protot/3rdparty/rbdl/python/rbdl_ptr_functions.h

638 lines
20 KiB
C
Raw Permalink Normal View History

/*
* RBDL - Rigid Body Dynamics Library
* Copyright (c) 2011-2015 Martin Felis <martin@fysx.org>
*
* Licensed under the zlib license. See LICENSE for more details.
*
* This file defines functions that allows calling of the RBDL algorithms
* by providing input and output as raw double arrays. It eliminates the
* need of copying from Numpy values into temporary RBDL (C++) vectors and
* matrices. However it requires C++11 and must be compiled with -std=c++11
* (or -std=c++0x on older compilers).
*/
#include <rbdl/rbdl_math.h>
#include <rbdl/Dynamics.h>
namespace RigidBodyDynamics {
namespace Math {
// PTR_DATA_ROW_MAJOR :
// Specifies whether the data that is provided via raw double pointers is
// stored as row major. Eigen uses column major by default and therefore
// this has to be properly mapped.
#define PTR_DATA_ROW_MAJOR 1
#ifdef RBDL_USE_SIMPLE_MATH
typedef VectorNd VectorNdRef;
typedef MatrixNd MatrixNdRef;
#else
typedef Eigen::Ref<Eigen::VectorXd> VectorNdRef;
#ifdef PTR_DATA_ROW_MAJOR
typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> MatrixNdRowMaj;
typedef Eigen::Ref<MatrixNdRowMaj> MatrixNdRef;
#else
typedef Eigen::Ref<Eigen::MatrixXd> MatrixNdRef;
#endif
#endif
RBDL_DLLAPI inline VectorNdRef VectorFromPtr (double *ptr, unsigned int n) {
#ifdef RBDL_USE_SIMPLE_MATH
return SimpleMath::Map<VectorNd> (ptr, n, 1);
#elif defined EIGEN_CORE_H
return Eigen::Map<VectorNd> (ptr, n, 1);
#else
std::cerr << __func__ << " not defined for used math library!" << std::endl;
abort();
return VectorNd::Constant (1,1./0.);
#endif
}
RBDL_DLLAPI inline MatrixNdRef MatrixFromPtr (double *ptr, unsigned int rows, unsigned int cols, bool row_major = true) {
#ifdef RBDL_USE_SIMPLE_MATH
return SimpleMath::Map<MatrixNd> (ptr, rows, cols);
#elif defined EIGEN_CORE_H
#ifdef PTR_DATA_ROW_MAJOR
return Eigen::Map<MatrixNdRowMaj> (ptr, rows, cols);
#else
return Eigen::Map<MatrixNd> (ptr, rows, cols);
#endif
#else
std::cerr << __func__ << " not defined for used math library!" << std::endl;
abort();
return MatrixNd::Constant (1,1, 1./0.);
#endif
}
}
RBDL_DLLAPI
void UpdateKinematicsCustomPtr (Model &model,
const double *q_ptr,
const double *qdot_ptr,
const double *qddot_ptr
) {
LOG << "-------- " << __func__ << " --------" << std::endl;
using namespace RigidBodyDynamics::Math;
unsigned int i;
if (q_ptr) {
VectorNdRef Q = VectorFromPtr(const_cast<double*>(q_ptr), model.q_size);
for (i = 1; i < model.mBodies.size(); i++) {
unsigned int lambda = model.lambda[i];
VectorNd QDot_zero (VectorNd::Zero (model.q_size));
jcalc (model, i, (Q), QDot_zero);
model.X_lambda[i] = model.X_J[i] * model.X_T[i];
if (lambda != 0) {
model.X_base[i] = model.X_lambda[i] * model.X_base[lambda];
} else {
model.X_base[i] = model.X_lambda[i];
}
}
}
if (qdot_ptr) {
VectorNdRef Q = VectorFromPtr(const_cast<double*>(q_ptr), model.q_size);
VectorNdRef QDot = VectorFromPtr(const_cast<double*>(qdot_ptr), model.q_size);
for (i = 1; i < model.mBodies.size(); i++) {
unsigned int lambda = model.lambda[i];
jcalc (model, i, Q, QDot);
if (lambda != 0) {
model.v[i] = model.X_lambda[i].apply(model.v[lambda]) + model.v_J[i];
model.c[i] = model.c_J[i] + crossm(model.v[i],model.v_J[i]);
