2025-12-31 18:50:42 +01:00

164 lines
5.1 KiB
C

#pragma once
#include "core/templates/local_vector.h"
#include <cassert>
#include <cmath>
/** @class SyncTrack used for synced animation blending.
*
* A SyncTrack consists of multiple SyncInterval that are adjacent to each other.
*
* Important definitions:
*
* - Absolute Time: time within an animation duration in seconds.
* - Ratio: time relative to the animations duration, e.g. 0.5 corresponds to 50% of the duration.
* - SyncTime is a floating point value where the integer parts defines the SyncInterval and the
* fractional part the fraction within the interval. I.e. a SyncTime of 5.332 means it is ~33%
* through interval 5.
*
* A SyncInterval is defined by a ratio of the starting point and the ratio of the interval's duration.
*/
struct SyncTrack {
static constexpr int cSyncTrackMaxIntervals = 8;
SyncTrack() :
duration(0.f), num_intervals(1) {
for (int i = 0; i < cSyncTrackMaxIntervals; i++) {
interval_start_ratio[i] = 0.f;
interval_duration_ratio[i] = 0.f;
}
interval_duration_ratio[0] = 1.0f;
}
float duration = 1.0;
int num_intervals = 1;
float interval_start_ratio
[cSyncTrackMaxIntervals]; //< Starting time of interval in absolute time.
float interval_duration_ratio[cSyncTrackMaxIntervals]; //<
float calc_sync_from_abs_time(float abs_time) const {
for (int i = 0; i < num_intervals; i++) {
float query_abs_time = abs_time;
float interval_start = interval_start_ratio[i] * duration;
float interval_end =
interval_start + interval_duration_ratio[i] * duration;
if (query_abs_time < interval_start) {
query_abs_time += duration;
}
if (query_abs_time >= interval_start && query_abs_time < interval_end) {
return float(i) + (query_abs_time - interval_start) / (interval_end - interval_start);
}
}
assert(false && "Invalid absolute time");
return -1.f;
}
double calc_ratio_from_sync_time(double sync_time) const {
float interval_ratio = fmod(sync_time, 1.0f);
int interval = int(sync_time - interval_ratio);
return fmod(
interval_start_ratio[interval] + interval_duration_ratio[interval] * interval_ratio,
1.0f);
}
bool operator==(const SyncTrack &other) const {
bool result = duration == other.duration && num_intervals == other.num_intervals;
if (!result) {
return false;
}
for (int i = 0; i < num_intervals; i++) {
if ((fabsf(interval_start_ratio[i] - other.interval_start_ratio[i]) > 1.0e-5) || (fabsf(interval_duration_ratio[i] - other.interval_duration_ratio[i]) > 1.0e-5)) {
return false;
}
}
return true;
}
/** Constructs SyncTrack from markers.
*
* Markers are specified in absolute time and must be >= 0 and <= duration. They define the
* start of the interval. The last marker is implicitly the (possibly looped) first marker.
*/
static SyncTrack create_from_markers(
float duration,
const LocalVector<float> &markers) {
assert(markers.size() > 0);
assert(markers.size() < cSyncTrackMaxIntervals);
SyncTrack result;
result.duration = duration;
result.num_intervals = markers.size();
for (unsigned int i = 0; i < markers.size(); i++) {
assert(markers[i] >= 0.f && markers[i] <= duration);
int end_index = i == (markers.size() - 1) ? 0 : i + 1;
float interval_start = markers[i];
float interval_end = markers[end_index];
if (interval_end == interval_start) {
interval_end = interval_start + duration;
} else if (interval_end < interval_start) {
interval_end += duration;
}
result.interval_start_ratio[i] = interval_start / duration;
result.interval_duration_ratio[i] =
(interval_end - interval_start) / duration;
}
return result;
}
static SyncTrack
blend(float weight, const SyncTrack &track_A, const SyncTrack &track_B) {
assert(track_A.num_intervals == track_B.num_intervals);
SyncTrack result;
result.num_intervals = track_A.num_intervals;
result.duration =
(1.0f - weight) * track_A.duration + weight * track_B.duration;
float interval_0_offset =
track_B.interval_start_ratio[0] - track_A.interval_start_ratio[0];
if (interval_0_offset > 0.5f) {
interval_0_offset = -fmodf(1.f - interval_0_offset, 1.0f);
} else if (interval_0_offset < -0.5) {
interval_0_offset = fmodf(1.f + interval_0_offset, 1.0f);
}
result.interval_start_ratio[0] = fmodf(
1.0 + (1.0f - weight) * track_A.interval_start_ratio[0] + weight * (track_A.interval_start_ratio[0] + interval_0_offset),
1.0f);
for (int i = 0; i < result.num_intervals; i++) {
float interval_duration_A = track_A.interval_duration_ratio[i];
float interval_duration_B = track_B.interval_duration_ratio[i];
result.interval_duration_ratio[i] =
(1.0f - weight) * interval_duration_A + weight * interval_duration_B;
if (i < cSyncTrackMaxIntervals) {
result.interval_start_ratio[i + 1] =
result.interval_start_ratio[i] + result.interval_duration_ratio[i];
if (result.interval_start_ratio[i + 1] > 1.0f) {
result.interval_start_ratio[i + 1] =
fmodf(result.interval_start_ratio[i + 1], 1.0f);
}
}
}
assert(result.num_intervals < cSyncTrackMaxIntervals);
return result;
}
};