanx;
vals[nvals++] = py+ptany;
vals[nvals++] = x-tanx;
vals[nvals++] = y-tany;
vals[nvals++] = x;
vals[nvals++] = y;
}
px = x;
py = y;
ptanx = tanx;
ptany = tany;
}
nvg__appendCommands(ctx, vals, nvals);
}
void nvgRect(NVGcontext* ctx, float x, float y, float w, float h)
{
float vals[] = {
NVG_MOVETO, x,y,
NVG_LINETO, x,y+h,
NVG_LINETO, x+w,y+h,
NVG_LINETO, x+w,y,
NVG_CLOSE
};
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals));
}
void nvgRoundedRect(NVGcontext* ctx, float x, float y, float w, float h, float r)
{
if (r < 0.1f) {
nvgRect(ctx, x,y,w,h);
return;
}
else {
float rx = nvg__minf(r, nvg__absf(w)*0.5f) * nvg__signf(w), ry = nvg__minf(r, nvg__absf(h)*0.5f) * nvg__signf(h);
float vals[] = {
NVG_MOVETO, x, y+ry,
NVG_LINETO, x, y+h-ry,
NVG_BEZIERTO, x, y+h-ry*(1-NVG_KAPPA90), x+rx*(1-NVG_KAPPA90), y+h, x+rx, y+h,
NVG_LINETO, x+w-rx, y+h,
NVG_BEZIERTO, x+w-rx*(1-NVG_KAPPA90), y+h, x+w, y+h-ry*(1-NVG_KAPPA90), x+w, y+h-ry,
NVG_LINETO, x+w, y+ry,
NVG_BEZIERTO, x+w, y+ry*(1-NVG_KAPPA90), x+w-rx*(1-NVG_KAPPA90), y, x+w-rx, y,
NVG_LINETO, x+rx, y,
NVG_BEZIERTO, x+rx*(1-NVG_KAPPA90), y, x, y+ry*(1-NVG_KAPPA90), x, y+ry,
NVG_CLOSE
};
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals));
}
}
void nvgEllipse(NVGcontext* ctx, float cx, float cy, float rx, float ry)
{
float vals[] = {
NVG_MOVETO, cx-rx, cy,
NVG_BEZIERTO, cx-rx, cy+ry*NVG_KAPPA90, cx-rx*NVG_KAPPA90, cy+ry, cx, cy+ry,
NVG_BEZIERTO, cx+rx*NVG_KAPPA90, cy+ry, cx+rx, cy+ry*NVG_KAPPA90, cx+rx, cy,
NVG_BEZIERTO, cx+rx, cy-ry*NVG_KAPPA90, cx+rx*NVG_KAPPA90, cy-ry, cx, cy-ry,
NVG_BEZIERTO, cx-rx*NVG_KAPPA90, cy-ry, cx-rx, cy-ry*NVG_KAPPA90, cx-rx, cy,
NVG_CLOSE
};
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals));
}
void nvgCircle(NVGcontext* ctx, float cx, float cy, float r)
{
nvgEllipse(ctx, cx,cy, r,r);
}
void nvgDebugDumpPathCache(NVGcontext* ctx)
{
const NVGpath* path;
int i, j;
printf("Dumping %d cached paths\n", ctx->cache->npaths);
for (i = 0; i < ctx->cache->npaths; i++) {
path = &ctx->cache->paths[i];
printf(" - Path %d\n", i);
if (path->nfill) {
printf(" - fill: %d\n", path->nfill);
for (j = 0; j < path->nfill; j++)
printf("%f\t%f\n", path->fill[j].x, path->fill[j].y);
}
if (path->nstroke) {
printf(" - stroke: %d\n", path->nstroke);
for (j = 0; j < path->nstroke; j++)
printf("%f\t%f\n", path->stroke[j].x, path->stroke[j].y);
}
}
}
void nvgFill(NVGcontext* ctx)
{
NVGstate* state = nvg__getState(ctx);
const NVGpath* path;
NVGpaint fillPaint = state->fill;
int i;
nvg__flattenPaths(ctx);
if (ctx->params.edgeAntiAlias)
nvg__expandFill(ctx, ctx->fringeWidth, NVG_MITER, 2.4f);
else
nvg__expandFill(ctx, 0.0f, NVG_MITER, 2.4f);
// Apply global alpha
fillPaint.innerColor.a *= state->alpha;
fillPaint.outerColor.a *= state->alpha;
ctx->params.renderFill(ctx->params.userPtr, &fillPaint, &state->scissor, ctx->fringeWidth,