} else {
model.v[i] = model.v_J[i];
model.c[i] = model.c_J[i] + crossm(model.v[i],model.v_J[i]);
}
// LOG << "v[" << i << "] = " << model.v[i].transpose() << std::endl;
}
}
if (qddot_ptr) {
VectorNdRef QDDot = VectorFromPtr(const_cast<double*>(qddot_ptr), model.q_size);
for (i = 1; i < model.mBodies.size(); i++) {
unsigned int q_index = model.mJoints[i].q_index;
unsigned int lambda = model.lambda[i];
if (lambda != 0) {
model.a[i] = model.X_lambda[i].apply(model.a[lambda]) + model.c[i];
} else {
model.a[i] = model.c[i];
}
if (model.mJoints[i].mDoFCount == 3) {
Vector3d omegadot_temp ((QDDot)[q_index], (QDDot)[q_index + 1], (QDDot)[q_index + 2]);
model.a[i] = model.a[i] + model.multdof3_S[i] * omegadot_temp;
} else {
model.a[i] = model.a[i] + model.S[i] * (QDDot)[q_index];
}
}
}
}
RBDL_DLLAPI
void CalcPointJacobianPtr (
Model &model,
const double *q_ptr,
unsigned int body_id,
const Math::Vector3d &point_position,
double * G_ptr,
bool update_kinematics
) {
LOG << "-------- " << __func__ << " --------" << std::endl;
using namespace RigidBodyDynamics::Math;
// update the Kinematics if necessary
if (update_kinematics) {
UpdateKinematicsCustomPtr (model, q_ptr, NULL, NULL);
}
VectorNdRef Q = VectorFromPtr(const_cast<double*>(q_ptr), model.q_size);
MatrixNdRef G = MatrixFromPtr(const_cast<double*>(G_ptr), 3, model.qdot_size);
SpatialTransform point_trans = SpatialTransform (Matrix3d::Identity(), CalcBodyToBaseCoordinates (model, Q, body_id, point_position, false));
assert (G.rows() == 3 && G.cols() == model.qdot_size );
unsigned int reference_body_id = body_id;
if (model.IsFixedBodyId(body_id)) {
unsigned int fbody_id = body_id - model.fixed_body_discriminator;
reference_body_id = model.mFixedBodies[fbody_id].mMovableParent;
}
unsigned int j = reference_body_id;
// e[j] is set to 1 if joint j contributes to the jacobian that we are
// computing. For all other joints the column will be zero.
while (j != 0) {
unsigned int q_index = model.mJoints[j].q_index;
if (model.mJoints[j].mDoFCount == 3) {
G.block(0, q_index, 3, 3) = ((point_trans * model.X_base[j].inverse()).toMatrix() * model.multdof3_S[j]).block(3,0,3,3);
} else {
G.block(0,q_index, 3, 1) = point_trans.apply(model.X_base[j].inverse().apply(model.S[j])).block(3,0,3,1);
}
j = model.lambda[j];
}
}
RBDL_DLLAPI
void CalcPointJacobian6DPtr (
Model &model,
const double *q_ptr,
unsigned int body_id,
const Math::Vector3d &point_position,
double *G_ptr,
bool update_kinematics
) {
LOG << "-------- " << __func__ << " --------" << std::endl;
using namespace RigidBodyDynamics::Math;
// update the Kinematics if necessary
if (update_kinematics) {
UpdateKinematicsCustomPtr (model, q_ptr, NULL, NULL);
}
VectorNdRef Q = VectorFromPtr(const_cast<double*>(q_ptr), model.q_size);
MatrixNdRef G = MatrixFromPtr(const_cast<double*>(G_ptr), 6, model.qdot_size);
SpatialTransform point_trans = SpatialTransform (Matrix3d::Identity(), CalcBodyToBaseCoordinates (model, Q, body_id, point_position, false));
assert (G.rows() == 6 && G.cols() == model.qdot_size );
unsigned int reference_body_id = body_id;
if (model.IsFixedBodyId(body_id)) {
unsigned int fbody_id = body_id - model.fixed_body_discriminator;
reference_body_id = model.mFixedBodies[fbody_id].mMovableParent;
}
unsigned int j = reference_body_id;
