fysxasteroids/engine/libraries/oglft/liboglft/OGLFT.cpp

3817 lines
104 KiB
C++

/*
* OGLFT: A library for drawing text with OpenGL using the FreeType library
* Copyright (C) 2002 lignum Computing, Inc. <oglft@lignumcomputing.com>
* Copyright (C) 2008 Allen Barnett
* $Id:$
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <iostream>
#include <iomanip>
#include "OGLFT.h"
#ifndef OGLFT_NO_QT
#include <qregexp.h>
#endif
namespace OGLFT {
// This is the static instance of the FreeType library wrapper ...
Library Library::library;
// ... and this is the FreeType library handle itself.
FT_Library Library::library_;
// The static instance above causes this constructor to be called
// when the object module is loaded.
Library::Library ( void )
{
FT_Error error = FT_Init_FreeType( &library_ );
if ( error != 0 ) {
std::cerr << "Could not initialize the FreeType library. Exiting." << std::endl;
exit( 1 );
}
}
Library::~Library ( void )
{
FT_Error error = FT_Done_FreeType( library_ );
if ( error != 0 ) {
std::cerr << "Could not terminate the FreeType library." << std::endl;
}
}
// Return the only instance in the process
FT_Library& Library::instance ( void )
{
return library_;
}
// Load a new face from file
Face::Face ( const char* filename, float point_size, FT_UInt resolution )
: point_size_( point_size ), resolution_( resolution )
{
valid_ = true; // Assume the best :-)
FT_Face ft_face;
FT_Error error = FT_New_Face( Library::instance(), filename, 0, &ft_face );
if ( error != 0 ) {
valid_ = false;
return;
}
// As of FreeType 2.1: only a UNICODE charmap is automatically activated.
// If no charmap is activated automatically, just use the first one.
if ( ft_face->charmap == 0 && ft_face->num_charmaps > 0 )
FT_Select_Charmap( ft_face, ft_face->charmaps[0]->encoding );
faces_.push_back( FaceData( ft_face ) );
init();
}
// Load a new face from memory
Face::Face ( const FT_Byte* data_base, const FT_Long data_size, float point_size, FT_UInt resolution )
: point_size_( point_size ), resolution_( resolution )
{
valid_ = true; // Assume the best :-)
FT_Face ft_face;
FT_Error error = FT_New_Memory_Face( Library::instance(), data_base, data_size, 0, &ft_face );
if ( error != 0 ) {
valid_ = false;
return;
}
// As of FreeType 2.1: only a UNICODE charmap is automatically activated.
// If no charmap is activated automatically, just use the first one.
if ( ft_face->charmap == 0 && ft_face->num_charmaps > 0 )
FT_Select_Charmap( ft_face, ft_face->charmaps[0]->encoding );
faces_.push_back( FaceData( ft_face ) );
init();
}
// Go with a face that the user has already opened.
Face::Face ( FT_Face face, float point_size, FT_UInt resolution )
: point_size_( point_size ), resolution_( resolution )
{
valid_ = true;
// As of FreeType 2.1: only a UNICODE charmap is automatically activated.
// If no charmap is activated automatically, just use the first one.
if ( face->charmap == 0 && face->num_charmaps > 0 )
FT_Select_Charmap( face, face->charmaps[0]->encoding );
faces_.push_back( FaceData( face, false ) );
init();
}
// Standard initialization behavior once the font file is opened.
void Face::init ( void )
{
// By default, each glyph is compiled into a display list the first
// time it is encountered
compile_mode_ = COMPILE;
// By default, all drawing is wrapped with push/pop matrix so that the
// MODELVIEW matrix is not modified. If advance_ is set, then subsequent
// drawings follow from the advance of the last glyph rendered.
advance_ = false;
// Initialize the default colors
foreground_color_[R] = 0.;
foreground_color_[G] = 0.;
foreground_color_[B] = 0.;
foreground_color_[A] = 1.;
background_color_[R] = 1.;
background_color_[G] = 1.;
background_color_[B] = 1.;
background_color_[A] = 0.;
// The default positioning of the text is at the origin of the first glyph
horizontal_justification_ = ORIGIN;
vertical_justification_ = BASELINE;
// By default, strings are rendered in their nominal direction
string_rotation_ = 0;
// setCharacterRotationReference calls the virtual function clearCaches()
// so it is up to a subclass to set the real default
rotation_reference_glyph_ = 0;
rotation_reference_face_ = 0;
rotation_offset_y_ = 0.;
}
Face::~Face ( void )
{
for ( unsigned int i = 0; i < faces_.size(); i++ )
if ( faces_[i].free_on_exit_ )
FT_Done_Face( faces_[i].face_ );
}
// Add another Face to select characters from file.
bool Face::addAuxiliaryFace ( const char* filename )
{
FT_Face ft_face;
FT_Error error = FT_New_Face( Library::instance(), filename, 0, &ft_face );
if ( error != 0 )
return false;
faces_.push_back( FaceData( ft_face ) );
setCharSize();
return true;
}
// Add another Face to select characters from memory.
bool Face::addAuxiliaryFace ( const FT_Byte* data_base, const FT_Long data_size )
{
FT_Face ft_face;
FT_Error error = FT_New_Memory_Face( Library::instance(), data_base, data_size, 0, &ft_face );
if ( error != 0 )
return false;
faces_.push_back( FaceData( ft_face ) );
setCharSize();
return true;
}
// Add another Face to select characters from (face)
bool Face::addAuxiliaryFace ( FT_Face face )
{
faces_.push_back( FaceData( face, false ) );
setCharSize();
return true;
}
// Note: Changing the point size also clears the display list cache
void Face::setPointSize ( float point_size )
{
if ( point_size != point_size_ ) {
point_size_ = point_size;
clearCaches();
setCharSize();
}
}
// Note: Changing the resolution also clears the display list cache
void Face::setResolution ( FT_UInt resolution )
{
if ( resolution != resolution_ ) {
resolution_ = resolution;
clearCaches();
setCharSize();
}
}
// Note: Changing the background color also clears the display list cache.
void Face::setBackgroundColor ( GLfloat red, GLfloat green, GLfloat blue,
GLfloat alpha )
{
if ( background_color_[R] != red ||
background_color_[G] != green ||
background_color_[B] != blue ||
background_color_[A] != alpha ) {
background_color_[R] = red;
background_color_[G] = green;
background_color_[B] = blue;
background_color_[A] = alpha;
clearCaches();
}
}
// Note: Changing the foreground color also clears the display list cache.
