protot/3rdparty/fcl/test/test_fcl_capsule_box_1.cpp

134 lines
5.1 KiB
C++
Raw Normal View History

2018-12-23 11:20:54 +01:00
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2014-2016, CNRS-LAAS and AIST
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of CNRS-LAAS and AIST nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** @author Florent Lamiraux */
#include <gtest/gtest.h>
#include <cmath>
#include <limits>
#include "fcl/narrowphase/distance.h"
#include "fcl/narrowphase/collision.h"
#include "fcl/narrowphase/collision_object.h"
template <typename S>
void test_distance_capsule_box(fcl::GJKSolverType solver_type, S solver_tolerance, S test_tolerance)
{
using CollisionGeometryPtr_t = std::shared_ptr<fcl::CollisionGeometry<S>>;
// Capsule of radius 2 and of height 4
CollisionGeometryPtr_t capsuleGeometry (new fcl::Capsule<S> (2., 4.));
// Box of size 1 by 2 by 4
CollisionGeometryPtr_t boxGeometry (new fcl::Box<S> (1., 2., 4.));
// Enable computation of nearest points
fcl::DistanceRequest<S> distanceRequest (true);
fcl::DistanceResult<S> distanceResult;
distanceRequest.gjk_solver_type = solver_type;
distanceRequest.distance_tolerance = solver_tolerance;
fcl::Transform3<S> tf1(fcl::Translation3<S>(fcl::Vector3<S> (3., 0, 0)));
fcl::Transform3<S> tf2 = fcl::Transform3<S>::Identity();
fcl::CollisionObject<S> capsule (capsuleGeometry, tf1);
fcl::CollisionObject<S> box (boxGeometry, tf2);
// test distance
fcl::distance (&capsule, &box, distanceRequest, distanceResult);
// Nearest point on capsule
fcl::Vector3<S> o1 (distanceResult.nearest_points [0]);
// Nearest point on box
fcl::Vector3<S> o2 (distanceResult.nearest_points [1]);
EXPECT_NEAR (distanceResult.min_distance, 0.5, test_tolerance);
EXPECT_NEAR (o1 [0], 1.0, test_tolerance);
EXPECT_NEAR (o1 [1], 0.0, test_tolerance);
EXPECT_NEAR (o2 [0], 0.5, test_tolerance);
EXPECT_NEAR (o2 [1], 0.0, test_tolerance);
// Move capsule above box
tf1 = fcl::Translation3<S>(fcl::Vector3<S> (0., 0., 8.));
capsule.setTransform (tf1);
// test distance
distanceResult.clear ();
fcl::distance (&capsule, &box, distanceRequest, distanceResult);
o1 = distanceResult.nearest_points [0];
o2 = distanceResult.nearest_points [1];
EXPECT_NEAR (distanceResult.min_distance, 2.0, test_tolerance);
EXPECT_NEAR (o1 [0], 0.0, test_tolerance);
EXPECT_NEAR (o1 [1], 0.0, test_tolerance);
EXPECT_NEAR (o1 [2], 4.0, test_tolerance);
EXPECT_NEAR (o2 [0], 0.0, test_tolerance);
EXPECT_NEAR (o2 [1], 0.0, test_tolerance);
EXPECT_NEAR (o2 [2], 2.0, test_tolerance);
// Rotate capsule around y axis by pi/2 and move it behind box
tf1.translation() = fcl::Vector3<S>(-10., 0., 0.);
tf1.linear() = fcl::Quaternion<S>(sqrt(2)/2, 0, sqrt(2)/2, 0).toRotationMatrix();
capsule.setTransform (tf1);
// test distance
distanceResult.clear ();
fcl::distance (&capsule, &box, distanceRequest, distanceResult);
o1 = distanceResult.nearest_points [0];
o2 = distanceResult.nearest_points [1];
EXPECT_NEAR (distanceResult.min_distance, 5.5, test_tolerance);
EXPECT_NEAR (o1 [0], -6.0, test_tolerance);
EXPECT_NEAR (o1 [1], 0.0, test_tolerance);
EXPECT_NEAR (o1 [2], 0.0, test_tolerance);
EXPECT_NEAR (o2 [0], -0.5, test_tolerance);
EXPECT_NEAR (o2 [1], 0.0, test_tolerance);
EXPECT_NEAR (o2 [2], 0.0, test_tolerance);
}
GTEST_TEST(FCL_GEOMETRIC_SHAPES, distance_capsule_box_ccd)
{
test_distance_capsule_box<double>(fcl::GJKSolverType::GST_LIBCCD, 1e-6, 1e-4);
}
GTEST_TEST(FCL_GEOMETRIC_SHAPES, distance_capsule_box_indep)
{
test_distance_capsule_box<double>(fcl::GJKSolverType::GST_INDEP, 1e-8, 1e-4);
}
//==============================================================================
int main(int argc, char* argv[])
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}