protot/3rdparty/tinygltf/examples/glview/glview.cc

862 lines
27 KiB
C++
Raw Permalink Normal View History

2018-03-19 23:00:51 +01:00
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <limits>
#include <string>
#include <vector>
#include <GL/glew.h>
#define GLFW_INCLUDE_GLU
#include <GLFW/glfw3.h>
#include "trackball.h"
#define TINYGLTF_IMPLEMENTATION
#define STB_IMAGE_IMPLEMENTATION
#include "tiny_gltf.h"
#define BUFFER_OFFSET(i) ((char *)NULL + (i))
#define CheckGLErrors(desc) \
{ \
GLenum e = glGetError(); \
if (e != GL_NO_ERROR) { \
printf("OpenGL error in \"%s\": %d (%d) %s:%d\n", desc, e, e, __FILE__, \
__LINE__); \
exit(20); \
} \
}
#define CAM_Z (3.0f)
int width = 768;
int height = 768;
double prevMouseX, prevMouseY;
bool mouseLeftPressed;
bool mouseMiddlePressed;
bool mouseRightPressed;
float curr_quat[4];
float prev_quat[4];
float eye[3], lookat[3], up[3];
GLFWwindow *window;
typedef struct { GLuint vb; } GLBufferState;
typedef struct {
std::vector<GLuint> diffuseTex; // for each primitive in mesh
} GLMeshState;
typedef struct {
std::map<std::string, GLint> attribs;
std::map<std::string, GLint> uniforms;
} GLProgramState;
typedef struct {
GLuint vb; // vertex buffer
size_t count; // byte count
} GLCurvesState;
std::map<int, GLBufferState> gBufferState;
std::map<std::string, GLMeshState> gMeshState;
std::map<int, GLCurvesState> gCurvesMesh;
GLProgramState gGLProgramState;
void CheckErrors(std::string desc) {
GLenum e = glGetError();
if (e != GL_NO_ERROR) {
fprintf(stderr, "OpenGL error in \"%s\": %d (%d)\n", desc.c_str(), e, e);
exit(20);
}
}
static std::string GetFilePathExtension(const std::string &FileName) {
if (FileName.find_last_of(".") != std::string::npos)
return FileName.substr(FileName.find_last_of(".") + 1);
return "";
}
bool LoadShader(GLenum shaderType, // GL_VERTEX_SHADER or GL_FRAGMENT_SHADER(or
// maybe GL_COMPUTE_SHADER)
GLuint &shader, const char *shaderSourceFilename) {
GLint val = 0;
// free old shader/program
if (shader != 0) {
glDeleteShader(shader);
}
std::vector<GLchar> srcbuf;
FILE *fp = fopen(shaderSourceFilename, "rb");
if (!fp) {
fprintf(stderr, "failed to load shader: %s\n", shaderSourceFilename);
return false;
}
fseek(fp, 0, SEEK_END);
size_t len = ftell(fp);
rewind(fp);
srcbuf.resize(len + 1);
len = fread(&srcbuf.at(0), 1, len, fp);
srcbuf[len] = 0;
fclose(fp);
const GLchar *srcs[1];
srcs[0] = &srcbuf.at(0);
shader = glCreateShader(shaderType);
glShaderSource(shader, 1, srcs, NULL);
glCompileShader(shader);
glGetShaderiv(shader, GL_COMPILE_STATUS, &val);
if (val != GL_TRUE) {
char log[4096];
GLsizei msglen;
glGetShaderInfoLog(shader, 4096, &msglen, log);
printf("%s\n", log);
// assert(val == GL_TRUE && "failed to compile shader");
printf("ERR: Failed to load or compile shader [ %s ]\n",
shaderSourceFilename);
return false;
}
printf("Load shader [ %s ] OK\n", shaderSourceFilename);
return true;
}
bool LinkShader(GLuint &prog, GLuint &vertShader, GLuint &fragShader) {
GLint val = 0;
if (prog != 0) {
glDeleteProgram(prog);
}
prog = glCreateProgram();
glAttachShader(prog, vertShader);
glAttachShader(prog, fragShader);
glLinkProgram(prog);