void Face::setForegroundColor ( GLfloat red, GLfloat green, GLfloat blue,
GLfloat alpha )
{
if ( foreground_color_[R] != red ||
foreground_color_[G] != green ||
foreground_color_[B] != blue ||
foreground_color_[A] != alpha ) {
foreground_color_[R] = red;
foreground_color_[G] = green;
foreground_color_[B] = blue;
foreground_color_[A] = alpha;
clearCaches();
}
}
// Note: Changing the foreground color also clears the display list cache.
void Face::setForegroundColor ( const GLfloat foreground_color[4] )
{
if ( foreground_color_[R] != foreground_color[R] ||
foreground_color_[G] != foreground_color[G] ||
foreground_color_[B] != foreground_color[B] ||
foreground_color_[A] != foreground_color[A] ) {
foreground_color_[R] = foreground_color[R];
foreground_color_[G] = foreground_color[G];
foreground_color_[B] = foreground_color[B];
foreground_color_[A] = foreground_color[A];
clearCaches();
}
}
// Note: Changing the background color also clears the display list cache.
void Face::setBackgroundColor ( const GLfloat background_color[4] )
{
if ( background_color_[R] != background_color[R] ||
background_color_[G] != background_color[G] ||
background_color_[B] != background_color[B] ||
background_color_[A] != background_color[A] ) {
background_color_[R] = background_color[R];
background_color_[G] = background_color[G];
background_color_[B] = background_color[B];
background_color_[A] = background_color[A];
clearCaches();
}
}
#ifndef OGLFT_NO_QT
// Note: Changing the foreground color also clears the display list cache.
void Face::setForegroundColor ( const QRgb foreground_rgba )
{
GLfloat foreground_color[4];
foreground_color[R] = qRed( foreground_rgba ) / 255.;
foreground_color[G] = qGreen( foreground_rgba ) / 255.;
foreground_color[B] = qBlue( foreground_rgba ) / 255.;
foreground_color[A] = qAlpha( foreground_rgba ) / 255.;
if ( foreground_color_[R] != foreground_color[R] ||
foreground_color_[G] != foreground_color[G] ||
foreground_color_[B] != foreground_color[B] ||
foreground_color_[A] != foreground_color[A] ) {
foreground_color_[R] = foreground_color[R];
foreground_color_[G] = foreground_color[G];
foreground_color_[B] = foreground_color[B];
foreground_color_[A] = foreground_color[A];
clearCaches();
}
}
// Note: Changing the background color also clears the display list cache.
void Face::setBackgroundColor ( const QRgb background_rgba )
{
GLfloat background_color[4];
background_color[R] = qRed( background_rgba ) / 255.;
background_color[G] = qGreen( background_rgba ) / 255.;
background_color[B] = qBlue( background_rgba ) / 255.;
background_color[A] = qAlpha( background_rgba ) / 255.;
if ( background_color_[R] != background_color[R] ||
background_color_[G] != background_color[G] ||
background_color_[B] != background_color[B] ||
background_color_[A] != background_color[A] ) {
background_color_[R] = background_color[R];
background_color_[G] = background_color[G];
background_color_[B] = background_color[B];
background_color_[A] = background_color[A];
clearCaches();
}
}
#endif /* OGLFT_NO_QT */
// Note: Changing the string rotation angle clears the display list cache
void Face::setStringRotation ( GLfloat string_rotation )
{
if ( string_rotation != string_rotation_ ) {
string_rotation_ = string_rotation;
clearCaches();
// Note that this affects ALL glyphs accessed through
// the Face, both the vector and the raster glyphs. Very nice!
if ( string_rotation_ != 0. ) {
float angle;
if ( string_rotation_ < 0. ) {
angle = 360.f - fmod( fabs( string_rotation_ ), 360.f );
}
else {
angle = fmod( string_rotation_, 360.f );
}
FT_Matrix rotation_matrix;
FT_Vector sinus;
FT_Vector_Unit( &sinus, (FT_Angle)(angle * 0x10000L) );
rotation_matrix.xx = sinus.x;
rotation_matrix.xy = -sinus.y;
rotation_matrix.yx = sinus.y;
rotation_matrix.yy = sinus.x;
for ( unsigned int i = 0; i < faces_.size(); i++ )
FT_Set_Transform( faces_[i].face_, &rotation_matrix, 0 );
}
else
for ( unsigned int i = 0; i < faces_.size(); i++ )
FT_Set_Transform( faces_[i].face_, 0, 0 );
}
}
// Note: Changing the rotation reference character clears the display list cache.
void Face::setCharacterRotationReference ( unsigned char c )
{
unsigned int f;
FT_UInt glyph_index = 0;
for ( f = 0; f < faces_.size(); f++ ) {
glyph_index = FT_Get_Char_Index( faces_[f].face_, c );
if ( glyph_index != 0 ) break;
}
if ( f < faces_.size() && glyph_index != rotation_reference_glyph_ ) {
FT_Error error = FT_Load_Glyph( faces_[f].face_, glyph_index,
FT_LOAD_DEFAULT );
if ( error != 0 ) return;
rotation_reference_glyph_ = glyph_index;
rotation_reference_face_ = faces_[f].face_;
setRotationOffset();
clearCaches();
}
}
BBox Face::measure ( const char* s )
{
BBox bbox;
char c;
if ( ( c = *s++ ) != 0 ) {
bbox = measure( c );
for ( c = *s; c != 0; c = *++s ) {
BBox char_bbox = measure( c );
bbox += char_bbox;
}
}
return bbox;
}
BBox Face::measureRaw ( const char* s )
{
BBox bbox;
for ( char c = *s; c != 0; c = *++s ) {
BBox char_bbox;
unsigned int f;
FT_UInt glyph_index = 0;
for ( f = 0; f < faces_.size(); f++ ) {
glyph_index = FT_Get_Char_Index( faces_[f].face_, c );
if ( glyph_index != 0 ) break;
}
if ( glyph_index == 0 ) continue;
FT_Error error = FT_Load_Glyph( faces_[f].face_, glyph_index,
FT_LOAD_DEFAULT );
if ( error != 0 ) continue;
FT_Glyph glyph;
error = FT_Get_Glyph( faces_[f].face_->glyph, &glyph );