ctx->cache->bounds, ctx->cache->paths, ctx->cache->npaths);
// Count triangles
for (i = 0; i < ctx->cache->npaths; i++) {
path = &ctx->cache->paths[i];
ctx->fillTriCount += path->nfill-2;
ctx->fillTriCount += path->nstroke-2;
ctx->drawCallCount += 2;
}
}
void nvgStroke(NVGcontext* ctx)
{
NVGstate* state = nvg__getState(ctx);
float scale = nvg__getAverageScale(state->xform);
float strokeWidth = nvg__clampf(state->strokeWidth * scale, 0.0f, 200.0f);
NVGpaint strokePaint = state->stroke;
const NVGpath* path;
int i;
if (strokeWidth < ctx->fringeWidth) {
// If the stroke width is less than pixel size, use alpha to emulate coverage.
// Since coverage is area, scale by alpha*alpha.
float alpha = nvg__clampf(strokeWidth / ctx->fringeWidth, 0.0f, 1.0f);
strokePaint.innerColor.a *= alpha*alpha;
strokePaint.outerColor.a *= alpha*alpha;
strokeWidth = ctx->fringeWidth;
}
// Apply global alpha
strokePaint.innerColor.a *= state->alpha;
strokePaint.outerColor.a *= state->alpha;
nvg__flattenPaths(ctx);
if (ctx->params.edgeAntiAlias)
nvg__expandStroke(ctx, strokeWidth*0.5f + ctx->fringeWidth*0.5f, state->lineCap, state->lineJoin, state->miterLimit);
else
nvg__expandStroke(ctx, strokeWidth*0.5f, state->lineCap, state->lineJoin, state->miterLimit);
ctx->params.renderStroke(ctx->params.userPtr, &strokePaint, &state->scissor, ctx->fringeWidth,
strokeWidth, ctx->cache->paths, ctx->cache->npaths);
// Count triangles
for (i = 0; i < ctx->cache->npaths; i++) {
path = &ctx->cache->paths[i];
ctx->strokeTriCount += path->nstroke-2;
ctx->drawCallCount++;
}
}
// Add fonts
int nvgCreateFont(NVGcontext* ctx, const char* name, const char* path)
{
return fonsAddFont(ctx->fs, name, path);
}
int nvgCreateFontMem(NVGcontext* ctx, const char* name, unsigned char* data, int ndata, int freeData)
{
return fonsAddFontMem(ctx->fs, name, data, ndata, freeData);
}
int nvgFindFont(NVGcontext* ctx, const char* name)
{
if (name == NULL) return -1;
return fonsGetFontByName(ctx->fs, name);
}
// State setting
void nvgFontSize(NVGcontext* ctx, float size)
{
NVGstate* state = nvg__getState(ctx);
state->fontSize = size;
}
void nvgFontBlur(NVGcontext* ctx, float blur)
{
NVGstate* state = nvg__getState(ctx);
state->fontBlur = blur;
}
void nvgTextLetterSpacing(NVGcontext* ctx, float spacing)
{
NVGstate* state = nvg__getState(ctx);
state->letterSpacing = spacing;
}
void nvgTextLineHeight(NVGcontext* ctx, float lineHeight)
{
NVGstate* state = nvg__getState(ctx);
state->lineHeight = lineHeight;
}
void nvgTextAlign(NVGcontext* ctx, int align)
{
NVGstate* state = nvg__getState(ctx);
state->textAlign = align;
}
void nvgFontFaceId(NVGcontext* ctx, int font)
{
NVGstate* state = nvg__getState(ctx);
state->fontId = font;
}
void nvgFontFace(NVGcontext* ctx, const char* font)
{
NVGstate* state = nvg__getState(ctx);
state->fontId = fonsGetFontByName(ctx->fs, font);
}
