195 lines
7.2 KiB
C++
195 lines
7.2 KiB
C++
|
/*
|
||
|
* Software License Agreement (BSD License)
|
||
|
*
|
||
|
* Copyright (c) 2016, Open Source Robotics Foundation
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above
|
||
|
* copyright notice, this list of conditions and the following
|
||
|
* disclaimer in the documentation and/or other materials provided
|
||
|
* with the distribution.
|
||
|
* * Neither the name of Open Source Robotics Foundation nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#include <gtest/gtest.h>
|
||
|
|
||
|
#include "eigen_matrix_compare.h"
|
||
|
#include "fcl/narrowphase/distance.h"
|
||
|
#include "fcl/narrowphase/detail/traversal/collision_node.h"
|
||
|
#include "fcl/narrowphase/detail/gjk_solver_libccd.h"
|
||
|
#include "test_fcl_utility.h"
|
||
|
#include "fcl_resources/config.h"
|
||
|
|
||
|
using namespace fcl;
|
||
|
|
||
|
bool verbose = false;
|
||
|
|
||
|
//==============================================================================
|
||
|
template <typename S>
|
||
|
void test_distance_spheresphere(GJKSolverType solver_type)
|
||
|
{
|
||
|
const S radius_1 = 20;
|
||
|
const S radius_2 = 10;
|
||
|
Sphere<S> s1{radius_1};
|
||
|
Sphere<S> s2{radius_2};
|
||
|
|
||
|
Transform3<S> tf1{Transform3<S>::Identity()};
|
||
|
Transform3<S> tf2{Transform3<S>::Identity()};
|
||
|
|
||
|
DistanceRequest<S> request;
|
||
|
request.enable_signed_distance = true;
|
||
|
request.enable_nearest_points = true;
|
||
|
request.gjk_solver_type = solver_type;
|
||
|
|
||
|
DistanceResult<S> result;
|
||
|
|
||
|
// Expecting distance to be 10
|
||
|
result.clear();
|
||
|
tf2.translation() = Vector3<S>(40, 0, 0);
|
||
|
distance(&s1, tf1, &s2, tf2, request, result);
|
||
|
EXPECT_NEAR(result.min_distance, 10, 1e-6);
|
||
|
EXPECT_TRUE(CompareMatrices(result.nearest_points[0], Vector3<S>(20, 0, 0),
|
||
|
request.distance_tolerance));
|
||
|
EXPECT_TRUE(CompareMatrices(result.nearest_points[1], Vector3<S>(30, 0, 0),
|
||
|
request.distance_tolerance));
|
||
|
|
||
|
// request.distance_tolerance is actually the square of the distance
|
||
|
// tolerance, namely the difference between distance returned from FCL's EPA
|
||
|
// implementation and the actual distance, is less than
|
||
|
// sqrt(request.distance_tolerance).
|
||
|
const S distance_tolerance = std::sqrt(request.distance_tolerance);
|
||
|
|
||
|
// Expecting distance to be -5
|
||
|
result.clear();
|
||
|
tf2.translation() = Vector3<S>(25, 0, 0);
|
||
|
distance(&s1, tf1, &s2, tf2, request, result);
|
||
|
EXPECT_NEAR(result.min_distance, -5, request.distance_tolerance);
|
||
|
|
||
|
// TODO(JS): Only GST_LIBCCD can compute the pair of nearest points on the
|
||
|
// surface of the penetrating spheres.
|
||
|
if (solver_type == GST_LIBCCD)
|
||
|
{
|
||
|
EXPECT_TRUE(CompareMatrices(result.nearest_points[0], Vector3<S>(20, 0, 0),
|
||
|
distance_tolerance));
|
||
|
EXPECT_TRUE(CompareMatrices(result.nearest_points[1], Vector3<S>(15, 0, 0),
|
||
|
distance_tolerance));
|
||
|
}
|
||
|
|
||
|
result.clear();
|
||
|
tf2.translation() = Vector3<S>(20, 0, 20);
|
||
|
distance(&s1, tf1, &s2, tf2, request, result);
|
||
|
|
||
|
S expected_dist =
|
||
|
(tf1.translation() - tf2.translation()).norm() - radius_1 - radius_2;
|
||
|
EXPECT_NEAR(result.min_distance, expected_dist, distance_tolerance);
|
||
|
// TODO(JS): Only GST_LIBCCD can compute the pair of nearest points on the
|
||
|
// surface of the spheres.