if ( error != 0 ) continue;
FT_BBox ft_bbox;
FT_Glyph_Get_CBox( glyph, ft_glyph_bbox_unscaled, &ft_bbox );
FT_Done_Glyph( glyph );
char_bbox = ft_bbox;
char_bbox.advance_ = faces_[f].face_->glyph->advance;
bbox += char_bbox;
}
return bbox;
}
#ifndef OGLFT_NO_QT
BBox Face::measure ( const QString& s )
{
BBox bbox;
if ( s.length() > 0 ) {
bbox = measure( s.at( 0 ) );
for ( unsigned int i = 1; i < s.length(); i++ ) {
BBox char_bbox = measure( s.at( i ) );
bbox += char_bbox;
}
}
return bbox;
}
BBox Face::measure ( const QString& format, double number )
{
return measure( format_number( format, number ) );
}
BBox Face::measureRaw ( const QString& s )
{
BBox bbox;
for ( unsigned int i = 0; i < s.length(); i++ ) {
BBox char_bbox;
unsigned int f;
FT_UInt glyph_index = 0;
for ( f = 0; f < faces_.size(); f++ ) {
glyph_index = FT_Get_Char_Index( faces_[f].face_, s.at( i ).unicode() );
if ( glyph_index != 0 ) break;
}
if ( glyph_index == 0 ) {
continue;
}
FT_Error error = FT_Load_Glyph( faces_[f].face_, glyph_index,
FT_LOAD_DEFAULT );
if ( error != 0 ) continue;
FT_Glyph glyph;
error = FT_Get_Glyph( faces_[f].face_->glyph, &glyph );
if ( error != 0 ) continue;
FT_BBox ft_bbox;
FT_Glyph_Get_CBox( glyph, ft_glyph_bbox_unscaled, &ft_bbox );
FT_Done_Glyph( glyph );
char_bbox = ft_bbox;
char_bbox.advance_ = faces_[f].face_->glyph->advance;
bbox += char_bbox;
}
return bbox;
}
#endif /* OGLFT_NO_QT */
// Measure the bounding box as if the (latin1) string were not rotated
BBox Face::measure_nominal ( const char* s )
{
if ( string_rotation_ == 0. )
return measure( s );
for ( unsigned int f = 0; f < faces_.size(); f++ )
FT_Set_Transform( faces_[f].face_, 0, 0 );
BBox bbox = measure( s );
float angle;
if ( string_rotation_ < 0. ) {
angle = 360.f - fmod( fabs( string_rotation_ ), 360.f );
}
else {
angle = fmod( string_rotation_, 360.f );
}
FT_Matrix rotation_matrix;
FT_Vector sinus;
FT_Vector_Unit( &sinus, (FT_Angle)(angle * 0x10000L) );
rotation_matrix.xx = sinus.x;
rotation_matrix.xy = -sinus.y;
rotation_matrix.yx = sinus.y;
rotation_matrix.yy = sinus.x;
for ( unsigned int f = 0; f < faces_.size(); f++ )
FT_Set_Transform( faces_[f].face_, &rotation_matrix, 0 );
return bbox;
}
#ifndef OGLFT_NO_QT
// Measure the bounding box as if the (UNICODE) string were not rotated
BBox Face::measure_nominal ( const QString& s )
{
if ( string_rotation_ == 0. )
return measure( s );
for ( unsigned int f = 0; f < faces_.size(); f++ )
FT_Set_Transform( faces_[f].face_, 0, 0 );
BBox bbox = measure( s );
float angle;
if ( string_rotation_ < 0. ) {
angle = 360. - fmod( fabs( string_rotation_ ), 360.f );
}
else {
angle = fmod( string_rotation_, 360.f );
}
FT_Matrix rotation_matrix;
FT_Vector sinus;
FT_Vector_Unit( &sinus, (FT_Angle)(angle * 0x10000L) );
rotation_matrix.xx = sinus.x;
rotation_matrix.xy = -sinus.y;
rotation_matrix.yx = sinus.y;
rotation_matrix.yy = sinus.x;
for ( unsigned int f = 0; f < faces_.size(); f++ )
FT_Set_Transform( faces_[f].face_, &rotation_matrix, 0 );
return bbox;
}
// Format the number per the given format. Mostly pointless
// for the standard formats, e.g. %12e. You can use the regular
// Qt functions to format such a string and avoid the parsing
// which is done here.
QString Face::format_number ( const QString& format, double number )
{
// This regexp says:
// 1. optionally match any thing up to a format,
// 2. the optional format (%...), and
// 3. optionally anything after it.
// Note that since everything is optional, the match always succeeds.
QRegExp format_regexp("((?:[^%]|%%)*)(%[0-9]*\\.?[0-9]*[efgp])?((?:[^%]|%%)*)");
#if OGLFT_QT_VERSION == 3
/*int pos = */ format_regexp.search( format );
#elif OGLFT_QT_VERSION == 4
/*int pos = */ format_regexp.exactMatch( format );
#endif
QStringList list = format_regexp.capturedTexts();
QStringList::Iterator it = list.begin();
#if OGLFT_QT_VERSION == 3
it = list.remove( it ); // Remove the "matched" string, leaving the pieces
#elif OGLFT_QT_VERSION == 4
it = list.erase( it ); // Remove the "matched" string, leaving the pieces
#endif
if ( it == list.end() ) return QString::null; // Probably an error
// Extract each piece from the list
QString prefix, value_format, postfix;
char type = '\0';
if ( !(*it).isEmpty() )
prefix = *it;
++it;
if ( it != list.end() ) {
if ( !(*it).isEmpty() ) {
// Reparse this to extract the details of the format
QRegExp specifier_regexp( "([0-9]*)\\.?([0-9]*)([efgp])" );
#if OGLFT_QT_VERSION == 3
(void)specifier_regexp.search( *it );
#elif OGLFT_QT_VERSION == 4
(void)specifier_regexp.exactMatch( *it );
#endif
QStringList specifier_list = specifier_regexp.capturedTexts();
QStringList::Iterator sit = specifier_list.begin();
#if OGLFT_QT_VERSION == 3
sit = specifier_list.remove( sit );
#elif OGLFT_QT_VERSION == 4
sit = specifier_list.erase( sit );
#endif
int width = (*sit).toInt();
++sit;
int precision = (*sit).toInt();
++sit;
#if OGLFT_QT_VERSION == 3
type = (*sit).at(0).latin1();
#elif OGLFT_QT_VERSION == 4
type = (*sit).at(0).toLatin1();
#endif
// The regular formats just use Qt's number formatting capability
if ( type == 'e' || type == 'f' || type == 'g' )
value_format = QString( "%1" ).arg( number, width, type, precision );
// For the fraction, though, we have to convert it the special
// UNICODE encoding
else if ( type == 'p' ) {
// Fixed for now...