while (j != 0) {
unsigned int q_index = model.mJoints[j].q_index;
if (model.mJoints[j].mDoFCount == 3) {
G.block(0, q_index, 6, 3) = ((point_trans * model.X_base[j].inverse()).toMatrix() * model.multdof3_S[j]).block(0,0,6,3);
} else {
G.block(0,q_index, 6, 1) = point_trans.apply(model.X_base[j].inverse().apply(model.S[j])).block(0,0,6,1);
}
j = model.lambda[j];
}
}
RBDL_DLLAPI
void CalcBodySpatialJacobianPtr (
Model &model,
const double *q_ptr,
unsigned int body_id,
double *G_ptr,
bool update_kinematics
) {
LOG << "-------- " << __func__ << " --------" << std::endl;
using namespace RigidBodyDynamics::Math;
// update the Kinematics if necessary
if (update_kinematics) {
UpdateKinematicsCustomPtr (model, q_ptr, NULL, NULL);
}
MatrixNdRef G = MatrixFromPtr(const_cast<double*>(G_ptr), 6, model.q_size);
assert (G.rows() == 6 && G.cols() == model.qdot_size );
unsigned int reference_body_id = body_id;
SpatialTransform base_to_body;
if (model.IsFixedBodyId(body_id)) {
unsigned int fbody_id = body_id - model.fixed_body_discriminator;
reference_body_id = model.mFixedBodies[fbody_id].mMovableParent;
base_to_body = model.mFixedBodies[fbody_id].mParentTransform * model.X_base[reference_body_id];
} else {
base_to_body = model.X_base[reference_body_id];
}
unsigned int j = reference_body_id;
while (j != 0) {
unsigned int q_index = model.mJoints[j].q_index;
if (model.mJoints[j].mDoFCount == 3) {
G.block(0,q_index,6,3) = (base_to_body * model.X_base[j].inverse()).toMatrix() * model.multdof3_S[j];
} else {
G.block(0,q_index,6,1) = base_to_body.apply(model.X_base[j].inverse().apply(model.S[j]));
}
j = model.lambda[j];
}
}
RBDL_DLLAPI
void InverseDynamicsPtr (
Model &model,
const double *q_ptr,
const double *qdot_ptr,
const double *qddot_ptr,
const double *tau_ptr,
std::vector<Math::SpatialVector> *f_ext
) {
LOG << "-------- " << __func__ << " --------" << std::endl;
using namespace RigidBodyDynamics::Math;
VectorNdRef Q = VectorFromPtr(const_cast<double*>(q_ptr), model.q_size);
VectorNdRef QDot = VectorFromPtr(const_cast<double*>(qdot_ptr), model.q_size);
VectorNdRef QDDot = VectorFromPtr(const_cast<double*>(qddot_ptr), model.q_size);
VectorNdRef Tau = VectorFromPtr(const_cast<double*>(tau_ptr), model.q_size);
// Reset the velocity of the root body
model.v[0].setZero();
model.a[0].set (0., 0., 0., -model.gravity[0], -model.gravity[1], -model.gravity[2]);
for (unsigned int i = 1; i < model.mBodies.size(); i++) {
unsigned int q_index = model.mJoints[i].q_index;
unsigned int lambda = model.lambda[i];
jcalc (model, i, Q, QDot);
if (lambda != 0) {
model.X_base[i] = model.X_lambda[i] * model.X_base[lambda];
} else {
model.X_base[i] = model.X_lambda[i];
}
model.v[i] = model.X_lambda[i].apply(model.v[lambda]) + model.v_J[i];
model.c[i] = model.c_J[i] + crossm(model.v[i],model.v_J[i]);
if (model.mJoints[i].mDoFCount == 3) {
model.a[i] = model.X_lambda[i].apply(model.a[lambda]) + model.c[i] + model.multdof3_S[i] * Vector3d (QDDot[q_index], QDDot[q_index + 1], QDDot[q_index + 2]);
} else {
model.a[i] = model.X_lambda[i].apply(model.a[lambda]) + model.c[i] + model.S[i] * QDDot[q_index];
}
if (!model.mBodies[i].mIsVirtual) {
model.f[i] = model.I[i] * model.a[i] + crossf(model.v[i],model.I[i] * model.v[i]);
} else {
model.f[i].setZero();
}
