protot/3rdparty/fcl/test/test_fcl_simple.cpp

398 lines
15 KiB
C++
Raw Normal View History

2018-12-23 11:20:54 +01:00
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2011-2014, Willow Garage, Inc.
* Copyright (c) 2014-2016, Open Source Robotics Foundation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Open Source Robotics Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <gtest/gtest.h>
#include <sstream>
#include "fcl/math/detail/project.h"
#include "fcl/narrowphase/collision.h"
#include "fcl/geometry/bvh/BVH_model.h"
#include "fcl_resources/config.h"
#include "fcl/math/sampler/sampler_r.h"
#include "fcl/math/sampler/sampler_se2.h"
#include "fcl/math/sampler/sampler_se2_disk.h"
#include "fcl/math/sampler/sampler_se3_euler.h"
#include "fcl/math/sampler/sampler_se3_euler_ball.h"
#include "fcl/math/sampler/sampler_se3_quat.h"
#include "fcl/math/sampler/sampler_se3_quat_ball.h"
#include "fcl/math/geometry.h"
using namespace fcl;
template <typename S>
S epsilon()
{
return 1e-6;
}
template <>
float epsilon()
{
return 1e-4;
}
template <typename S>
bool approx(S x, S y)
{
return std::abs(x - y) < epsilon<S>();
}
template<typename S, std::size_t N>
S distance_Vecnf(const VectorN<S, N>& a, const VectorN<S, N>& b)
{
S d = 0;
for(std::size_t i = 0; i < N; ++i)
d += (a[i] - b[i]) * (a[i] - b[i]);
return d;
}
template <typename S>
void test_Vec_nf_test()
{
VectorN<S, 4> a;
VectorN<S, 4> b;
for(auto i = 0; i < a.size(); ++i)
a[i] = i;
for(auto i = 0; i < b.size(); ++i)
b[i] = 1;
std::cout << a.transpose() << std::endl;
std::cout << b.transpose() << std::endl;
std::cout << (a + b).transpose() << std::endl;
std::cout << (a - b).transpose() << std::endl;
std::cout << (a -= b).transpose() << std::endl;
std::cout << (a += b).transpose() << std::endl;
std::cout << (a * 2).transpose() << std::endl;
std::cout << (a / 2).transpose() << std::endl;
std::cout << (a *= 2).transpose() << std::endl;
std::cout << (a /= 2).transpose() << std::endl;
std::cout << a.dot(b) << std::endl;
VectorN<S, 8> c = combine(a, b);
std::cout << c.transpose() << std::endl;
VectorN<S, 4> upper, lower;
for(int i = 0; i < 4; ++i)
upper[i] = 1;
VectorN<S, 4> aa = VectorN<S, 4>(1, 2, 1, 2);
std::cout << aa.transpose() << std::endl;
SamplerR<S, 4> sampler(lower, upper);
for(std::size_t i = 0; i < 10; ++i)
std::cout << sampler.sample().transpose() << std::endl;
// Disabled broken test lines. Please see #25.
// SamplerSE2 sampler2(0, 1, -1, 1);
// for(std::size_t i = 0; i < 10; ++i)
// std::cout << sampler2.sample() << std::endl;
SamplerSE3Euler<S> sampler3(Vector3<S>(0, 0, 0), Vector3<S>(1, 1, 1));
for(std::size_t i = 0; i < 10; ++i)
std::cout << sampler3.sample().transpose() << std::endl;
}
GTEST_TEST(FCL_SIMPLE, Vec_nf_test)
{
// test_Vec_nf_test<float>();
test_Vec_nf_test<double>();
}
template <typename S>
void test_projection_test_line()
{
Vector3<S> v1(0, 0, 0);
Vector3<S> v2(2, 0, 0);
Vector3<S> p(1, 0, 0);
auto res = detail::Project<S>::projectLine(v1, v2, p);
EXPECT_TRUE(res.encode == 3);
EXPECT_TRUE(approx(res.sqr_distance, (S)0));
EXPECT_TRUE(approx(res.parameterization[0], (S)0.5));
EXPECT_TRUE(approx(res.parameterization[1], (S)0.5));