if ( fabs( number ) < 1./256. )
value_format = "0";
else {
// Extract the integral part
int a = (int)number;
if ( a != 0 )
value_format = QString::number( a );
// Extract the fractional part: NOTE: THIS IS LIMITED TO
// REPRESENTING ALL FRACTIONS AS n/256
int b = (int)rint( 256. * fabs( number - a ) );
// If b is exactly 256, then the original number was
// essentially an integer (to within 1/256-th)
if ( b == 256 )
value_format = QString::number( rint( number ) );
else if ( b != 0 ) {
int c = 256;
// Remove common factors of two from the numerator and denominator
for ( ; ( b & 0x1 ) == 0; b >>= 1, c >>= 1 );
// Format the numerator and shift to 0xE000 sequence
QString numerator = QString::number( b );
for ( uint i = 0; i < numerator.length(); i++ ) {
numerator[i] = QChar( numerator.at(i).unicode() -
QChar('0').unicode() +
0xE000 );
}
value_format += numerator;
value_format += QChar( 0xE00a ); // The '/'
// Format the denominator and shift to 0xE010 sequence
QString denominator = QString::number( c );
for ( uint i = 0; i < denominator.length(); i++ ) {
denominator[i] = QChar( denominator.at(i).unicode() -
QChar('0').unicode() +
0xE010 );
}
value_format += denominator;
}
}
}
}
++it;
if ( it != list.end() && !(*it).isEmpty() )
postfix = *it;
}
return prefix + value_format + postfix;
}
#endif /* OGLFT_NO_QT */
// Compile a (latin1) string into a display list
GLuint Face::compile ( const char* s )
{
// First, make sure all the characters in the string are themselves
// in display lists
const char* s_tmp = s;
for ( char c = *s_tmp; c != 0; c = *++s_tmp ) {
compile( c );
}
GLuint dlist = glGenLists( 1 );
glNewList( dlist, GL_COMPILE );
glColor4f( foreground_color_[R], foreground_color_[G], foreground_color_[B],
foreground_color_[A] );
if ( !advance_ )
glPushMatrix();
draw( s );
if ( !advance_ )
glPopMatrix();
glEndList();
return dlist;
}
#ifndef OGLFT_NO_QT
// Compile a (UNICODE) string into a display list
GLuint Face::compile ( const QString& s )
{
// First, make sure all the characters in the string are themselves
// in display lists
for ( unsigned int i = 0; i < s.length(); i++ ) {
compile( s.at( i ) );
}
GLuint dlist = glGenLists( 1 );
glNewList( dlist, GL_COMPILE );
glColor4f( foreground_color_[R], foreground_color_[G], foreground_color_[B],
foreground_color_[A] );
if ( !advance_ )
glPushMatrix();
draw( s );
if ( !advance_ )
glPopMatrix();
glEndList();
return dlist;
}
#endif /* OGLFT_NO_QT */
// Compile a (latin1) character glyph into a display list and cache
// it for later
GLuint Face::compile ( unsigned char c )
{
// See if we've done it already
GDLCI fgi = glyph_dlists_.find( c );
if ( fgi != glyph_dlists_.end() )
return fgi->second;
unsigned int f;
FT_UInt glyph_index = 0;
for ( f = 0; f < faces_.size(); f++ ) {
glyph_index = FT_Get_Char_Index( faces_[f].face_, c );
if ( glyph_index != 0 ) break;
}
if ( glyph_index == 0 )
return 0;
GLuint dlist = compileGlyph( faces_[f].face_, glyph_index );
glyph_dlists_[ c ] = dlist;
return dlist;
}
#ifndef OGLFT_NO_QT
// Compile a (UNICODE) character glyph into a display list and cache
// it for later
GLuint Face::compile ( const QChar c )
{
// See if we've done it already
GDLCI fgi = glyph_dlists_.find( c.unicode() );
if ( fgi != glyph_dlists_.end() )
return fgi->second;
unsigned int f;
FT_UInt glyph_index = 0;
for ( f = 0; f < faces_.size(); f++ ) {
glyph_index = FT_Get_Char_Index( faces_[f].face_, c.unicode() );
if ( glyph_index != 0 ) break;
}
if ( glyph_index == 0 )
return 0;
GLuint dlist = compileGlyph( faces_[f].face_, glyph_index );
glyph_dlists_[ c.unicode() ] = dlist;
return dlist;
}
#endif /* OGLFT_NO_QT */
// Assume the MODELVIEW matrix is already set and draw the (latin1)
// string. Note: this routine now ignores almost all settings:
// including the position (both modelview and raster), color,
// justification and advance settings. Consider this to be the raw
// drawing routine for which you are responsible for most of the
// setup.
void Face::draw ( const char* s )
{
DLCI character_display_list = character_display_lists_.begin();
for ( char c = *s; c != 0; c = *++s ) {
if ( character_display_list != character_display_lists_.end() ) {
glCallList( *character_display_list );
character_display_list++;
}
draw( c );
}
}
#ifndef OGLFT_NO_QT
// Assume the MODELVIEW matrix is already set and draw the (UNICODE)
// string. Note: this routine now ignores almost all settings:
// including the position (both modelview and raster), color,
// justification and advance settings. Consider this to be the raw
// drawing routine for which you are responsible for most of the
// setup.
void Face::draw ( const QString& s )
{
DLCI character_display_list = character_display_lists_.begin();
for ( unsigned int i = 0; i < s.length(); i++ ) {
if ( character_display_list != character_display_lists_.end() ) {
glCallList( *character_display_list );
character_display_list++;
}
draw( s.at( i ) );
}
}
#endif /* OGLFT_NO_QT */
// Assume the MODELVIEW matrix is already setup and draw the
// (latin1) character.
void Face::draw ( unsigned char c )
{
// See if we've done it already
GDLCI fgi = glyph_dlists_.find( c );
if ( fgi != glyph_dlists_.end( ) ) {
glCallList( fgi->second );
return;
}
unsigned int f;
FT_UInt glyph_index = 0;
for ( f = 0; f < faces_.size(); f++ ) {
glyph_index = FT_Get_Char_Index( faces_[f].face_, c );
if ( glyph_index != 0 ) break;
}
if ( glyph_index == 0 )
return;
// Otherwise, either compile it (and call it) or ...
else if ( compile_mode_ == COMPILE ) {
GLuint dlist = compile( c );
glCallList( dlist );
}
// ... render it immediately
else {
renderGlyph( faces_[f].face_, glyph_index );
}
}
#ifndef OGLFT_NO_QT
// Assume the MODELVIEW matrix is already setup and draw the
// (UNICODE) character.