if (f_ext != NULL && (*f_ext)[i] != SpatialVector::Zero())
model.f[i] -= model.X_base[i].toMatrixAdjoint() * (*f_ext)[i];
}
for (unsigned int i = model.mBodies.size() - 1; i > 0; i--) {
if (model.mJoints[i].mDoFCount == 3) {
Tau.block<3,1>(model.mJoints[i].q_index, 0) = model.multdof3_S[i].transpose() * model.f[i];
} else {
Tau[model.mJoints[i].q_index] = model.S[i].dot(model.f[i]);
}
if (model.lambda[i] != 0) {
model.f[model.lambda[i]] = model.f[model.lambda[i]] + model.X_lambda[i].applyTranspose(model.f[i]);
}
}
}
RBDL_DLLAPI
void NonlinearEffectsPtr (
Model &model,
const double *q_ptr,
const double *qdot_ptr,
const double *tau_ptr
) {
LOG << "-------- " << __func__ << " --------" << std::endl;
using namespace RigidBodyDynamics::Math;
VectorNdRef Q = VectorFromPtr(const_cast<double*>(q_ptr), model.q_size);
VectorNdRef QDot = VectorFromPtr(const_cast<double*>(qdot_ptr), model.q_size);
VectorNdRef Tau = VectorFromPtr(const_cast<double*>(tau_ptr), model.q_size);
SpatialVector spatial_gravity (0., 0., 0., -model.gravity[0], -model.gravity[1], -model.gravity[2]);
// Reset the velocity of the root body
model.v[0].setZero();
model.a[0] = spatial_gravity;
for (unsigned int i = 1; i < model.mJointUpdateOrder.size(); i++) {
jcalc (model, model.mJointUpdateOrder[i], Q, QDot);
}
for (unsigned int i = 1; i < model.mBodies.size(); i++) {
if (model.lambda[i] == 0) {
model.v[i] = model.v_J[i];
model.a[i] = model.X_lambda[i].apply(spatial_gravity);
} else {
model.v[i] = model.X_lambda[i].apply(model.v[model.lambda[i]]) + model.v_J[i];
model.c[i] = model.c_J[i] + crossm(model.v[i],model.v_J[i]);
model.a[i] = model.X_lambda[i].apply(model.a[model.lambda[i]]) + model.c[i];
}
if (!model.mBodies[i].mIsVirtual) {
model.f[i] = model.I[i] * model.a[i] + crossf(model.v[i],model.I[i] * model.v[i]);
} else {
model.f[i].setZero();
}
}
for (unsigned int i = model.mBodies.size() - 1; i > 0; i--) {
if (model.mJoints[i].mDoFCount == 3) {
Tau.block<3,1>(model.mJoints[i].q_index, 0) = model.multdof3_S[i].transpose() * model.f[i];
} else {
Tau[model.mJoints[i].q_index] = model.S[i].dot(model.f[i]);
}
if (model.lambda[i] != 0) {
model.f[model.lambda[i]] = model.f[model.lambda[i]] + model.X_lambda[i].applyTranspose(model.f[i]);
}
}
}
RBDL_DLLAPI
inline void CompositeRigidBodyAlgorithmPtr (
Model& model,
const double *q_ptr,
double *H_ptr,
bool update_kinematics = true
) {
using namespace RigidBodyDynamics::Math;
VectorNdRef&& Q = VectorFromPtr(const_cast<double*>(q_ptr), model.q_size);
MatrixNdRef&& H = MatrixFromPtr(H_ptr, model.qdot_size, model.qdot_size);
assert (H.rows() == model.dof_count && H.cols() == model.dof_count);
for (unsigned int i = 1; i < model.mBodies.size(); i++) {
if (update_kinematics) {
jcalc_X_lambda_S (model, i, Q);
}
model.Ic[i] = model.I[i];
}
for (unsigned int i = model.mBodies.size() - 1; i > 0; i--) {
if (model.lambda[i] != 0) {
model.Ic[model.lambda[i]] = model.Ic[model.lambda[i]] + model.X_lambda[i].applyTranspose(model.Ic[i]);
}
unsigned int dof_index_i = model.mJoints[i].q_index;
if (model.mJoints[i].mDoFCount == 3) {
Matrix63 F_63 = model.Ic[i].toMatrix() * model.multdof3_S[i];
H.block<3,3>(dof_index_i, dof_index_i) = model.multdof3_S[i].transpose() * F_63;
unsigned int j = i;
unsigned int dof_index_j = dof_index_i;
while (model.lambda[j] != 0) {
