protot/src/SimpleMath/SimpleMathGL.h

274 lines
6.9 KiB
C
Raw Normal View History

2016-08-29 22:31:11 +02:00
#ifndef _SIMPLEMATHGL_H_
#define _SIMPLEMATHGL_H_
#include "SimpleMath.h"
#include <cmath>
namespace SimpleMath {
namespace GL {
inline Matrix33f RotateMat33 (float rot_deg, float x, float y, float z) {
float c = cosf (rot_deg * M_PI / 180.f);
float s = sinf (rot_deg * M_PI / 180.f);
return Matrix33f (
x * x * (1.0f - c) + c,
y * x * (1.0f - c) + z * s,
x * z * (1.0f - c) - y * s,
x * y * (1.0f - c) - z * s,
y * y * (1.0f - c) + c,
y * z * (1.0f - c) + x * s,
x * z * (1.0f - c) + y * s,
y * z * (1.0f - c) - x * s,
z * z * (1.0f - c) + c
);
}
2016-08-29 22:31:11 +02:00
inline Matrix44f RotateMat44 (float rot_deg, float x, float y, float z) {
float c = cosf (rot_deg * M_PI / 180.f);
float s = sinf (rot_deg * M_PI / 180.f);
return Matrix44f (
x * x * (1.0f - c) + c,
y * x * (1.0f - c) + z * s,
x * z * (1.0f - c) - y * s,
0.f,
x * y * (1.0f - c) - z * s,
y * y * (1.0f - c) + c,
y * z * (1.0f - c) + x * s,
0.f,
x * z * (1.0f - c) + y * s,
y * z * (1.0f - c) - x * s,
z * z * (1.0f - c) + c,
0.f,
0.f, 0.f, 0.f, 1.f
);
}
inline Matrix44f TranslateMat44 (float x, float y, float z) {
return Matrix44f (
1.f, 0.f, 0.f, 0.f,
0.f, 1.f, 0.f, 0.f,
0.f, 0.f, 1.f, 0.f,
x, y, z, 1.f
);
}
inline Matrix44f ScaleMat44 (float x, float y, float z) {
return Matrix44f (
x, 0.f, 0.f, 0.f,
0.f, y, 0.f, 0.f,
0.f, 0.f, z, 0.f,
0.f, 0.f, 0.f, 1.f
);
}
/** Quaternion
*
* order: x,y,z,w
*/
class Quaternion : public Vector4f {
public:
Quaternion () :
Vector4f (0.f, 0.f, 0.f, 1.f)
{}
Quaternion (const Vector4f vec4) :
Vector4f (vec4)
{}
Quaternion (float x, float y, float z, float w):
Vector4f (x, y, z, w)
{}
/** This function is equivalent to multiplicate their corresponding rotation matrices */
Quaternion operator* (const Quaternion &q) const {
return Quaternion (
q[3] * (*this)[0] + q[0] * (*this)[3] + q[1] * (*this)[2] - q[2] * (*this)[1],
q[3] * (*this)[1] + q[1] * (*this)[3] + q[2] * (*this)[0] - q[0] * (*this)[2],
q[3] * (*this)[2] + q[2] * (*this)[3] + q[0] * (*this)[1] - q[1] * (*this)[0],
q[3] * (*this)[3] - q[0] * (*this)[0] - q[1] * (*this)[1] - q[2] * (*this)[2]
);
}
Quaternion& operator*=(const Quaternion &q) {
set (
q[3] * (*this)[0] + q[0] * (*this)[3] + q[1] * (*this)[2] - q[2] * (*this)[1],
q[3] * (*this)[1] + q[1] * (*this)[3] + q[2] * (*this)[0] - q[0] * (*this)[2],
q[3] * (*this)[2] + q[2] * (*this)[3] + q[0] * (*this)[1] - q[1] * (*this)[0],
q[3] * (*this)[3] - q[0] * (*this)[0] - q[1] * (*this)[1] - q[2] * (*this)[2]
);
return *this;
}
static Quaternion fromGLRotate (float angle, float x, float y, float z) {
float st = sinf (angle * M_PI / 360.f);
return Quaternion (
st * x,
st * y,
st * z,
cosf (angle * M_PI / 360.f)
);
}
Quaternion normalize() {
return Vector4f::normalize();
}
Quaternion slerp (float alpha, const Quaternion &quat) const {
// check whether one of the two has 0 length
float s = sqrt (squaredNorm() * quat.squaredNorm());
// division by 0.f is unhealthy!