p = Vector3<S>(-1, 0, 0);
res = detail::Project<S>::projectLine(v1, v2, p);
EXPECT_TRUE(res.encode == 1);
EXPECT_TRUE(approx(res.sqr_distance, (S)1));
EXPECT_TRUE(approx(res.parameterization[0], (S)1));
EXPECT_TRUE(approx(res.parameterization[1], (S)0));
p = Vector3<S>(3, 0, 0);
res = detail::Project<S>::projectLine(v1, v2, p);
EXPECT_TRUE(res.encode == 2);
EXPECT_TRUE(approx(res.sqr_distance, (S)1));
EXPECT_TRUE(approx(res.parameterization[0], (S)0));
EXPECT_TRUE(approx(res.parameterization[1], (S)1));
}
GTEST_TEST(FCL_SIMPLE, projection_test_line)
{
// test_projection_test_line<float>();
test_projection_test_line<double>();
}
template <typename S>
void test_projection_test_triangle()
{
Vector3<S> v1(0, 0, 1);
Vector3<S> v2(0, 1, 0);
Vector3<S> v3(1, 0, 0);
Vector3<S> p(1, 1, 1);
auto res = detail::Project<S>::projectTriangle(v1, v2, v3, p);
EXPECT_TRUE(res.encode == 7);
EXPECT_TRUE(approx(res.sqr_distance, (S)(4/3.0)));
EXPECT_TRUE(approx(res.parameterization[0], (S)(1/3.0)));
EXPECT_TRUE(approx(res.parameterization[1], (S)(1/3.0)));
EXPECT_TRUE(approx(res.parameterization[2], (S)(1/3.0)));
p = Vector3<S>(0, 0, 1.5);
res = detail::Project<S>::projectTriangle(v1, v2, v3, p);
EXPECT_TRUE(res.encode == 1);
EXPECT_TRUE(approx(res.sqr_distance, (S)0.25));
EXPECT_TRUE(approx(res.parameterization[0], (S)1));
EXPECT_TRUE(approx(res.parameterization[1], (S)0));
EXPECT_TRUE(approx(res.parameterization[2], (S)0));
p = Vector3<S>(1.5, 0, 0);
res = detail::Project<S>::projectTriangle(v1, v2, v3, p);
EXPECT_TRUE(res.encode == 4);
EXPECT_TRUE(approx(res.sqr_distance, (S)0.25));
EXPECT_TRUE(approx(res.parameterization[0], (S)0));
EXPECT_TRUE(approx(res.parameterization[1], (S)0));
EXPECT_TRUE(approx(res.parameterization[2], (S)1));
p = Vector3<S>(0, 1.5, 0);
res = detail::Project<S>::projectTriangle(v1, v2, v3, p);
EXPECT_TRUE(res.encode == 2);
EXPECT_TRUE(approx(res.sqr_distance, (S)0.25));
EXPECT_TRUE(approx(res.parameterization[0], (S)0));
EXPECT_TRUE(approx(res.parameterization[1], (S)1));
EXPECT_TRUE(approx(res.parameterization[2], (S)0));
p = Vector3<S>(1, 1, 0);
res = detail::Project<S>::projectTriangle(v1, v2, v3, p);
EXPECT_TRUE(res.encode == 6);
EXPECT_TRUE(approx(res.sqr_distance, (S)0.5));
EXPECT_TRUE(approx(res.parameterization[0], (S)0));
EXPECT_TRUE(approx(res.parameterization[1], (S)0.5));
EXPECT_TRUE(approx(res.parameterization[2], (S)0.5));
p = Vector3<S>(1, 0, 1);
res = detail::Project<S>::projectTriangle(v1, v2, v3, p);
EXPECT_TRUE(res.encode == 5);
EXPECT_TRUE(approx(res.sqr_distance, (S)0.5));
EXPECT_TRUE(approx(res.parameterization[0], (S)0.5));
EXPECT_TRUE(approx(res.parameterization[1], (S)0));
EXPECT_TRUE(approx(res.parameterization[2], (S)0.5));
p = Vector3<S>(0, 1, 1);
res = detail::Project<S>::projectTriangle(v1, v2, v3, p);
EXPECT_TRUE(res.encode == 3);
EXPECT_TRUE(approx(res.sqr_distance, (S)0.5));
EXPECT_TRUE(approx(res.parameterization[0], (S)0.5));
EXPECT_TRUE(approx(res.parameterization[1], (S)0.5));
EXPECT_TRUE(approx(res.parameterization[2], (S)0));
}
GTEST_TEST(FCL_SIMPLE, projection_test_triangle)
{
// test_projection_test_triangle<float>();
test_projection_test_triangle<double>();