glGetProgramiv(prog, GL_LINK_STATUS, &val);
assert(val == GL_TRUE && "failed to link shader");
printf("Link shader OK\n");
return true;
}
void reshapeFunc(GLFWwindow *window, int w, int h) {
(void)window;
int fb_w, fb_h;
glfwGetFramebufferSize(window, &fb_w, &fb_h);
glViewport(0, 0, fb_w, fb_h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(45.0, (float)w / (float)h, 0.1f, 1000.0f);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
width = w;
height = h;
}
void keyboardFunc(GLFWwindow *window, int key, int scancode, int action,
int mods) {
(void)scancode;
(void)mods;
if (action == GLFW_PRESS || action == GLFW_REPEAT) {
// Close window
if (key == GLFW_KEY_Q || key == GLFW_KEY_ESCAPE) {
glfwSetWindowShouldClose(window, GL_TRUE);
}
}
}
void clickFunc(GLFWwindow *window, int button, int action, int mods) {
double x, y;
glfwGetCursorPos(window, &x, &y);
bool shiftPressed = (mods & GLFW_MOD_SHIFT);
bool ctrlPressed = (mods & GLFW_MOD_CONTROL);
if ((button == GLFW_MOUSE_BUTTON_LEFT) && (!shiftPressed) && (!ctrlPressed)) {
mouseLeftPressed = true;
mouseMiddlePressed = false;
mouseRightPressed = false;
if (action == GLFW_PRESS) {
int id = -1;
// int id = ui.Proc(x, y);
if (id < 0) { // outside of UI
trackball(prev_quat, 0.0, 0.0, 0.0, 0.0);
}
} else if (action == GLFW_RELEASE) {
mouseLeftPressed = false;
}
}
if ((button == GLFW_MOUSE_BUTTON_RIGHT) ||
((button == GLFW_MOUSE_BUTTON_LEFT) && ctrlPressed)) {
if (action == GLFW_PRESS) {
mouseRightPressed = true;
mouseLeftPressed = false;
mouseMiddlePressed = false;
} else if (action == GLFW_RELEASE) {
mouseRightPressed = false;
}
}
if ((button == GLFW_MOUSE_BUTTON_MIDDLE) ||
((button == GLFW_MOUSE_BUTTON_LEFT) && shiftPressed)) {
if (action == GLFW_PRESS) {
mouseMiddlePressed = true;
mouseLeftPressed = false;
mouseRightPressed = false;
} else if (action == GLFW_RELEASE) {
mouseMiddlePressed = false;
}
}
}
void motionFunc(GLFWwindow *window, double mouse_x, double mouse_y) {
(void)window;
float rotScale = 1.0f;
float transScale = 2.0f;
if (mouseLeftPressed) {
trackball(prev_quat, rotScale * (2.0f * prevMouseX - width) / (float)width,
rotScale * (height - 2.0f * prevMouseY) / (float)height,
rotScale * (2.0f * mouse_x - width) / (float)width,
rotScale * (height - 2.0f * mouse_y) / (float)height);
add_quats(prev_quat, curr_quat, curr_quat);
} else if (mouseMiddlePressed) {
eye[0] += -transScale * (mouse_x - prevMouseX) / (float)width;
lookat[0] += -transScale * (mouse_x - prevMouseX) / (float)width;
eye[1] += transScale * (mouse_y - prevMouseY) / (float)height;
lookat[1] += transScale * (mouse_y - prevMouseY) / (float)height;
} else if (mouseRightPressed) {
eye[2] += transScale * (mouse_y - prevMouseY) / (float)height;
lookat[2] += transScale * (mouse_y - prevMouseY) / (float)height;
}
// Update mouse point
prevMouseX = mouse_x;
prevMouseY = mouse_y;
}
static void SetupMeshState(tinygltf::Model &model, GLuint progId) {
// Buffer
{
for (size_t i = 0; i < model.bufferViews.size(); i++) {
const tinygltf::BufferView &bufferView = model.bufferViews[i];
if (bufferView.target == 0) {
std::cout << "WARN: bufferView.target is zero" << std::endl;
continue; // Unsupported bufferView.