static float nvg__quantize(float a, float d)
{
return ((int)(a / d + 0.5f)) * d;
}
static float nvg__getFontScale(NVGstate* state)
{
return nvg__minf(nvg__quantize(nvg__getAverageScale(state->xform), 0.01f), 4.0f);
}
static void nvg__flushTextTexture(NVGcontext* ctx)
{
int dirty[4];
if (fonsValidateTexture(ctx->fs, dirty)) {
int fontImage = ctx->fontImages[ctx->fontImageIdx];
// Update texture
if (fontImage != 0) {
int iw, ih;
const unsigned char* data = fonsGetTextureData(ctx->fs, &iw, &ih);
int x = dirty[0];
int y = dirty[1];
int w = dirty[2] - dirty[0];
int h = dirty[3] - dirty[1];
ctx->params.renderUpdateTexture(ctx->params.userPtr, fontImage, x,y, w,h, data);
}
}
}
static int nvg__allocTextAtlas(NVGcontext* ctx)
{
int iw, ih;
nvg__flushTextTexture(ctx);
if (ctx->fontImageIdx >= NVG_MAX_FONTIMAGES-1)
return 0;
// if next fontImage already have a texture
if (ctx->fontImages[ctx->fontImageIdx+1] != 0)
nvgImageSize(ctx, ctx->fontImages[ctx->fontImageIdx+1], &iw, &ih);
else { // calculate the new font image size and create it.
nvgImageSize(ctx, ctx->fontImages[ctx->fontImageIdx], &iw, &ih);
if (iw > ih)
ih *= 2;
else
iw *= 2;
if (iw > NVG_MAX_FONTIMAGE_SIZE || ih > NVG_MAX_FONTIMAGE_SIZE)
iw = ih = NVG_MAX_FONTIMAGE_SIZE;
ctx->fontImages[ctx->fontImageIdx+1] = ctx->params.renderCreateTexture(ctx->params.userPtr, NVG_TEXTURE_ALPHA, iw, ih, 0, NULL);
}
++ctx->fontImageIdx;
fonsResetAtlas(ctx->fs, iw, ih);
return 1;
}
static void nvg__renderText(NVGcontext* ctx, NVGvertex* verts, int nverts)
{
NVGstate* state = nvg__getState(ctx);
NVGpaint paint = state->fill;
// Render triangles.
paint.image = ctx->fontImages[ctx->fontImageIdx];
// Apply global alpha
paint.innerColor.a *= state->alpha;
paint.outerColor.a *= state->alpha;
ctx->params.renderTriangles(ctx->params.userPtr, &paint, &state->scissor, verts, nverts);
ctx->drawCallCount++;
ctx->textTriCount += nverts/3;
}
float nvgText(NVGcontext* ctx, float x, float y, const char* string, const char* end)
{
NVGstate* state = nvg__getState(ctx);
FONStextIter iter, prevIter;
FONSquad q;
NVGvertex* verts;
float scale = nvg__getFontScale(state) * ctx->devicePxRatio;
float invscale = 1.0f / scale;
int cverts = 0;
int nverts = 0;
if (end == NULL)
end = string + strlen(string);
if (state->fontId == FONS_INVALID) return x;
fonsSetSize(ctx->fs, state->fontSize*scale);
fonsSetSpacing(ctx->fs, state->letterSpacing*scale);
fonsSetBlur(ctx->fs, state->fontBlur*scale);
fonsSetAlign(ctx->fs, state->textAlign);
fonsSetFont(ctx->fs, state->fontId);
cverts = nvg__maxi(2, (int)(end - string)) * 6; // conservative estimate.
verts = nvg__allocTempVerts(ctx, cverts);
if (verts == NULL) return x;
fonsTextIterInit(ctx->fs, &iter, x*scale, y*scale, string, end);
prevIter = iter;
while (fonsTextIterNext(ctx->fs, &iter, &q)) {
float c[4*2];
if (iter.prevGlyphIndex == -1) { // can not retrieve glyph?
