protot/3rdparty/bx/tests/simd_bench.cpp

134 lines
3.3 KiB
C++
Raw Normal View History

2018-02-03 17:39:28 +01:00
/*
* Copyright 2010-2018 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bx#license-bsd-2-clause
*/
#include <bx/allocator.h>
#include <bx/rng.h>
#include <bx/simd_t.h>
#include <bx/timer.h>
#include <stdio.h>
static void flushCache()
{
static uint32_t length = 1 << 26;
static uint8_t* input = new uint8_t[length];
static uint8_t* output = new uint8_t[length];
bx::memCopy(output, input, length);
}
typedef bx::simd128_t (*SimdRsqrtFn)(bx::simd128_t _a);
template<SimdRsqrtFn simdRsqrtFn>
void simd_rsqrt_bench(bx::simd128_t* _dst, bx::simd128_t* _src, uint32_t _numVertices)
{
for (uint32_t ii = 0, num = _numVertices/4; ii < num; ++ii)
{
bx::simd128_t* ptr = &_src[ii*4];
bx::simd128_t tmp0 = bx::simd_ld(ptr + 0);
bx::simd128_t tmp1 = bx::simd_ld(ptr + 1);
bx::simd128_t tmp2 = bx::simd_ld(ptr + 2);
bx::simd128_t tmp3 = bx::simd_ld(ptr + 3);
bx::simd128_t rsqrt0 = simdRsqrtFn(tmp0);
bx::simd128_t rsqrt1 = simdRsqrtFn(tmp1);
bx::simd128_t rsqrt2 = simdRsqrtFn(tmp2);
bx::simd128_t rsqrt3 = simdRsqrtFn(tmp3);
ptr = &_dst[ii*4];
bx::simd_st(ptr + 0, rsqrt0);
bx::simd_st(ptr + 1, rsqrt1);
bx::simd_st(ptr + 2, rsqrt2);
bx::simd_st(ptr + 3, rsqrt3);
}
}
void simd_bench_pass(bx::simd128_t* _dst, bx::simd128_t* _src, uint32_t _numVertices)
{
const uint32_t numIterations = 10;
{
int64_t elapsed = 0;
for (uint32_t test = 0; test < numIterations; ++test)
{
flushCache();
elapsed += -bx::getHPCounter();
simd_rsqrt_bench<bx::simd_rsqrt_est>(_dst, _src, _numVertices);
elapsed += bx::getHPCounter();
}
printf(" simd_rsqrt_est: %15f\n", double(elapsed) );
}
{
int64_t elapsed = 0;
for (uint32_t test = 0; test < numIterations; ++test)
{
flushCache();
elapsed += -bx::getHPCounter();
simd_rsqrt_bench<bx::simd_rsqrt_nr>(_dst, _src, _numVertices);
elapsed += bx::getHPCounter();
}
printf(" simd_rsqrt_nr: %15f\n", double(elapsed) );
}
{
int64_t elapsed = 0;
for (uint32_t test = 0; test < numIterations; ++test)
{
flushCache();
elapsed += -bx::getHPCounter();
simd_rsqrt_bench<bx::simd_rsqrt_carmack>(_dst, _src, _numVertices);
elapsed += bx::getHPCounter();
}
printf("simd_rsqrt_carmack: %15f\n", double(elapsed) );
}
{
int64_t elapsed = 0;
for (uint32_t test = 0; test < numIterations; ++test)
{
flushCache();
elapsed += -bx::getHPCounter();
simd_rsqrt_bench<bx::simd_rsqrt>(_dst, _src, _numVertices);
elapsed += bx::getHPCounter();
}
printf(" simd_rsqrt: %15f\n", double(elapsed) );
}
}
void simd_bench()
{
bx::DefaultAllocator allocator;
bx::RngMwc rng;
const uint32_t numVertices = 1024*1024;
uint8_t* data = (uint8_t*)BX_ALIGNED_ALLOC(&allocator, 2*numVertices*sizeof(bx::simd128_t), 16);
bx::simd128_t* src = (bx::simd128_t*)data;
bx::simd128_t* dst = &src[numVertices];
printf("\n -- positive & negative --\n");
for (uint32_t ii = 0; ii < numVertices; ++ii)
{
float* ptr = (float*)&src[ii];
randUnitSphere(ptr, &rng);
ptr[3] = 1.0f;
}
simd_bench_pass(dst, src, numVertices);
printf("\n -- positive only --\n");
for (uint32_t ii = 0; ii < numVertices; ++ii)
{
float* ptr = (float*)&src[ii];
ptr[0] = bx::abs(ptr[0]);
ptr[1] = bx::abs(ptr[1]);
ptr[2] = bx::abs(ptr[2]);
ptr[3] = bx::abs(ptr[3]);
}
simd_bench_pass(dst, src, numVertices);
BX_ALIGNED_FREE(&allocator, data, 16);
}