}
const tinygltf::Buffer &buffer = model.buffers[bufferView.buffer];
GLBufferState state;
glGenBuffers(1, &state.vb);
glBindBuffer(bufferView.target, state.vb);
std::cout << "buffer.size= " << buffer.data.size()
<< ", byteOffset = " << bufferView.byteOffset << std::endl;
glBufferData(bufferView.target, bufferView.byteLength,
&buffer.data.at(0) + bufferView.byteOffset, GL_STATIC_DRAW);
glBindBuffer(bufferView.target, 0);
gBufferState[i] = state;
}
}
#if 0 // TODO(syoyo): Implement
// Texture
{
for (size_t i = 0; i < model.meshes.size(); i++) {
const tinygltf::Mesh &mesh = model.meshes[i];
gMeshState[mesh.name].diffuseTex.resize(mesh.primitives.size());
for (size_t primId = 0; primId < mesh.primitives.size(); primId++) {
const tinygltf::Primitive &primitive = mesh.primitives[primId];
gMeshState[mesh.name].diffuseTex[primId] = 0;
if (primitive.material < 0) {
continue;
}
tinygltf::Material &mat = model.materials[primitive.material];
// printf("material.name = %s\n", mat.name.c_str());
if (mat.values.find("diffuse") != mat.values.end()) {
std::string diffuseTexName = mat.values["diffuse"].string_value;
if (model.textures.find(diffuseTexName) != model.textures.end()) {
tinygltf::Texture &tex = model.textures[diffuseTexName];
if (scene.images.find(tex.source) != model.images.end()) {
tinygltf::Image &image = model.images[tex.source];
GLuint texId;
glGenTextures(1, &texId);
glBindTexture(tex.target, texId);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexParameterf(tex.target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(tex.target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// Ignore Texture.fomat.
GLenum format = GL_RGBA;
if (image.component == 3) {
format = GL_RGB;
}
glTexImage2D(tex.target, 0, tex.internalFormat, image.width,
image.height, 0, format, tex.type,
&image.image.at(0));
CheckErrors("texImage2D");
glBindTexture(tex.target, 0);
printf("TexId = %d\n", texId);
gMeshState[mesh.name].diffuseTex[primId] = texId;
}
}
}
}
}
}
#endif
glUseProgram(progId);
GLint vtloc = glGetAttribLocation(progId, "in_vertex");
GLint nrmloc = glGetAttribLocation(progId, "in_normal");
GLint uvloc = glGetAttribLocation(progId, "in_texcoord");
// GLint diffuseTexLoc = glGetUniformLocation(progId, "diffuseTex");
GLint isCurvesLoc = glGetUniformLocation(progId, "uIsCurves");
gGLProgramState.attribs["POSITION"] = vtloc;
gGLProgramState.attribs["NORMAL"] = nrmloc;
gGLProgramState.attribs["TEXCOORD_0"] = uvloc;
// gGLProgramState.uniforms["diffuseTex"] = diffuseTexLoc;
gGLProgramState.uniforms["isCurvesLoc"] = isCurvesLoc;
};
#if 0 // TODO(syoyo): Implement
// Setup curves geometry extension
static void SetupCurvesState(tinygltf::Scene &scene, GLuint progId) {
// Find curves primitive.
{
std::map<std::string, tinygltf::Mesh>::const_iterator it(
scene.meshes.begin());
std::map<std::string, tinygltf::Mesh>::const_iterator itEnd(
scene.meshes.end());
for (; it != itEnd; it++) {
const tinygltf::Mesh &mesh = it->second;
// Currently we only support one primitive per mesh.