void Face::draw ( const QChar c )
{
// See if we've done it already
GDLCI fgi = glyph_dlists_.find( c.unicode() );
if ( fgi != glyph_dlists_.end( ) ) {
glCallList( fgi->second );
return;
}
unsigned int f;
FT_UInt glyph_index = 0;
for ( f = 0; f < faces_.size(); f++ ) {
glyph_index = FT_Get_Char_Index( faces_[f].face_, c.unicode() );
if ( glyph_index != 0 ) {
break;
}
}
if ( glyph_index == 0 )
return;
// Otherwise, either compile it (and call it) or ...
if ( compile_mode_ == COMPILE ) {
GLuint dlist = compile( c );
glCallList( dlist );
}
// ... render it immediately
else {
renderGlyph( faces_[f].face_, glyph_index );
}
}
#endif /* OGLFT_NO_QT */
// Draw the (latin1) character at the given position. The MODELVIEW
// matrix is modified by the glyph advance.
void Face::draw ( GLfloat x, GLfloat y, unsigned char c )
{
glTranslatef( x, y, 0. );
glColor4f( foreground_color_[R], foreground_color_[G], foreground_color_[B],
foreground_color_[A] );
glRasterPos2i( 0, 0 );
draw( c );
}
#ifndef OGLFT_NO_QT
// Draw the (UNICODE) character at the given position. The MODELVIEW
// matrix is modified by the glyph advance.
void Face::draw ( GLfloat x, GLfloat y, QChar c )
{
glTranslatef( x, y, 0. );
glColor4f( foreground_color_[R], foreground_color_[G], foreground_color_[B],
foreground_color_[A] );
glRasterPos2i( 0, 0 );
draw( c );
}
#endif /* OGLFT_NO_QT */
// Draw the (latin1) string at the given position.
void Face::draw ( GLfloat x, GLfloat y, const char* s )
{
if ( !advance_ )
glPushMatrix();
if ( horizontal_justification_ != ORIGIN ||
vertical_justification_ != BASELINE ) {
glPushMatrix();
BBox bbox = measure_nominal( s );
GLfloat dx = 0, dy = 0;
switch ( horizontal_justification_ ) {
case LEFT:
dx = -bbox.x_min_; break;
case CENTER:
dx = -( bbox.x_min_ + bbox.x_max_ ) / 2.f; break;
case RIGHT:
dx = -bbox.x_max_; break;
default:
break;
}
switch ( vertical_justification_ ) {
case BOTTOM:
dy = -bbox.y_min_; break;
case MIDDLE:
dy = -( bbox.y_min_ + bbox.y_max_ ) / 2.f; break;
case TOP:
dy = -bbox.y_max_; break;
default:
break;
}
// There is probably a less expensive way to compute this
glRotatef( string_rotation_, 0., 0., 1. );
glTranslatef( dx, dy, 0 );
glRotatef( -string_rotation_, 0., 0., 1. );
}
glTranslatef( x, y, 0. );
glColor4f( foreground_color_[R], foreground_color_[G], foreground_color_[B],
foreground_color_[A] );
glRasterPos2i( 0, 0 );
draw( s );
if ( horizontal_justification_ != ORIGIN ||
vertical_justification_ != BASELINE )
glPopMatrix();
if ( !advance_ )
glPopMatrix();
}
#ifndef OGLFT_NO_QT
// Draw the (UNICODE) string at the given position.
void Face::draw ( GLfloat x, GLfloat y, const QString& s )
{
if ( !advance_ )
glPushMatrix();
if ( horizontal_justification_ != ORIGIN ||
vertical_justification_ != BASELINE ) {
glPushMatrix();
BBox bbox = measure_nominal( s );
GLfloat dx = 0, dy = 0;
switch ( horizontal_justification_ ) {
case LEFT:
dx = -bbox.x_min_; break;
case CENTER:
dx = -( bbox.x_min_ + bbox.x_max_ ) / 2.; break;
case RIGHT:
dx = -bbox.x_max_; break;
case ORIGIN:
break;
}
switch ( vertical_justification_ ) {
case BOTTOM:
dy = -bbox.y_min_; break;
case MIDDLE:
dy = -( bbox.y_min_ + bbox.y_max_ ) / 2.; break;
case TOP:
dy = -bbox.y_max_; break;
case BASELINE:
break;
}
// There is probably a less expensive way to compute this
glRotatef( string_rotation_, 0., 0., 1. );
glTranslatef( dx, dy, 0 );
glRotatef( -string_rotation_, 0., 0., 1. );
}
glTranslatef( x, y, 0. );
glColor4f( foreground_color_[R], foreground_color_[G], foreground_color_[B],
foreground_color_[A] );
glRasterPos2i( 0, 0 );
draw( s );
if ( horizontal_justification_ != ORIGIN ||
vertical_justification_ != BASELINE )
glPopMatrix();
if ( !advance_ )
glPopMatrix();
}
// Draw the number at the given position per the given format.