|
||
|
if (solver_type == GST_LIBCCD)
|
||
|
{
|
||
|
Vector3<S> dir = (tf2.translation() - tf1.translation()).normalized();
|
||
|
Vector3<S> p0_expected = dir * radius_1;
|
||
|
EXPECT_TRUE(CompareMatrices(result.nearest_points[0], p0_expected,
|
||
|
distance_tolerance));
|
||
|
Vector3<S> p1_expected = tf2.translation() - dir * radius_2;
|
||
|
EXPECT_TRUE(CompareMatrices(result.nearest_points[1], p1_expected,
|
||
|
distance_tolerance));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename S>
|
||
|
void test_distance_spherecapsule(GJKSolverType solver_type)
|
||
|
{
|
||
|
Sphere<S> s1{20};
|
||
|
Capsule<S> s2{10, 20};
|
||
|
|
||
|
Transform3<S> tf1{Transform3<S>::Identity()};
|
||
|
Transform3<S> tf2{Transform3<S>::Identity()};
|
||
|
|
||
|
DistanceRequest<S> request;
|
||
|
request.enable_signed_distance = true;
|
||
|
request.enable_nearest_points = true;
|
||
|
request.gjk_solver_type = solver_type;
|
||
|
|
||
|
DistanceResult<S> result;
|
||
|
|
||
|
// Expecting distance to be 10
|
||
|
result.clear();
|
||
|
tf2.translation() = Vector3<S>(40, 0, 0);
|
||
|
distance(&s1, tf1, &s2, tf2, request, result);
|
||
|
EXPECT_NEAR(result.min_distance, 10, request.distance_tolerance);
|
||
|
EXPECT_TRUE(CompareMatrices(result.nearest_points[0], Vector3<S>(20, 0, 0),
|
||
|
request.distance_tolerance));
|
||
|
EXPECT_TRUE(CompareMatrices(result.nearest_points[1], Vector3<S>(30, 0, 0),
|
||
|
request.distance_tolerance));
|
||
|
|
||
|
// Expecting distance to be -5
|
||
|
result.clear();
|
||
|
tf2.translation() = Vector3<S>(25, 0, 0);
|
||
|
distance(&s1, tf1, &s2, tf2, request, result);
|
||
|
|
||
|
// request.distance_tolerance is actually the square of the distance
|
||
|
// tolerance, namely the difference between distance returned from FCL's EPA
|
||
|
// implementation and the actual distance, is less than
|
||
|
// sqrt(request.distance_tolerance).
|
||
|
const S distance_tolerance = std::sqrt(request.distance_tolerance);
|
||
|
ASSERT_NEAR(result.min_distance, -5, distance_tolerance);
|
||
|
if (solver_type == GST_LIBCCD)
|
||
|
{
|
||
|
// NOTE: Currently, only GST_LIBCCD computes the pair of nearest points.
|
||
|
EXPECT_TRUE(CompareMatrices(result.nearest_points[0], Vector3<S>(20, 0, 0),
|
||
|
distance_tolerance * 100));
|
||
|
EXPECT_TRUE(CompareMatrices(result.nearest_points[1], Vector3<S>(15, 0, 0),
|
||
|
distance_tolerance * 100));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//==============================================================================
|
||
|
|
||
|
GTEST_TEST(FCL_NEGATIVE_DISTANCE, sphere_sphere_ccd)
|
||
|
{
|
||
|
test_distance_spheresphere<double>(GST_LIBCCD);
|
||
|
}
|
||
|
|
||
|
GTEST_TEST(FCL_NEGATIVE_DISTANCE, sphere_sphere_indep)
|
||
|
{
|
||
|
test_distance_spheresphere<double>(GST_INDEP);
|
||
|
}
|
||
|
|
||
|
GTEST_TEST(FCL_NEGATIVE_DISTANCE, sphere_capsule_ccd)
|
||
|
{
|
||
|
test_distance_spherecapsule<double>(GST_LIBCCD);
|
||
|
}
|
||
|
|
||
|
GTEST_TEST(FCL_NEGATIVE_DISTANCE, sphere_capsule_indep)
|
||
|
{
|
||
|
test_distance_spherecapsule<double>(GST_INDEP);
|
||
|
}
|
||
|
|
||
|
//==============================================================================
|
||
|
int main(int argc, char* argv[])
|
||
|
{
|
||
|
::testing::InitGoogleTest(&argc, argv);
|
||
|
return RUN_ALL_TESTS();
|
||
|
}
|