protot/3rdparty/fcl/test/test_fcl_signed_distance.cpp

195 lines
7.2 KiB
C++
Raw Permalink Normal View History

2018-12-23 11:20:54 +01:00
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2016, Open Source Robotics Foundation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Open Source Robotics Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <gtest/gtest.h>
#include "eigen_matrix_compare.h"
#include "fcl/narrowphase/distance.h"
#include "fcl/narrowphase/detail/traversal/collision_node.h"
#include "fcl/narrowphase/detail/gjk_solver_libccd.h"
#include "test_fcl_utility.h"
#include "fcl_resources/config.h"
using namespace fcl;
bool verbose = false;
//==============================================================================
template <typename S>
void test_distance_spheresphere(GJKSolverType solver_type)
{
const S radius_1 = 20;
const S radius_2 = 10;
Sphere<S> s1{radius_1};
Sphere<S> s2{radius_2};
Transform3<S> tf1{Transform3<S>::Identity()};
Transform3<S> tf2{Transform3<S>::Identity()};
DistanceRequest<S> request;
request.enable_signed_distance = true;
request.enable_nearest_points = true;
request.gjk_solver_type = solver_type;
DistanceResult<S> result;
// Expecting distance to be 10
result.clear();
tf2.translation() = Vector3<S>(40, 0, 0);
distance(&s1, tf1, &s2, tf2, request, result);
EXPECT_NEAR(result.min_distance, 10, 1e-6);
EXPECT_TRUE(CompareMatrices(result.nearest_points[0], Vector3<S>(20, 0, 0),
request.distance_tolerance));
EXPECT_TRUE(CompareMatrices(result.nearest_points[1], Vector3<S>(30, 0, 0),
request.distance_tolerance));
// request.distance_tolerance is actually the square of the distance
// tolerance, namely the difference between distance returned from FCL's EPA
// implementation and the actual distance, is less than
// sqrt(request.distance_tolerance).
const S distance_tolerance = std::sqrt(request.distance_tolerance);
// Expecting distance to be -5
result.clear();
tf2.translation() = Vector3<S>(25, 0, 0);
distance(&s1, tf1, &s2, tf2, request, result);
EXPECT_NEAR(result.min_distance, -5, request.distance_tolerance);
// TODO(JS): Only GST_LIBCCD can compute the pair of nearest points on the
// surface of the penetrating spheres.
if (solver_type == GST_LIBCCD)
{
EXPECT_TRUE(CompareMatrices(result.nearest_points[0], Vector3<S>(20, 0, 0),
distance_tolerance));
EXPECT_TRUE(CompareMatrices(result.nearest_points[1], Vector3<S>(15, 0, 0),
distance_tolerance));
}
result.clear();
tf2.translation() = Vector3<S>(20, 0, 20);
distance(&s1, tf1, &s2, tf2, request, result);
S expected_dist =
(tf1.translation() - tf2.translation()).norm() - radius_1 - radius_2;
EXPECT_NEAR(result.min_distance, expected_dist, distance_tolerance);
// TODO(JS): Only GST_LIBCCD can compute the pair of nearest points on the
// surface of the spheres.
if (solver_type == GST_LIBCCD)
{
Vector3<S> dir = (tf2.translation() - tf1.translation()).normalized();
Vector3<S> p0_expected = dir * radius_1;
EXPECT_TRUE(CompareMatrices(result.nearest_points[0], p0_expected,
distance_tolerance));
Vector3<S> p1_expected = tf2.translation() - dir * radius_2;
EXPECT_TRUE(CompareMatrices(result.nearest_points[1], p1_expected,
distance_tolerance));
}
}
template <typename S>
void test_distance_spherecapsule(GJKSolverType solver_type)
{
Sphere<S> s1{20};
Capsule<S> s2{10, 20};
Transform3<S> tf1{Transform3<S>::Identity()};
Transform3<S> tf2{Transform3<S>::Identity()};
DistanceRequest<S> request;
request.enable_signed_distance = true;
request.enable_nearest_points = true;
request.gjk_solver_type = solver_type;
DistanceResult<S> result;
// Expecting distance to be 10
result.clear();
tf2.translation() = Vector3<S>(40, 0, 0);
distance(&s1, tf1, &s2, tf2, request, result);
EXPECT_NEAR(result.min_distance, 10, request.distance_tolerance);
EXPECT_TRUE(CompareMatrices(result.nearest_points[0], Vector3<S>(20, 0, 0),
request.distance_tolerance));
EXPECT_TRUE(CompareMatrices(result.nearest_points[1], Vector3<S>(30, 0, 0),
request.distance_tolerance));
// Expecting distance to be -5
result.clear();
tf2.translation() = Vector3<S>(25, 0, 0);
distance(&s1, tf1, &s2, tf2, request, result);
// request.distance_tolerance is actually the square of the distance
// tolerance, namely the difference between distance returned from FCL's EPA
// implementation and the actual distance, is less than
// sqrt(request.distance_tolerance).
const S distance_tolerance = std::sqrt(request.distance_tolerance);
ASSERT_NEAR(result.min_distance, -5, distance_tolerance);
if (solver_type == GST_LIBCCD)
{
// NOTE: Currently, only GST_LIBCCD computes the pair of nearest points.
EXPECT_TRUE(CompareMatrices(result.nearest_points[0], Vector3<S>(20, 0, 0),
distance_tolerance * 100));
EXPECT_TRUE(CompareMatrices(result.nearest_points[1], Vector3<S>(15, 0, 0),
distance_tolerance * 100));
}
}
//==============================================================================
GTEST_TEST(FCL_NEGATIVE_DISTANCE, sphere_sphere_ccd)
{
test_distance_spheresphere<double>(GST_LIBCCD);
}
GTEST_TEST(FCL_NEGATIVE_DISTANCE, sphere_sphere_indep)
{
test_distance_spheresphere<double>(GST_INDEP);
}
GTEST_TEST(FCL_NEGATIVE_DISTANCE, sphere_capsule_ccd)
{
test_distance_spherecapsule<double>(GST_LIBCCD);
}
GTEST_TEST(FCL_NEGATIVE_DISTANCE, sphere_capsule_indep)
{
test_distance_spherecapsule<double>(GST_INDEP);
}
//==============================================================================
int main(int argc, char* argv[])
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}