if (!nvg__allocTextAtlas(ctx))
break; // no memory :(
if (nverts != 0) {
nvg__renderText(ctx, verts, nverts);
nverts = 0;
}
iter = prevIter;
fonsTextIterNext(ctx->fs, &iter, &q); // try again
if (iter.prevGlyphIndex == -1) // still can not find glyph?
break;
}
prevIter = iter;
// Transform corners.
nvgTransformPoint(&c[0],&c[1], state->xform, q.x0*invscale, q.y0*invscale);
nvgTransformPoint(&c[2],&c[3], state->xform, q.x1*invscale, q.y0*invscale);
nvgTransformPoint(&c[4],&c[5], state->xform, q.x1*invscale, q.y1*invscale);
nvgTransformPoint(&c[6],&c[7], state->xform, q.x0*invscale, q.y1*invscale);
// Create triangles
if (nverts+6 <= cverts) {
nvg__vset(&verts[nverts], c[0], c[1], q.s0, q.t0); nverts++;
nvg__vset(&verts[nverts], c[4], c[5], q.s1, q.t1); nverts++;
nvg__vset(&verts[nverts], c[2], c[3], q.s1, q.t0); nverts++;
nvg__vset(&verts[nverts], c[0], c[1], q.s0, q.t0); nverts++;
nvg__vset(&verts[nverts], c[6], c[7], q.s0, q.t1); nverts++;
nvg__vset(&verts[nverts], c[4], c[5], q.s1, q.t1); nverts++;
}
}
// TODO: add back-end bit to do this just once per frame.
nvg__flushTextTexture(ctx);
nvg__renderText(ctx, verts, nverts);
return iter.x;
}
void nvgTextBox(NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end)
{
NVGstate* state = nvg__getState(ctx);
NVGtextRow rows[2];
int nrows = 0, i;
int oldAlign = state->textAlign;
int haling = state->textAlign & (NVG_ALIGN_LEFT | NVG_ALIGN_CENTER | NVG_ALIGN_RIGHT);
int valign = state->textAlign & (NVG_ALIGN_TOP | NVG_ALIGN_MIDDLE | NVG_ALIGN_BOTTOM | NVG_ALIGN_BASELINE);
float lineh = 0;
if (state->fontId == FONS_INVALID) return;
nvgTextMetrics(ctx, NULL, NULL, &lineh);
state->textAlign = NVG_ALIGN_LEFT | valign;
while ((nrows = nvgTextBreakLines(ctx, string, end, breakRowWidth, rows, 2))) {
for (i = 0; i < nrows; i++) {
NVGtextRow* row = &rows[i];
if (haling & NVG_ALIGN_LEFT)
nvgText(ctx, x, y, row->start, row->end);
else if (haling & NVG_ALIGN_CENTER)
nvgText(ctx, x + breakRowWidth*0.5f - row->width*0.5f, y, row->start, row->end);
else if (haling & NVG_ALIGN_RIGHT)
nvgText(ctx, x + breakRowWidth - row->width, y, row->start, row->end);
y += lineh * state->lineHeight;
}
string = rows[nrows-1].next;
}
state->textAlign = oldAlign;
}
int nvgTextGlyphPositions(NVGcontext* ctx, float x, float y, const char* string, const char* end, NVGglyphPosition* positions, int maxPositions)
{
NVGstate* state = nvg__getState(ctx);
float scale = nvg__getFontScale(state) * ctx->devicePxRatio;
float invscale = 1.0f / scale;
FONStextIter iter, prevIter;
FONSquad q;
int npos = 0;
if (state->fontId == FONS_INVALID) return 0;
if (end == NULL)
end = string + strlen(string);
if (string == end)
return 0;
fonsSetSize(ctx->fs, state->fontSize*scale);
fonsSetSpacing(ctx->fs, state->letterSpacing*scale);
fonsSetBlur(ctx->fs, state->fontBlur*scale);
fonsSetAlign(ctx->fs, state->textAlign);
fonsSetFont(ctx->fs, state->fontId);
fonsTextIterInit(ctx->fs, &iter, x*scale, y*scale, string, end);
prevIter = iter;
while (fonsTextIterNext(ctx->fs, &iter, &q)) {
if (iter.prevGlyphIndex < 0 && nvg__allocTextAtlas(ctx)) { // can not retrieve glyph?