}
template <typename S>
void test_projection_test_tetrahedron()
{
Vector3<S> v1(0, 0, 1);
Vector3<S> v2(0, 1, 0);
Vector3<S> v3(1, 0, 0);
Vector3<S> v4(1, 1, 1);
Vector3<S> p(0.5, 0.5, 0.5);
auto res = detail::Project<S>::projectTetrahedra(v1, v2, v3, v4, p);
EXPECT_TRUE(res.encode == 15);
EXPECT_TRUE(approx(res.sqr_distance, (S)0));
EXPECT_TRUE(approx(res.parameterization[0], (S)0.25));
EXPECT_TRUE(approx(res.parameterization[1], (S)0.25));
EXPECT_TRUE(approx(res.parameterization[2], (S)0.25));
EXPECT_TRUE(approx(res.parameterization[3], (S)0.25));
p = Vector3<S>(0, 0, 0);
res = detail::Project<S>::projectTetrahedra(v1, v2, v3, v4, p);
EXPECT_TRUE(res.encode == 7);
EXPECT_TRUE(approx(res.sqr_distance, (S)(1/3.0)));
EXPECT_TRUE(approx(res.parameterization[0], (S)(1/3.0)));
EXPECT_TRUE(approx(res.parameterization[1], (S)(1/3.0)));
EXPECT_TRUE(approx(res.parameterization[2], (S)(1/3.0)));
EXPECT_TRUE(approx(res.parameterization[3], (S)0));
p = Vector3<S>(0, 1, 1);
res = detail::Project<S>::projectTetrahedra(v1, v2, v3, v4, p);
EXPECT_TRUE(res.encode == 11);
EXPECT_TRUE(approx(res.sqr_distance, (S)(1/3.0)));
EXPECT_TRUE(approx(res.parameterization[0], (S)(1/3.0)));
EXPECT_TRUE(approx(res.parameterization[1], (S)(1/3.0)));
EXPECT_TRUE(approx(res.parameterization[2], (S)0));
EXPECT_TRUE(approx(res.parameterization[3], (S)(1/3.0)));
p = Vector3<S>(1, 1, 0);
res = detail::Project<S>::projectTetrahedra(v1, v2, v3, v4, p);
EXPECT_TRUE(res.encode == 14);
EXPECT_TRUE(approx(res.sqr_distance, (S)(1/3.0)));
EXPECT_TRUE(approx(res.parameterization[0], (S)0));
EXPECT_TRUE(approx(res.parameterization[1], (S)(1/3.0)));
EXPECT_TRUE(approx(res.parameterization[2], (S)(1/3.0)));
EXPECT_TRUE(approx(res.parameterization[3], (S)(1/3.0)));
p = Vector3<S>(1, 0, 1);
res = detail::Project<S>::projectTetrahedra(v1, v2, v3, v4, p);
EXPECT_TRUE(res.encode == 13);
EXPECT_TRUE(approx(res.sqr_distance, (S)(1/3.0)));
EXPECT_TRUE(approx(res.parameterization[0], (S)(1/3.0)));
EXPECT_TRUE(approx(res.parameterization[1], (S)0));
EXPECT_TRUE(approx(res.parameterization[2], (S)(1/3.0)));
EXPECT_TRUE(approx(res.parameterization[3], (S)(1/3.0)));
p = Vector3<S>(1.5, 1.5, 1.5);
res = detail::Project<S>::projectTetrahedra(v1, v2, v3, v4, p);
EXPECT_TRUE(res.encode == 8);
EXPECT_TRUE(approx(res.sqr_distance, (S)0.75));
EXPECT_TRUE(approx(res.parameterization[0], (S)0));
EXPECT_TRUE(approx(res.parameterization[1], (S)0));
EXPECT_TRUE(approx(res.parameterization[2], (S)0));
EXPECT_TRUE(approx(res.parameterization[3], (S)1));
p = Vector3<S>(1.5, -0.5, -0.5);
res = detail::Project<S>::projectTetrahedra(v1, v2, v3, v4, p);
EXPECT_TRUE(res.encode == 4);
EXPECT_TRUE(approx(res.sqr_distance, (S)0.75));
EXPECT_TRUE(approx(res.parameterization[0], (S)0));
EXPECT_TRUE(approx(res.parameterization[1], (S)0));
EXPECT_TRUE(approx(res.parameterization[2], (S)1));
EXPECT_TRUE(approx(res.parameterization[3], (S)0));
p = Vector3<S>(-0.5, -0.5, 1.5);
res = detail::Project<S>::projectTetrahedra(v1, v2, v3, v4, p);
EXPECT_TRUE(res.encode == 1);
EXPECT_TRUE(approx(res.sqr_distance, (S)0.75));
EXPECT_TRUE(approx(res.parameterization[0], (S)1));