if (mesh.primitives.size() > 1) {
continue;
}
for (size_t primId = 0; primId < mesh.primitives.size(); primId++) {
const tinygltf::Primitive &primitive = mesh.primitives[primId];
gMeshState[mesh.name].diffuseTex[primId] = 0;
if (primitive.material.empty()) {
continue;
}
bool has_curves = false;
if (primitive.extras.IsObject()) {
if (primitive.extras.Has("ext_mode")) {
const tinygltf::Value::Object &o =
primitive.extras.Get<tinygltf::Value::Object>();
const tinygltf::Value &ext_mode = o.find("ext_mode")->second;
if (ext_mode.IsString()) {
const std::string &str = ext_mode.Get<std::string>();
if (str.compare("curves") == 0) {
has_curves = true;
}
}
}
}
if (!has_curves) {
continue;
}
// Construct curves buffer
const tinygltf::Accessor &vtx_accessor =
scene.accessors[primitive.attributes.find("POSITION")->second];
const tinygltf::Accessor &nverts_accessor =
scene.accessors[primitive.attributes.find("NVERTS")->second];
const tinygltf::BufferView &vtx_bufferView =
scene.bufferViews[vtx_accessor.bufferView];
const tinygltf::BufferView &nverts_bufferView =
scene.bufferViews[nverts_accessor.bufferView];
const tinygltf::Buffer &vtx_buffer =
scene.buffers[vtx_bufferView.buffer];
const tinygltf::Buffer &nverts_buffer =
scene.buffers[nverts_bufferView.buffer];
// std::cout << "vtx_bufferView = " << vtx_accessor.bufferView <<
// std::endl;
// std::cout << "nverts_bufferView = " << nverts_accessor.bufferView <<
// std::endl;
// std::cout << "vtx_buffer.size = " << vtx_buffer.data.size() <<
// std::endl;
// std::cout << "nverts_buffer.size = " << nverts_buffer.data.size() <<
// std::endl;
const int *nverts =
reinterpret_cast<const int *>(nverts_buffer.data.data());
const float *vtx =
reinterpret_cast<const float *>(vtx_buffer.data.data());
// Convert to GL_LINES data.
std::vector<float> line_pts;
size_t vtx_offset = 0;
for (int k = 0; k < static_cast<int>(nverts_accessor.count); k++) {
for (int n = 0; n < nverts[k] - 1; n++) {
line_pts.push_back(vtx[3 * (vtx_offset + n) + 0]);
line_pts.push_back(vtx[3 * (vtx_offset + n) + 1]);
line_pts.push_back(vtx[3 * (vtx_offset + n) + 2]);
line_pts.push_back(vtx[3 * (vtx_offset + n + 1) + 0]);
line_pts.push_back(vtx[3 * (vtx_offset + n + 1) + 1]);
line_pts.push_back(vtx[3 * (vtx_offset + n + 1) + 2]);
// std::cout << "p0 " << vtx[3 * (vtx_offset + n) + 0] << ", "
// << vtx[3 * (vtx_offset + n) + 1] << ", "
// << vtx[3 * (vtx_offset + n) + 2] << std::endl;
// std::cout << "p1 " << vtx[3 * (vtx_offset + n+1) + 0] << ", "
// << vtx[3 * (vtx_offset + n+1) + 1] << ", "
// << vtx[3 * (vtx_offset + n+1) + 2] << std::endl;
}
vtx_offset += nverts[k];
}
GLCurvesState state;
glGenBuffers(1, &state.vb);
glBindBuffer(GL_ARRAY_BUFFER, state.vb);
glBufferData(GL_ARRAY_BUFFER, line_pts.size() * sizeof(float),
line_pts.data(), GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
state.count = line_pts.size() / 3;
gCurvesMesh[mesh.name] = state;
// Material
tinygltf::Material &mat = scene.materials[primitive.material];
// printf("material.name = %s\n", mat.name.c_str());
if (mat.values.find("diffuse") != mat.values.end()) {
std::string diffuseTexName = mat.values["diffuse"].string_value;
if (scene.textures.find(diffuseTexName) != scene.textures.end()) {
tinygltf::Texture &tex = scene.textures[diffuseTexName];
if (scene.images.find(tex.source) != scene.images.end()) {
tinygltf::Image &image = scene.images[tex.source];
GLuint texId;
glGenTextures(1, &texId);
glBindTexture(tex.target, texId);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexParameterf(tex.target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(tex.target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// Ignore Texture.fomat.