iter = prevIter;
fonsTextIterNext(ctx->fs, &iter, &q); // try again
}
prevIter = iter;
positions[npos].str = iter.str;
positions[npos].x = iter.x * invscale;
positions[npos].minx = nvg__minf(iter.x, q.x0) * invscale;
positions[npos].maxx = nvg__maxf(iter.nextx, q.x1) * invscale;
npos++;
if (npos >= maxPositions)
break;
}
return npos;
}
enum NVGcodepointType {
NVG_SPACE,
NVG_NEWLINE,
NVG_CHAR,
};
int nvgTextBreakLines(NVGcontext* ctx, const char* string, const char* end, float breakRowWidth, NVGtextRow* rows, int maxRows)
{
NVGstate* state = nvg__getState(ctx);
float scale = nvg__getFontScale(state) * ctx->devicePxRatio;
float invscale = 1.0f / scale;
FONStextIter iter, prevIter;
FONSquad q;
int nrows = 0;
float rowStartX = 0;
float rowWidth = 0;
float rowMinX = 0;
float rowMaxX = 0;
const char* rowStart = NULL;
const char* rowEnd = NULL;
const char* wordStart = NULL;
float wordStartX = 0;
float wordMinX = 0;
const char* breakEnd = NULL;
float breakWidth = 0;
float breakMaxX = 0;
int type = NVG_SPACE, ptype = NVG_SPACE;
unsigned int pcodepoint = 0;
if (maxRows == 0) return 0;
if (state->fontId == FONS_INVALID) return 0;
if (end == NULL)
end = string + strlen(string);
if (string == end) return 0;
fonsSetSize(ctx->fs, state->fontSize*scale);
fonsSetSpacing(ctx->fs, state->letterSpacing*scale);
fonsSetBlur(ctx->fs, state->fontBlur*scale);
fonsSetAlign(ctx->fs, state->textAlign);
fonsSetFont(ctx->fs, state->fontId);
breakRowWidth *= scale;
fonsTextIterInit(ctx->fs, &iter, 0, 0, string, end);
prevIter = iter;
while (fonsTextIterNext(ctx->fs, &iter, &q)) {
if (iter.prevGlyphIndex < 0 && nvg__allocTextAtlas(ctx)) { // can not retrieve glyph?
iter = prevIter;
fonsTextIterNext(ctx->fs, &iter, &q); // try again
}
prevIter = iter;
switch (iter.codepoint) {
case 9: // \t
case 11: // \v
case 12: // \f
case 32: // space
case 0x00a0: // NBSP
type = NVG_SPACE;
break;
case 10: // \n
type = pcodepoint == 13 ? NVG_SPACE : NVG_NEWLINE;
break;
case 13: // \r
type = pcodepoint == 10 ? NVG_SPACE : NVG_NEWLINE;
break;
case 0x0085: // NEL
type = NVG_NEWLINE;
break;
default:
type = NVG_CHAR;
break;
}
if (type == NVG_NEWLINE) {
// Always handle new lines.
rows[nrows].start = rowStart != NULL ? rowStart : iter.str;
rows[nrows].end = rowEnd != NULL ? rowEnd : iter.str;
rows[nrows].width = rowWidth * invscale;
rows[nrows].minx = rowMinX * invscale;
rows[nrows].maxx = rowMaxX * invscale;
rows[nrows].next = iter.next;
nrows++;
if (nrows >= maxRows)
return nrows;
// Set null break point
breakEnd = rowStart;
breakWidth = 0.0;
breakMaxX = 0.0;
// Indicate to skip the white space at the beginning of the row.