EXPECT_TRUE(approx(res.parameterization[1], (S)0));
EXPECT_TRUE(approx(res.parameterization[2], (S)0));
EXPECT_TRUE(approx(res.parameterization[3], (S)0));
p = Vector3<S>(-0.5, 1.5, -0.5);
res = detail::Project<S>::projectTetrahedra(v1, v2, v3, v4, p);
EXPECT_TRUE(res.encode == 2);
EXPECT_TRUE(approx(res.sqr_distance, (S)0.75));
EXPECT_TRUE(approx(res.parameterization[0], (S)0));
EXPECT_TRUE(approx(res.parameterization[1], (S)1));
EXPECT_TRUE(approx(res.parameterization[2], (S)0));
EXPECT_TRUE(approx(res.parameterization[3], (S)0));
p = Vector3<S>(0.5, -0.5, 0.5);
res = detail::Project<S>::projectTetrahedra(v1, v2, v3, v4, p);
EXPECT_TRUE(res.encode == 5);
EXPECT_TRUE(approx(res.sqr_distance, (S)0.25));
EXPECT_TRUE(approx(res.parameterization[0], (S)0.5));
EXPECT_TRUE(approx(res.parameterization[1], (S)0));
EXPECT_TRUE(approx(res.parameterization[2], (S)0.5));
EXPECT_TRUE(approx(res.parameterization[3], (S)0));
p = Vector3<S>(0.5, 1.5, 0.5);
res = detail::Project<S>::projectTetrahedra(v1, v2, v3, v4, p);
EXPECT_TRUE(res.encode == 10);
EXPECT_TRUE(approx(res.sqr_distance, (S)0.25));
EXPECT_TRUE(approx(res.parameterization[0], (S)0));
EXPECT_TRUE(approx(res.parameterization[1], (S)0.5));
EXPECT_TRUE(approx(res.parameterization[2], (S)0));
EXPECT_TRUE(approx(res.parameterization[3], (S)0.5));
p = Vector3<S>(1.5, 0.5, 0.5);
res = detail::Project<S>::projectTetrahedra(v1, v2, v3, v4, p);
EXPECT_TRUE(res.encode == 12);
EXPECT_TRUE(approx(res.sqr_distance, (S)0.25));
EXPECT_TRUE(approx(res.parameterization[0], (S)0));
EXPECT_TRUE(approx(res.parameterization[1], (S)0));
EXPECT_TRUE(approx(res.parameterization[2], (S)0.5));
EXPECT_TRUE(approx(res.parameterization[3], (S)0.5));
p = Vector3<S>(-0.5, 0.5, 0.5);
res = detail::Project<S>::projectTetrahedra(v1, v2, v3, v4, p);
EXPECT_TRUE(res.encode == 3);
EXPECT_TRUE(approx(res.sqr_distance, (S)0.25));
EXPECT_TRUE(approx(res.parameterization[0], (S)0.5));
EXPECT_TRUE(approx(res.parameterization[1], (S)0.5));
EXPECT_TRUE(approx(res.parameterization[2], (S)0));
EXPECT_TRUE(approx(res.parameterization[3], (S)0));
p = Vector3<S>(0.5, 0.5, 1.5);
res = detail::Project<S>::projectTetrahedra(v1, v2, v3, v4, p);
EXPECT_TRUE(res.encode == 9);
EXPECT_TRUE(approx(res.sqr_distance, (S)0.25));
EXPECT_TRUE(approx(res.parameterization[0], (S)0.5));
EXPECT_TRUE(approx(res.parameterization[1], (S)0));
EXPECT_TRUE(approx(res.parameterization[2], (S)0));
EXPECT_TRUE(approx(res.parameterization[3], (S)0.5));
p = Vector3<S>(0.5, 0.5, -0.5);
res = detail::Project<S>::projectTetrahedra(v1, v2, v3, v4, p);
EXPECT_TRUE(res.encode == 6);
EXPECT_TRUE(approx(res.sqr_distance, (S)0.25));
EXPECT_TRUE(approx(res.parameterization[0], (S)0));
EXPECT_TRUE(approx(res.parameterization[1], (S)0.5));
EXPECT_TRUE(approx(res.parameterization[2], (S)0.5));
EXPECT_TRUE(approx(res.parameterization[3], (S)0));
}
GTEST_TEST(FCL_SIMPLE, projection_test_tetrahedron)
{
// test_projection_test_tetrahedron<float>();
test_projection_test_tetrahedron<double>();
}
//==============================================================================
int main(int argc, char* argv[])
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}