void Face::draw ( GLfloat x, GLfloat y, const QString& format, double number )
{
draw( x, y, format_number( format, number ) );
}
#endif /* OGLFT_NO_QT */
Raster::Raster ( const char* filename, float point_size, FT_UInt resolution )
: Face( filename, point_size, resolution )
{
if ( !isValid() ) return;
init();
}
Raster::Raster ( const FT_Byte* data_base, const FT_Long data_size,
float point_size, FT_UInt resolution )
: Face( data_base, data_size, point_size, resolution )
{
if ( !isValid() ) return;
init();
}
Raster::Raster ( FT_Face face, float point_size, FT_UInt resolution )
: Face( face, point_size, resolution )
{
init();
}
void Raster::init ( void )
{
character_rotation_z_ = 0;
setCharSize();
setCharacterRotationReference( 'o' );
}
Raster::~Raster ( void )
{
clearCaches();
}
void Raster::setCharacterRotationZ ( GLfloat character_rotation_z )
{
if ( character_rotation_z != character_rotation_z_ ) {
character_rotation_z_ = character_rotation_z;
clearCaches();
}
}
double Raster::height ( void ) const
{
if ( faces_[0].face_->height > 0 )
return faces_[0].face_->height / 64.;
else
return faces_[0].face_->size->metrics.y_ppem;
}
BBox Raster::measure ( unsigned char c )
{
BBox bbox;
// For starters, just get the unscaled glyph bounding box
unsigned int f;
FT_UInt glyph_index = 0;
for ( f = 0; f < faces_.size(); f++ ) {
glyph_index = FT_Get_Char_Index( faces_[f].face_, c );
if ( glyph_index != 0 ) break;
}
if ( glyph_index == 0 )
return bbox;
FT_Error error = FT_Load_Glyph( faces_[f].face_, glyph_index,
FT_LOAD_DEFAULT );
if ( error != 0 )
return bbox;
FT_Glyph glyph;
error = FT_Get_Glyph( faces_[f].face_->glyph, &glyph );
if ( error != 0 )
return bbox;
FT_BBox ft_bbox;
FT_Glyph_Get_CBox( glyph, ft_glyph_bbox_unscaled, &ft_bbox );
FT_Done_Glyph( glyph );
bbox = ft_bbox;
bbox.advance_ = faces_[f].face_->glyph->advance;
// In order to be accurate regarding the placement of text not
// aligned at the glyph's origin (CENTER/MIDDLE), the bounding box
// of the raster format has to be projected back into the
// view's coordinates
GLint viewport[4];
GLdouble modelview[16], projection[16];
glGetIntegerv( GL_VIEWPORT, viewport );
glGetDoublev( GL_MODELVIEW_MATRIX, modelview );
glGetDoublev( GL_PROJECTION_MATRIX, projection );
// Well, first we have to get the Origin, since that is the basis
// of the bounding box
GLdouble x0, y0, z0;
gluUnProject( 0., 0., 0., modelview, projection, viewport, &x0, &y0, &z0 );
GLdouble x, y, z;
gluUnProject( bbox.x_min_, bbox.y_min_, 0., modelview, projection, viewport,
&x, &y, &z );
bbox.x_min_ = (float)( x - x0 );
bbox.y_min_ = (float)( y - y0 );
gluUnProject( bbox.x_max_, bbox.y_max_, 0., modelview, projection, viewport,
&x, &y, &z );
bbox.x_max_ = (float)( x - x0 );
bbox.y_max_ = (float)( y - y0 );
gluUnProject( bbox.advance_.dx_, bbox.advance_.dy_, 0., modelview, projection,
viewport,
&x, &y, &z );
bbox.advance_.dx_ = (float)( x - x0 );
bbox.advance_.dy_ = (float)( y - y0 );
return bbox;
}
#ifndef OGLFT_NO_QT
BBox Raster::measure ( const QChar c )
{
BBox bbox;
// For starters, just get the unscaled glyph bounding box
unsigned int f;
FT_UInt glyph_index = 0;
for ( f = 0; f < faces_.size(); f++ ) {
glyph_index = FT_Get_Char_Index( faces_[f].face_, c.unicode() );
if ( glyph_index != 0 ) break;
}
if ( glyph_index == 0 )
return bbox;
FT_Error error = FT_Load_Glyph( faces_[f].face_, glyph_index,
FT_LOAD_DEFAULT );
if ( error != 0 )
return bbox;
FT_Glyph glyph;
error = FT_Get_Glyph( faces_[f].face_->glyph, &glyph );
if ( error != 0 )
return bbox;
FT_BBox ft_bbox;
FT_Glyph_Get_CBox( glyph, ft_glyph_bbox_unscaled, &ft_bbox );
FT_Done_Glyph( glyph );
bbox = ft_bbox;
bbox.advance_ = faces_[f].face_->glyph->advance;
// In order to be accurate regarding the placement of text not
// aligned at the glyph's origin (CENTER/MIDDLE), the bounding box
// of the raster format has to be projected back into the
// view's coordinates
GLint viewport[4];
GLdouble modelview[16], projection[16];
glGetIntegerv( GL_VIEWPORT, viewport );
glGetDoublev( GL_MODELVIEW_MATRIX, modelview );
glGetDoublev( GL_PROJECTION_MATRIX, projection );
// Well, first we have to get the Origin, since that is the basis
// of the bounding box
GLdouble x0, y0, z0;
gluUnProject( 0., 0., 0., modelview, projection, viewport, &x0, &y0, &z0 );
GLdouble x, y, z;
gluUnProject( bbox.x_min_, bbox.y_min_, 0., modelview, projection, viewport,
&x, &y, &z );
bbox.x_min_ = x - x0;
bbox.y_min_ = y - y0;
gluUnProject( bbox.x_max_, bbox.y_max_, 0., modelview, projection, viewport,
&x, &y, &z );
bbox.x_max_ = x - x0;
bbox.y_max_ = y - y0;
gluUnProject( bbox.advance_.dx_, bbox.advance_.dy_, 0., modelview, projection,
viewport,
&x, &y, &z );
bbox.advance_.dx_ = x - x0;
bbox.advance_.dy_ = y - y0;
return bbox;
}
BBox Raster::measure ( const QString& format, double number )
{
return Face::measure( format, number );
}
#endif /* OGLFT_NO_QT */
GLuint Raster::compileGlyph ( FT_Face face, FT_UInt glyph_index )
{
GLuint dlist = glGenLists( 1 );
glNewList( dlist, GL_COMPILE );
renderGlyph( face, glyph_index );
glEndList( );
return dlist;
}
void Raster::setCharSize ( void )
{
FT_Error error;
for ( unsigned int i = 0; i < faces_.size(); i++ ) {
error = FT_Set_Char_Size( faces_[i].face_,
(FT_F26Dot6)( point_size_ * 64 ),
(FT_F26Dot6)( point_size_ * 64 ),
resolution_,
resolution_ );
if ( error != 0 ) return;
}
if ( rotation_reference_glyph_ != 0 )
setRotationOffset();
}
void Raster::setRotationOffset ( void )
{
FT_Error error = FT_Load_Glyph( rotation_reference_face_,
rotation_reference_glyph_,
FT_LOAD_RENDER );
if ( error != 0 )
return;
rotation_offset_y_ = rotation_reference_face_->glyph->bitmap.rows / 2.f;
}
void Raster::clearCaches ( void )
{
GDLI fgi = glyph_dlists_.begin();
for ( ; fgi != glyph_dlists_.end(); ++fgi ) {
glDeleteLists( fgi->second, 1 );
}
glyph_dlists_.clear();
}
Monochrome::Monochrome ( const char* filename, float point_size,
FT_UInt resolution )
: Raster( filename, point_size, resolution )
{}
Monochrome::Monochrome ( const FT_Byte* data_base, const FT_Long data_size,
float point_size, FT_UInt resolution )
: Raster( data_base, data_size, point_size, resolution )
{}
Monochrome::Monochrome ( FT_Face face, float point_size, FT_UInt resolution )
: Raster( face, point_size, resolution )
{}
Monochrome::~Monochrome ( void )
{}
GLubyte* Monochrome::invertBitmap ( const FT_Bitmap& bitmap )
{
// In FreeType 2.0.9, the pitch of bitmaps was rounded up to an
// even number. In general, this disagrees with what we had been
// using for OpenGL.