rowStart = NULL;
rowEnd = NULL;
rowWidth = 0;
rowMinX = rowMaxX = 0;
} else {
if (rowStart == NULL) {
// Skip white space until the beginning of the line
if (type == NVG_CHAR) {
// The current char is the row so far
rowStartX = iter.x;
rowStart = iter.str;
rowEnd = iter.next;
rowWidth = iter.nextx - rowStartX; // q.x1 - rowStartX;
rowMinX = q.x0 - rowStartX;
rowMaxX = q.x1 - rowStartX;
wordStart = iter.str;
wordStartX = iter.x;
wordMinX = q.x0 - rowStartX;
// Set null break point
breakEnd = rowStart;
breakWidth = 0.0;
breakMaxX = 0.0;
}
} else {
float nextWidth = iter.nextx - rowStartX;
// track last non-white space character
if (type == NVG_CHAR) {
rowEnd = iter.next;
rowWidth = iter.nextx - rowStartX;
rowMaxX = q.x1 - rowStartX;
}
// track last end of a word
if (ptype == NVG_CHAR && type == NVG_SPACE) {
breakEnd = iter.str;
breakWidth = rowWidth;
breakMaxX = rowMaxX;
}
// track last beginning of a word
if (ptype == NVG_SPACE && type == NVG_CHAR) {
wordStart = iter.str;
wordStartX = iter.x;
wordMinX = q.x0 - rowStartX;
}
// Break to new line when a character is beyond break width.
if (type == NVG_CHAR && nextWidth > breakRowWidth) {
// The run length is too long, need to break to new line.
if (breakEnd == rowStart) {
// The current word is longer than the row length, just break it from here.
rows[nrows].start = rowStart;
rows[nrows].end = iter.str;
rows[nrows].width = rowWidth * invscale;
rows[nrows].minx = rowMinX * invscale;
rows[nrows].maxx = rowMaxX * invscale;
rows[nrows].next = iter.str;
nrows++;
if (nrows >= maxRows)
return nrows;
rowStartX = iter.x;
rowStart = iter.str;
rowEnd = iter.next;
rowWidth = iter.nextx - rowStartX;
rowMinX = q.x0 - rowStartX;
rowMaxX = q.x1 - rowStartX;
wordStart = iter.str;
wordStartX = iter.x;
wordMinX = q.x0 - rowStartX;
} else {
// Break the line from the end of the last word, and start new line from the beginning of the new.
rows[nrows].start = rowStart;
rows[nrows].end = breakEnd;
rows[nrows].width = breakWidth * invscale;
rows[nrows].minx = rowMinX * invscale;
rows[nrows].maxx = breakMaxX * invscale;
rows[nrows].next = wordStart;
nrows++;
if (nrows >= maxRows)
return nrows;
rowStartX = wordStartX;
rowStart = wordStart;
rowEnd = iter.next;
rowWidth = iter.nextx - rowStartX;
rowMinX = wordMinX;
rowMaxX = q.x1 - rowStartX;
// No change to the word start
}
// Set null break point
breakEnd = rowStart;
breakWidth = 0.0;
breakMaxX = 0.0;
}
}
}
pcodepoint = iter.codepoint;
ptype = type;
}
// Break the line from the end of the last word, and start new line from the beginning of the new.
if (rowStart != NULL) {
rows[nrows].start = rowStart;
rows[nrows].end = rowEnd;
rows[nrows].width = rowWidth * invscale;
rows[nrows].minx = rowMinX * invscale;
rows[nrows].maxx = rowMaxX * invscale;
rows[nrows].next = end;
nrows++;
}
return nrows;
}
float nvgTextBounds(NVGcontext* ctx, float x, float y, const char* string, const char* end, float* bounds)
{
NVGstate* state = nvg__getState(ctx);
float scale = nvg__getFontScale(state) * ctx->devicePxRatio;
float invscale = 1.0f / scale;
float width;
if (state->fontId == FONS_INVALID) return 0;
fonsSetSize(ctx->fs, state->fontSize*scale);
fonsSetSpacing(ctx->fs, state->letterSpacing*scale);
fonsSetBlur(ctx->fs, state->fontBlur*scale);
fonsSetAlign(ctx->fs, state->textAlign);
fonsSetFont(ctx->fs, state->fontId);
width = fonsTextBounds(ctx->fs, x*scale, y*scale, string, end, bounds);
if (bounds != NULL) {
// Use line bounds for height.