assert (s != 0.f);
float angle = acos (dot(quat) / s);
if (angle == 0.f || std::isnan(angle)) {
return *this;
}
assert(!std::isnan(angle));
float d = 1.f / sinf (angle);
float p0 = sinf ((1.f - alpha) * angle);
float p1 = sinf (alpha * angle);
if (dot (quat) < 0.f) {
return Quaternion( ((*this) * p0 - quat * p1) * d);
}
return Quaternion( ((*this) * p0 + quat * p1) * d);
}
Matrix44f toGLMatrix() const {
float x = (*this)[0];
float y = (*this)[1];
float z = (*this)[2];
float w = (*this)[3];
return Matrix44f (
1 - 2*y*y - 2*z*z,
2*x*y + 2*w*z,
2*x*z - 2*w*y,
0.f,
2*x*y - 2*w*z,
1 - 2*x*x - 2*z*z,
2*y*z + 2*w*x,
0.f,
2*x*z + 2*w*y,
2*y*z - 2*w*x,
1 - 2*x*x - 2*y*y,
0.f,
0.f,
0.f,
0.f,
1.f);
}
static Quaternion fromGLMatrix(const Matrix44f &mat) {
float w = sqrt (1.f + mat(0,0) + mat(1,1) + mat(2,2)) * 0.5f;
return Quaternion (
-(mat(2,1) - mat(1,2)) / (w * 4.f),
-(mat(0,2) - mat(2,0)) / (w * 4.f),
-(mat(1,0) - mat(0,1)) / (w * 4.f),
w);
}
static Quaternion fromMatrix (const Matrix33f &mat) {
float w = sqrt (1.f + mat(0,0) + mat(1,1) + mat(2,2)) * 0.5f;
return Quaternion (
(mat(2,1) - mat(1,2)) / (w * 4.f),
(mat(0,2) - mat(2,0)) / (w * 4.f),
(mat(1,0) - mat(0,1)) / (w * 4.f),
w);
}
static Quaternion fromEulerZYX (const Vector3f &zyx_euler) {
return Quaternion::fromGLRotate (zyx_euler[0] * 180.f / M_PI, 0.f, 0.f, 1.f)
* Quaternion::fromGLRotate (zyx_euler[1] * 180.f / M_PI, 0.f, 1.f, 0.f)
* Quaternion::fromGLRotate (zyx_euler[2] * 180.f / M_PI, 1.f, 0.f, 0.f);
}
Vector3f toEulerZYX () const {
return Vector3f (
atan2 (-2.f * (*this)[0] * (*this)[1] + 2.f * (*this)[3] * (*this)[2],
(*this)[0] * (*this)[0] + (*this)[3] * (*this)[3]
-(*this)[2] * (*this)[2] - (*this)[1] * (*this)[1]),
asin (2.f * (*this)[0] * (*this)[2] + 2.f * (*this)[3] * (*this)[1]),
atan2 (-2.f * (*this)[1] * (*this)[2] + 2.f * (*this)[3] * (*this)[0],
(*this)[2] * (*this)[2] - (*this)[1] * (*this)[1]
-(*this)[0] * (*this)[0] + (*this)[3] * (*this)[3]
)
);
}
static Quaternion fromEulerYXZ (const Vector3f &yxz_euler) {
return Quaternion::fromGLRotate (yxz_euler[0] * 180.f / M_PI, 0.f, 1.f, 0.f)
* Quaternion::fromGLRotate (yxz_euler[1] * 180.f / M_PI, 1.f, 0.f, 0.f)
* Quaternion::fromGLRotate (yxz_euler[2] * 180.f / M_PI, 0.f, 0.f, 1.f);
}
Vector3f toEulerYXZ() const {
return Vector3f (
atan2 (-2.f * (*this)[0] * (*this)[2] + 2.f * (*this)[3] * (*this)[1],
(*this)[2] * (*this)[2] - (*this)[1] * (*this)[1]
-(*this)[0] * (*this)[0] + (*this)[3] * (*this)[3]),
asin (2.f * (*this)[1] * (*this)[2] + 2.f * (*this)[3] * (*this)[0]),
atan2 (-2.f * (*this)[0] * (*this)[1] + 2.f * (*this)[3] * (*this)[2],
(*this)[1] * (*this)[1] - (*this)[2] * (*this)[2]
+(*this)[3] * (*this)[3] - (*this)[0] * (*this)[0]
)
);
}
Matrix33f toMatrix() const {
float x = (*this)[0];
float y = (*this)[1];
float z = (*this)[2];
float w = (*this)[3];
return Matrix33f (
1 - 2*y*y - 2*z*z,
2*x*y - 2*w*z,
2*x*z + 2*w*y,
2*x*y + 2*w*z,
1 - 2*x*x - 2*z*z,
2*y*z - 2*w*x,
2*x*z - 2*w*y,
2*y*z + 2*w*x,
1 - 2*x*x - 2*y*y
);
}
Quaternion conjugate() const {
return Quaternion (
-(*this)[0],
-(*this)[1],
-(*this)[2],
(*this)[3]);
}
Vector3f rotate (const Vector3f &vec) const {
Vector3f vn (vec);
Quaternion vec_quat (vn[0], vn[1], vn[2], 0.f), res_quat;
res_quat = vec_quat * (*this);
res_quat = conjugate() * res_quat;
return Vector3f (res_quat[0], res_quat[1], res_quat[2]);
}
};
// namespace GL
}
// namespace SimpleMath
}
/* _SIMPLEMATHGL_H_ */
#endif