int width = bitmap.width / 8 + ( ( bitmap.width & 7 ) > 0 ? 1 : 0 );
GLubyte* inverse = new GLubyte[ bitmap.rows * width ];
GLubyte* inverse_ptr = inverse;
for ( int r = 0; r < bitmap.rows; r++ ) {
GLubyte* bitmap_ptr = &bitmap.buffer[bitmap.pitch * ( bitmap.rows - r - 1 )];
for ( int p = 0; p < width; p++ )
*inverse_ptr++ = *bitmap_ptr++;
}
return inverse;
}
void Monochrome::renderGlyph ( FT_Face face, FT_UInt glyph_index )
{
// Start by retrieving the glyph's data.
FT_Error error = FT_Load_Glyph( face, glyph_index, FT_LOAD_DEFAULT );
if ( error != 0 )
return;
FT_Glyph original_glyph;
FT_Glyph glyph;
error = FT_Get_Glyph( face->glyph, &original_glyph );
if ( error != 0 )
return;
error = FT_Glyph_Copy( original_glyph, &glyph );
FT_Done_Glyph( original_glyph );
if ( error != 0 )
return;
// If the individual characters are rotated (as distinct from string
// rotation), then apply that extra rotation here. This is equivalent
// to the sequence
// glTranslate(x_center,y_center);
// glRotate(angle);
// glTranslate(-x_center,-y_center);
// which is used for the polygonal styles. The deal with the raster
// styles is that you must retain the advance from the string rotation
// so that the glyphs are laid out properly. So, we make a copy of
// the string rotated glyph, and then rotate that and add back an
// additional offset to (in effect) restore the proper origin and
// advance of the glyph.
if ( character_rotation_z_ != 0. ) {
FT_Matrix rotation_matrix;
FT_Vector sinus;
FT_Vector_Unit( &sinus, (FT_Angle)(character_rotation_z_ * 0x10000L) );
rotation_matrix.xx = sinus.x;
rotation_matrix.xy = -sinus.y;
rotation_matrix.yx = sinus.y;
rotation_matrix.yy = sinus.x;
FT_Vector original_offset, rotation_offset;
original_offset.x = ( face->glyph->metrics.width / 2
+ face->glyph->metrics.horiBearingX ) / 64 * 0x10000L;
original_offset.y = (FT_Pos)(rotation_offset_y_ * 0x10000L);
rotation_offset = original_offset;
FT_Vector_Rotate( &rotation_offset,
(FT_Angle)(character_rotation_z_ * 0x10000L) );
rotation_offset.x = original_offset.x - rotation_offset.x;
rotation_offset.y = original_offset.y - rotation_offset.y;
rotation_offset.x /= 1024;
rotation_offset.y /= 1024;
error = FT_Glyph_Transform( glyph, &rotation_matrix, &rotation_offset );
}
error = FT_Glyph_To_Bitmap( &glyph, ft_render_mode_mono, 0, 1 );
if ( error != 0 ) {
FT_Done_Glyph( glyph );
return;
}
FT_BitmapGlyph bitmap_glyph = (FT_BitmapGlyph)glyph;
// Evidently, in FreeType2, you can only get "upside-down" bitmaps and
// OpenGL won't invert a bitmap with PixelZoom, so we have to invert the
// glyph's bitmap ourselves.
GLubyte* inverted_bitmap = invertBitmap( bitmap_glyph->bitmap );
glBitmap( bitmap_glyph->bitmap.width, bitmap_glyph->bitmap.rows,
(GLfloat)-bitmap_glyph->left,
(GLfloat)( bitmap_glyph->bitmap.rows - bitmap_glyph->top ),
face->glyph->advance.x / 64.f,
face->glyph->advance.y / 64.f,
inverted_bitmap );
FT_Done_Glyph( glyph );
delete[] inverted_bitmap;
}
Grayscale::Grayscale ( const char* filename, float point_size,
FT_UInt resolution )
: Raster( filename, point_size, resolution )
{}
Grayscale::Grayscale ( const FT_Byte* data_base, const FT_Long data_size,
float point_size, FT_UInt resolution )
: Raster( data_base, data_size, point_size, resolution )
{}
Grayscale::Grayscale ( FT_Face face, float point_size, FT_UInt resolution )
: Raster( face, point_size, resolution )
{}
Grayscale::~Grayscale ( void )
{}
GLubyte* Grayscale::invertPixmap ( const FT_Bitmap& bitmap )
{
GLubyte* inverse = new GLubyte[ bitmap.rows * bitmap.pitch ];
GLubyte* inverse_ptr = inverse;
for ( int r = 0; r < bitmap.rows; r++ ) {
GLubyte* bitmap_ptr = &bitmap.buffer[bitmap.pitch * ( bitmap.rows - r - 1 )];
for ( int p = 0; p < bitmap.pitch; p++ ) {
*inverse_ptr++ = *bitmap_ptr++;
}
}
return inverse;
}
void Grayscale::renderGlyph ( FT_Face face, FT_UInt glyph_index )
{
FT_Error error = FT_Load_Glyph( face, glyph_index, FT_LOAD_DEFAULT );
if ( error != 0 )
return;
FT_Glyph original_glyph;
FT_Glyph glyph;
error = FT_Get_Glyph( face->glyph, &original_glyph );
if ( error != 0 ) return;
error = FT_Glyph_Copy( original_glyph, &glyph );
FT_Done_Glyph( original_glyph );
if ( error != 0 ) return;
if ( character_rotation_z_ != 0. ) {
FT_Matrix rotation_matrix;
FT_Vector sinus;
FT_Vector_Unit( &sinus, (FT_Angle)(character_rotation_z_ * 0x10000L) );
rotation_matrix.xx = sinus.x;
rotation_matrix.xy = -sinus.y;
rotation_matrix.yx = sinus.y;
rotation_matrix.yy = sinus.x;
FT_Vector original_offset, rotation_offset;
original_offset.x = ( face->glyph->metrics.width / 2
+ face->glyph->metrics.horiBearingX ) / 64 * 0x10000L;
original_offset.y = (FT_Pos)(rotation_offset_y_ * 0x10000L);
rotation_offset = original_offset;
FT_Vector_Rotate( &rotation_offset,
(FT_Angle)(character_rotation_z_ * 0x10000L) );
rotation_offset.x = original_offset.x - rotation_offset.x;
rotation_offset.y = original_offset.y - rotation_offset.y;