GLenum format = GL_RGBA;
if (image.component == 3) {
format = GL_RGB;
}
glTexImage2D(tex.target, 0, tex.internalFormat, image.width,
image.height, 0, format, tex.type,
&image.image.at(0));
CheckErrors("texImage2D");
glBindTexture(tex.target, 0);
printf("TexId = %d\n", texId);
gMeshState[mesh.name].diffuseTex[primId] = texId;
}
}
}
}
}
}
glUseProgram(progId);
GLint vtloc = glGetAttribLocation(progId, "in_vertex");
GLint nrmloc = glGetAttribLocation(progId, "in_normal");
GLint uvloc = glGetAttribLocation(progId, "in_texcoord");
GLint diffuseTexLoc = glGetUniformLocation(progId, "diffuseTex");
GLint isCurvesLoc = glGetUniformLocation(progId, "uIsCurves");
gGLProgramState.attribs["POSITION"] = vtloc;
gGLProgramState.attribs["NORMAL"] = nrmloc;
gGLProgramState.attribs["TEXCOORD_0"] = uvloc;
gGLProgramState.uniforms["diffuseTex"] = diffuseTexLoc;
gGLProgramState.uniforms["uIsCurves"] = isCurvesLoc;
};
#endif
static void DrawMesh(tinygltf::Model &model, const tinygltf::Mesh &mesh) {
//// Skip curves primitive.
// if (gCurvesMesh.find(mesh.name) != gCurvesMesh.end()) {
// return;
//}
// if (gGLProgramState.uniforms["diffuseTex"] >= 0) {
// glUniform1i(gGLProgramState.uniforms["diffuseTex"], 0); // TEXTURE0
//}
if (gGLProgramState.uniforms["isCurvesLoc"] >= 0) {
glUniform1i(gGLProgramState.uniforms["isCurvesLoc"], 0);
}
for (size_t i = 0; i < mesh.primitives.size(); i++) {
const tinygltf::Primitive &primitive = mesh.primitives[i];
if (primitive.indices < 0) return;
// Assume TEXTURE_2D target for the texture object.
// glBindTexture(GL_TEXTURE_2D, gMeshState[mesh.name].diffuseTex[i]);
std::map<std::string, int>::const_iterator it(primitive.attributes.begin());
std::map<std::string, int>::const_iterator itEnd(
primitive.attributes.end());
for (; it != itEnd; it++) {
assert(it->second >= 0);
const tinygltf::Accessor &accessor = model.accessors[it->second];
glBindBuffer(GL_ARRAY_BUFFER, gBufferState[accessor.bufferView].vb);
CheckErrors("bind buffer");
int size = 1;
if (accessor.type == TINYGLTF_TYPE_SCALAR) {
size = 1;
} else if (accessor.type == TINYGLTF_TYPE_VEC2) {
size = 2;
} else if (accessor.type == TINYGLTF_TYPE_VEC3) {
size = 3;
} else if (accessor.type == TINYGLTF_TYPE_VEC4) {
size = 4;
} else {
assert(0);
}
// it->first would be "POSITION", "NORMAL", "TEXCOORD_0", ...
if ((it->first.compare("POSITION") == 0) ||
(it->first.compare("NORMAL") == 0) ||
(it->first.compare("TEXCOORD_0") == 0)) {
if (gGLProgramState.attribs[it->first] >= 0) {
// Compute byteStride from Accessor + BufferView combination.