F_63 = model.X_lambda[j].toMatrixTranspose() * (F_63);
j = model.lambda[j];
dof_index_j = model.mJoints[j].q_index;
if (model.mJoints[j].mDoFCount == 3) {
Matrix3d H_temp2 = F_63.transpose() * (model.multdof3_S[j]);
H.block<3,3>(dof_index_i,dof_index_j) = H_temp2;
H.block<3,3>(dof_index_j,dof_index_i) = H_temp2.transpose();
} else {
Vector3d H_temp2 = F_63.transpose() * (model.S[j]);
H.block<3,1>(dof_index_i,dof_index_j) = H_temp2;
H.block<1,3>(dof_index_j,dof_index_i) = H_temp2.transpose();
}
}
} else {
SpatialVector F = model.Ic[i] * model.S[i];
H(dof_index_i, dof_index_i) = model.S[i].dot(F);
unsigned int j = i;
unsigned int dof_index_j = dof_index_i;
while (model.lambda[j] != 0) {
F = model.X_lambda[j].applyTranspose(F);
j = model.lambda[j];
dof_index_j = model.mJoints[j].q_index;
if (model.mJoints[j].mDoFCount == 3) {
Vector3d H_temp2 = (F.transpose() * model.multdof3_S[j]).transpose();
LOG << F.transpose() << std::endl << model.multdof3_S[j] << std::endl;
LOG << H_temp2.transpose() << std::endl;
H.block<1,3>(dof_index_i,dof_index_j) = H_temp2.transpose();
H.block<3,1>(dof_index_j,dof_index_i) = H_temp2;
} else {
H(dof_index_i,dof_index_j) = F.dot(model.S[j]);
H(dof_index_j,dof_index_i) = H(dof_index_i,dof_index_j);
}
}
}
}
}
RBDL_DLLAPI
void ForwardDynamicsPtr (
Model &model,
const double *q_ptr,
const double *qdot_ptr,
const double *tau_ptr,
const double *qddot_ptr,
std::vector<Math::SpatialVector> *f_ext
) {
LOG << "-------- " << __func__ << " --------" << std::endl;
using namespace RigidBodyDynamics::Math;
VectorNdRef&& Q = VectorFromPtr(const_cast<double*>(q_ptr), model.q_size);
VectorNdRef&& QDot = VectorFromPtr(const_cast<double*>(qdot_ptr), model.q_size);
VectorNdRef&& QDDot = VectorFromPtr(const_cast<double*>(qddot_ptr), model.q_size);
VectorNdRef&& Tau = VectorFromPtr(const_cast<double*>(tau_ptr), model.q_size);
SpatialVector spatial_gravity (0., 0., 0., model.gravity[0], model.gravity[1], model.gravity[2]);
unsigned int i = 0;
LOG << "Q = " << Q.transpose() << std::endl;
LOG << "QDot = " << QDot.transpose() << std::endl;
LOG << "Tau = " << Tau.transpose() << std::endl;
LOG << "---" << std::endl;
// Reset the velocity of the root body
model.v[0].setZero();
for (i = 1; i < model.mBodies.size(); i++) {
unsigned int lambda = model.lambda[i];
jcalc (model, i, Q, QDot);
if (lambda != 0)
model.X_base[i] = model.X_lambda[i] * model.X_base[lambda];
else
model.X_base[i] = model.X_lambda[i];
model.v[i] = model.X_lambda[i].apply( model.v[lambda]) + model.v_J[i];
/*
LOG << "X_J (" << i << "):" << std::endl << X_J << std::endl;
LOG << "v_J (" << i << "):" << std::endl << v_J << std::endl;
LOG << "v_lambda" << i << ":" << std::endl << model.v.at(lambda) << std::endl;
LOG << "X_base (" << i << "):" << std::endl << model.X_base[i] << std::endl;
LOG << "X_lambda (" << i << "):" << std::endl << model.X_lambda[i] << std::endl;
LOG << "SpatialVelocity (" << i << "): " << model.v[i] << std::endl;
*/
model.c[i] = model.c_J[i] + crossm(model.v[i],model.v_J[i]);
model.I[i].setSpatialMatrix (model.IA[i]);
model.pA[i] = crossf(model.v[i],model.I[i] * model.v[i]);
if (f_ext != NULL && (*f_ext)[i] != SpatialVector::Zero()) {
LOG << "External force (" << i << ") = " << model.X_base[i].toMatrixAdjoint() * (*f_ext)[i] << std::endl;