fonsLineBounds(ctx->fs, y*scale, &bounds[1], &bounds[3]);
bounds[0] *= invscale;
bounds[1] *= invscale;
bounds[2] *= invscale;
bounds[3] *= invscale;
}
return width * invscale;
}
void nvgTextBoxBounds(NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end, float* bounds)
{
NVGstate* state = nvg__getState(ctx);
NVGtextRow rows[2];
float scale = nvg__getFontScale(state) * ctx->devicePxRatio;
float invscale = 1.0f / scale;
int nrows = 0, i;
int oldAlign = state->textAlign;
int haling = state->textAlign & (NVG_ALIGN_LEFT | NVG_ALIGN_CENTER | NVG_ALIGN_RIGHT);
int valign = state->textAlign & (NVG_ALIGN_TOP | NVG_ALIGN_MIDDLE | NVG_ALIGN_BOTTOM | NVG_ALIGN_BASELINE);
float lineh = 0, rminy = 0, rmaxy = 0;
float minx, miny, maxx, maxy;
if (state->fontId == FONS_INVALID) {
if (bounds != NULL)
bounds[0] = bounds[1] = bounds[2] = bounds[3] = 0.0f;
return;
}
nvgTextMetrics(ctx, NULL, NULL, &lineh);
state->textAlign = NVG_ALIGN_LEFT | valign;
minx = maxx = x;
miny = maxy = y;
fonsSetSize(ctx->fs, state->fontSize*scale);
fonsSetSpacing(ctx->fs, state->letterSpacing*scale);
fonsSetBlur(ctx->fs, state->fontBlur*scale);
fonsSetAlign(ctx->fs, state->textAlign);
fonsSetFont(ctx->fs, state->fontId);
fonsLineBounds(ctx->fs, 0, &rminy, &rmaxy);
rminy *= invscale;
rmaxy *= invscale;
while ((nrows = nvgTextBreakLines(ctx, string, end, breakRowWidth, rows, 2))) {
for (i = 0; i < nrows; i++) {
NVGtextRow* row = &rows[i];
float rminx, rmaxx, dx = 0;
// Horizontal bounds
if (haling & NVG_ALIGN_LEFT)
dx = 0;
else if (haling & NVG_ALIGN_CENTER)
dx = breakRowWidth*0.5f - row->width*0.5f;
else if (haling & NVG_ALIGN_RIGHT)
dx = breakRowWidth - row->width;
rminx = x + row->minx + dx;
rmaxx = x + row->maxx + dx;
minx = nvg__minf(minx, rminx);
maxx = nvg__maxf(maxx, rmaxx);
// Vertical bounds.
miny = nvg__minf(miny, y + rminy);
maxy = nvg__maxf(maxy, y + rmaxy);
y += lineh * state->lineHeight;
}
string = rows[nrows-1].next;
}
state->textAlign = oldAlign;
if (bounds != NULL) {
bounds[0] = minx;
bounds[1] = miny;
bounds[2] = maxx;
bounds[3] = maxy;
}
}
void nvgTextMetrics(NVGcontext* ctx, float* ascender, float* descender, float* lineh)
{
NVGstate* state = nvg__getState(ctx);
float scale = nvg__getFontScale(state) * ctx->devicePxRatio;
float invscale = 1.0f / scale;
if (state->fontId == FONS_INVALID) return;
fonsSetSize(ctx->fs, state->fontSize*scale);
fonsSetSpacing(ctx->fs, state->letterSpacing*scale);
fonsSetBlur(ctx->fs, state->fontBlur*scale);
fonsSetAlign(ctx->fs, state->textAlign);
fonsSetFont(ctx->fs, state->fontId);
fonsVertMetrics(ctx->fs, ascender, descender, lineh);
if (ascender != NULL)
*ascender *= invscale;
if (descender != NULL)
*descender *= invscale;
if (lineh != NULL)
*lineh *= invscale;
}
// vim: ft=c nu noet ts=4