int byteStride = accessor.ByteStride(model.bufferViews[accessor.bufferView]);
assert(byteStride != -1);
glVertexAttribPointer(gGLProgramState.attribs[it->first], size,
accessor.componentType, accessor.normalized ? GL_TRUE : GL_FALSE,
byteStride,
BUFFER_OFFSET(accessor.byteOffset));
CheckErrors("vertex attrib pointer");
glEnableVertexAttribArray(gGLProgramState.attribs[it->first]);
CheckErrors("enable vertex attrib array");
}
}
}
const tinygltf::Accessor &indexAccessor =
model.accessors[primitive.indices];
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,
gBufferState[indexAccessor.bufferView].vb);
CheckErrors("bind buffer");
int mode = -1;
if (primitive.mode == TINYGLTF_MODE_TRIANGLES) {
mode = GL_TRIANGLES;
} else if (primitive.mode == TINYGLTF_MODE_TRIANGLE_STRIP) {
mode = GL_TRIANGLE_STRIP;
} else if (primitive.mode == TINYGLTF_MODE_TRIANGLE_FAN) {
mode = GL_TRIANGLE_FAN;
} else if (primitive.mode == TINYGLTF_MODE_POINTS) {
mode = GL_POINTS;
} else if (primitive.mode == TINYGLTF_MODE_LINE) {
mode = GL_LINES;
} else if (primitive.mode == TINYGLTF_MODE_LINE_LOOP) {
mode = GL_LINE_LOOP;
} else {
assert(0);
}
glDrawElements(mode, indexAccessor.count, indexAccessor.componentType,
BUFFER_OFFSET(indexAccessor.byteOffset));
CheckErrors("draw elements");
{
std::map<std::string, int>::const_iterator it(
primitive.attributes.begin());
std::map<std::string, int>::const_iterator itEnd(
primitive.attributes.end());
for (; it != itEnd; it++) {
if ((it->first.compare("POSITION") == 0) ||
(it->first.compare("NORMAL") == 0) ||
(it->first.compare("TEXCOORD_0") == 0)) {
if (gGLProgramState.attribs[it->first] >= 0) {
glDisableVertexAttribArray(gGLProgramState.attribs[it->first]);
}
}
}
}
}
}
#if 0 // TODO(syoyo): Implement
static void DrawCurves(tinygltf::Scene &scene, const tinygltf::Mesh &mesh) {
(void)scene;
if (gCurvesMesh.find(mesh.name) == gCurvesMesh.end()) {
return;
}
if (gGLProgramState.uniforms["isCurvesLoc"] >= 0) {
glUniform1i(gGLProgramState.uniforms["isCurvesLoc"], 1);
}
GLCurvesState &state = gCurvesMesh[mesh.name];
if (gGLProgramState.attribs["POSITION"] >= 0) {
glBindBuffer(GL_ARRAY_BUFFER, state.vb);
glVertexAttribPointer(gGLProgramState.attribs["POSITION"], 3, GL_FLOAT,
GL_FALSE, /* stride */ 0, BUFFER_OFFSET(0));
CheckErrors("curve: vertex attrib pointer");
glEnableVertexAttribArray(gGLProgramState.attribs["POSITION"]);
CheckErrors("curve: enable vertex attrib array");
}
glDrawArrays(GL_LINES, 0, state.count);
if (gGLProgramState.attribs["POSITION"] >= 0) {
glDisableVertexAttribArray(gGLProgramState.attribs["POSITION"]);
}
}
#endif
// Hierarchically draw nodes
static void DrawNode(tinygltf::Model &model, const tinygltf::Node &node) {
// Apply xform
glPushMatrix();
if (node.matrix.size() == 16) {
// Use `matrix' attribute
glMultMatrixd(node.matrix.data());
} else {
// Assume Trans x Rotate x Scale order
if (node.scale.size() == 3) {
glScaled(node.scale[0], node.scale[1], node.scale[2]);
}
if (node.rotation.size() == 4) {
glRotated(node.rotation[0], node.rotation[1], node.rotation[2],
node.rotation[3]);
}
if (node.translation.size() == 3) {
glTranslated(node.translation[0], node.translation[1],
node.translation[2]);
}
}
// std::cout << "node " << node.name << ", Meshes " << node.meshes.size() <<
// std::endl;
// std::cout << it->first << std::endl;
// FIXME(syoyo): Refactor.
// DrawCurves(scene, it->second);
DrawMesh(model, model.meshes[node.mesh]);
// Draw child nodes.
for (size_t i = 0; i < node.children.size(); i++) {
DrawNode(model, model.nodes[node.children[i]]);
}
glPopMatrix();
}
static void DrawModel(tinygltf::Model &model) {
#if 0
std::map<std::string, tinygltf::Mesh>::const_iterator it(scene.meshes.begin());
std::map<std::string, tinygltf::Mesh>::const_iterator itEnd(scene.meshes.end());
for (; it != itEnd; it++) {
DrawMesh(scene, it->second);
DrawCurves(scene, it->second);
}
#else
// TODO(syoyo): Support non-default scenes.