model.pA[i] -= model.X_base[i].toMatrixAdjoint() * (*f_ext)[i];
}
}
// ClearLogOutput();
LOG << "--- first loop ---" << std::endl;
for (i = model.mBodies.size() - 1; i > 0; i--) {
unsigned int q_index = model.mJoints[i].q_index;
if (model.mJoints[i].mDoFCount == 3) {
model.multdof3_U[i] = model.IA[i] * model.multdof3_S[i];
#ifdef EIGEN_CORE_H
model.multdof3_Dinv[i] = (model.multdof3_S[i].transpose() * model.multdof3_U[i]).inverse().eval();
#else
model.multdof3_Dinv[i] = (model.multdof3_S[i].transpose() * model.multdof3_U[i]).inverse();
#endif
Vector3d tau_temp (Tau[q_index], Tau[q_index + 1], Tau[q_index + 2]);
model.multdof3_u[i] = tau_temp - model.multdof3_S[i].transpose() * model.pA[i];
// LOG << "multdof3_u[" << i << "] = " << model.multdof3_u[i].transpose() << std::endl;
unsigned int lambda = model.lambda[i];
if (lambda != 0) {
SpatialMatrix Ia = model.IA[i] - model.multdof3_U[i] * model.multdof3_Dinv[i] * model.multdof3_U[i].transpose();
SpatialVector pa = model.pA[i] + Ia * model.c[i] + model.multdof3_U[i] * model.multdof3_Dinv[i] * model.multdof3_u[i];
#ifdef EIGEN_CORE_H
model.IA[lambda].noalias() += model.X_lambda[i].toMatrixTranspose() * Ia * model.X_lambda[i].toMatrix();
model.pA[lambda].noalias() += model.X_lambda[i].applyTranspose(pa);
#else
model.IA[lambda] += model.X_lambda[i].toMatrixTranspose() * Ia * model.X_lambda[i].toMatrix();
model.pA[lambda] += model.X_lambda[i].applyTranspose(pa);
#endif
LOG << "pA[" << lambda << "] = " << model.pA[lambda].transpose() << std::endl;
}
} else {
model.U[i] = model.IA[i] * model.S[i];
model.d[i] = model.S[i].dot(model.U[i]);
model.u[i] = Tau[q_index] - model.S[i].dot(model.pA[i]);
// LOG << "u[" << i << "] = " << model.u[i] << std::endl;
unsigned int lambda = model.lambda[i];
if (lambda != 0) {
SpatialMatrix Ia = model.IA[i] - model.U[i] * (model.U[i] / model.d[i]).transpose();
SpatialVector pa = model.pA[i] + Ia * model.c[i] + model.U[i] * model.u[i] / model.d[i];
#ifdef EIGEN_CORE_H
model.IA[lambda].noalias() += model.X_lambda[i].toMatrixTranspose() * Ia * model.X_lambda[i].toMatrix();
model.pA[lambda].noalias() += model.X_lambda[i].applyTranspose(pa);
#else
model.IA[lambda] += model.X_lambda[i].toMatrixTranspose() * Ia * model.X_lambda[i].toMatrix();
model.pA[lambda] += model.X_lambda[i].applyTranspose(pa);
#endif
LOG << "pA[" << lambda << "] = " << model.pA[lambda].transpose() << std::endl;
}
}
}
// ClearLogOutput();
model.a[0] = spatial_gravity * -1.;
for (i = 1; i < model.mBodies.size(); i++) {
unsigned int q_index = model.mJoints[i].q_index;
unsigned int lambda = model.lambda[i];
SpatialTransform X_lambda = model.X_lambda[i];
model.a[i] = X_lambda.apply(model.a[lambda]) + model.c[i];
LOG << "a'[" << i << "] = " << model.a[i].transpose() << std::endl;
if (model.mJoints[i].mDoFCount == 3) {
Vector3d qdd_temp = model.multdof3_Dinv[i] * (model.multdof3_u[i] - model.multdof3_U[i].transpose() * model.a[i]);
QDDot[q_index] = qdd_temp[0];
QDDot[q_index + 1] = qdd_temp[1];
QDDot[q_index + 2] = qdd_temp[2];
model.a[i] = model.a[i] + model.multdof3_S[i] * qdd_temp;
} else {
QDDot[q_index] = (1./model.d[i]) * (model.u[i] - model.U[i].dot(model.a[i]));
model.a[i] = model.a[i] + model.S[i] * QDDot[q_index];
}
}
LOG << "QDDot = " << QDDot.transpose() << std::endl;
}
}