assert(model.defaultScene >= 0);
const tinygltf::Scene &scene = model.scenes[model.defaultScene];
for (size_t i = 0; i < scene.nodes.size(); i++) {
DrawNode(model, model.nodes[scene.nodes[i]]);
}
#endif
}
static void Init() {
trackball(curr_quat, 0, 0, 0, 0);
eye[0] = 0.0f;
eye[1] = 0.0f;
eye[2] = CAM_Z;
lookat[0] = 0.0f;
lookat[1] = 0.0f;
lookat[2] = 0.0f;
up[0] = 0.0f;
up[1] = 1.0f;
up[2] = 0.0f;
}
static void PrintNodes(const tinygltf::Scene &scene) {
for (size_t i = 0; i < scene.nodes.size(); i++) {
std::cout << "node.name : " << scene.nodes[i] << std::endl;
}
}
int main(int argc, char **argv) {
if (argc < 2) {
std::cout << "glview input.gltf <scale>\n" << std::endl;
return 0;
}
float scale = 1.0f;
if (argc > 2) {
scale = atof(argv[2]);
}
tinygltf::Model model;
tinygltf::TinyGLTF loader;
std::string err;
std::string input_filename(argv[1]);
std::string ext = GetFilePathExtension(input_filename);
bool ret = false;
if (ext.compare("glb") == 0) {
// assume binary glTF.
ret = loader.LoadBinaryFromFile(&model, &err, input_filename.c_str());
} else {
// assume ascii glTF.
ret = loader.LoadASCIIFromFile(&model, &err, input_filename.c_str());
}
if (!err.empty()) {
printf("ERR: %s\n", err.c_str());
}
if (!ret) {
printf("Failed to load .glTF : %s\n", argv[1]);
exit(-1);
}
Init();
// DBG
PrintNodes(model.scenes[model.defaultScene]);
if (!glfwInit()) {
std::cerr << "Failed to initialize GLFW." << std::endl;
return -1;
}
char title[1024];
sprintf(title, "Simple glTF viewer: %s", input_filename.c_str());
window = glfwCreateWindow(width, height, title, NULL, NULL);
if (window == NULL) {
std::cerr << "Failed to open GLFW window. " << std::endl;
glfwTerminate();
return 1;
}
glfwGetWindowSize(window, &width, &height);
glfwMakeContextCurrent(window);
// Callback
glfwSetWindowSizeCallback(window, reshapeFunc);
glfwSetKeyCallback(window, keyboardFunc);
glfwSetMouseButtonCallback(window, clickFunc);
glfwSetCursorPosCallback(window, motionFunc);
glewExperimental = true; // This may be only true for linux environment.
if (glewInit() != GLEW_OK) {
std::cerr << "Failed to initialize GLEW." << std::endl;
return -1;
}
reshapeFunc(window, width, height);
GLuint vertId = 0, fragId = 0, progId = 0;
if (false == LoadShader(GL_VERTEX_SHADER, vertId, "shader.vert")) {
return -1;
}
CheckErrors("load vert shader");
if (false == LoadShader(GL_FRAGMENT_SHADER, fragId, "shader.frag")) {
return -1;
}
CheckErrors("load frag shader");
if (false == LinkShader(progId, vertId, fragId)) {
return -1;
}
CheckErrors("link");
{
// At least `in_vertex` should be used in the shader.
GLint vtxLoc = glGetAttribLocation(progId, "in_vertex");
if (vtxLoc < 0) {
printf("vertex loc not found.\n");
exit(-1);
}
}
glUseProgram(progId);
CheckErrors("useProgram");
SetupMeshState(model, progId);
// SetupCurvesState(model, progId);
CheckErrors("SetupGLState");
std::cout << "# of meshes = " << model.meshes.size() << std::endl;
while (glfwWindowShouldClose(window) == GL_FALSE) {
glfwPollEvents();
glClearColor(0.1f, 0.2f, 0.3f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_DEPTH_TEST);
GLfloat mat[4][4];
build_rotmatrix(mat, curr_quat);
// camera(define it in projection matrix)
glMatrixMode(GL_PROJECTION);
glPushMatrix();
gluLookAt(eye[0], eye[1], eye[2], lookat[0], lookat[1], lookat[2], up[0],
up[1], up[2]);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMultMatrixf(&mat[0][0]);
glScalef(scale, scale, scale);
DrawModel(model);
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glFlush();
glfwSwapBuffers(window);
}
glfwTerminate();
}