rotation_offset.x /= 1024;
rotation_offset.y /= 1024;
error = FT_Glyph_Transform( glyph, &rotation_matrix, &rotation_offset );
}
error = FT_Glyph_To_Bitmap( &glyph, ft_render_mode_normal, 0, 1 );
if ( error != 0 ) {
FT_Done_Glyph( glyph );
return;
}
FT_BitmapGlyph bitmap_glyph = (FT_BitmapGlyph)glyph;
// Evidently, in FreeType2, you can only get "upside-down" bitmaps
// (this could be cured with PixelZoom, but that an additional function)
GLubyte* inverted_pixmap = invertPixmap( bitmap_glyph->bitmap );
// :-( If this is compiled in a display list, it may or not be in effect
// later when the list is actually called. So, the client should be alerted
// to this fact: unpack alignment must be 1
glPushAttrib( GL_PIXEL_MODE_BIT );
glPixelTransferf( GL_RED_SCALE, foreground_color_[R] - background_color_[R] );
glPixelTransferf( GL_GREEN_SCALE, foreground_color_[G] - background_color_[G] );
glPixelTransferf( GL_BLUE_SCALE, foreground_color_[B] - background_color_[B] );
glPixelTransferf( GL_ALPHA_SCALE, foreground_color_[A] );
glPixelTransferf( GL_RED_BIAS, background_color_[R] );
glPixelTransferf( GL_GREEN_BIAS, background_color_[G] );
glPixelTransferf( GL_BLUE_BIAS, background_color_[B] );
glPixelTransferf( GL_ALPHA_BIAS, background_color_[A] );
glBitmap( 0, 0, 0, 0,
(GLfloat)bitmap_glyph->left,
(GLfloat)( bitmap_glyph->top - bitmap_glyph->bitmap.rows ),
0 );
glDrawPixels( bitmap_glyph->bitmap.width, bitmap_glyph->bitmap.rows,
GL_LUMINANCE, GL_UNSIGNED_BYTE,
inverted_pixmap );
// This is how you advance the raster position when drawing PIXMAPS
// (without querying the state)
glBitmap( 0, 0, 0, 0,
(GLfloat)( -bitmap_glyph->left + face->glyph->advance.x / 64.f ),
(GLfloat)( bitmap_glyph->bitmap.rows - bitmap_glyph->top +
face->glyph->advance.y / 64. ),
0 );
FT_Done_Glyph( glyph );
glPopAttrib();
delete[] inverted_pixmap;
}
Translucent::Translucent ( const char* filename, float point_size,
FT_UInt resolution )
: Raster( filename, point_size, resolution )
{}
Translucent::Translucent ( const FT_Byte* data_base, const FT_Long data_size,
float point_size, FT_UInt resolution )
: Raster( data_base, data_size, point_size, resolution )
{}
Translucent::Translucent ( FT_Face face, float point_size, FT_UInt resolution )
: Raster( face, point_size, resolution )
{}
Translucent::~Translucent ( void )
{}
// The simplest format which glDrawPixels can render with (varying) transparency
// is GL_LUMINANCE_ALPHA; so, we take the grayscale bitmap from FreeType
// and treat all non-zero values as full luminance (basically the mask for
// rendering) and duplicate the grayscale values as alpha values
// (as well as turn it upside-down).
GLubyte* Translucent::invertPixmapWithAlpha ( const FT_Bitmap& bitmap )
{
GLubyte* inverse = new GLubyte[ 2 * bitmap.rows * bitmap.pitch ];
GLubyte* inverse_ptr = inverse;
for ( int r = 0; r < bitmap.rows; r++ ) {
GLubyte* bitmap_ptr = &bitmap.buffer[bitmap.pitch * ( bitmap.rows - r - 1 )];
for ( int p = 0; p < bitmap.pitch; p++ ) {
*inverse_ptr++ = *bitmap_ptr ? 255 : 0;
*inverse_ptr++ = *bitmap_ptr++;
}
}
return inverse;
}
void Translucent::renderGlyph ( FT_Face face, FT_UInt glyph_index )
{
FT_Error error = FT_Load_Glyph( face, glyph_index, FT_LOAD_DEFAULT );
if ( error != 0 )
return;
FT_Glyph original_glyph;
FT_Glyph glyph;
error = FT_Get_Glyph( face->glyph, &original_glyph );
if ( error != 0 ) return;
error = FT_Glyph_Copy( original_glyph, &glyph );
FT_Done_Glyph( original_glyph );
if ( error != 0 ) return;
if ( character_rotation_z_ != 0. ) {
FT_Matrix rotation_matrix;
FT_Vector sinus;
FT_Vector_Unit( &sinus, (FT_Angle)(character_rotation_z_ * 0x10000L) );
rotation_matrix.xx = sinus.x;
rotation_matrix.xy = -sinus.y;
rotation_matrix.yx = sinus.y;
rotation_matrix.yy = sinus.x;
FT_Vector original_offset, rotation_offset;
original_offset.x = ( face->glyph->metrics.width / 2
+ face->glyph->metrics.horiBearingX ) / 64 * 0x10000L;
original_offset.y = (FT_Pos)(rotation_offset_y_ * 0x10000L);
rotation_offset = original_offset;
FT_Vector_Rotate( &rotation_offset,
(FT_Angle)(character_rotation_z_ * 0x10000L) );
rotation_offset.x = original_offset.x - rotation_offset.x;
rotation_offset.y = original_offset.y - rotation_offset.y;
rotation_offset.x /= 1024;
rotation_offset.y /= 1024;
error = FT_Glyph_Transform( glyph, &rotation_matrix, &rotation_offset );
}
error = FT_Glyph_To_Bitmap( &glyph, ft_render_mode_normal, 0, 1 );
if ( error != 0 ) {
FT_Done_Glyph( glyph );
return;
}
FT_BitmapGlyph bitmap_glyph = (FT_BitmapGlyph)glyph;
// Evidently, in FreeType2, you can only get "upside-down" bitmaps. For
// translucency, the grayscale bitmap generated by FreeType is expanded
// to include an alpha value (and the non-zero values of the
// grayscale bitmap are saturated to provide a "mask" of the glyph).
GLubyte* inverted_pixmap = invertPixmapWithAlpha( bitmap_glyph->bitmap );
glPushAttrib( GL_PIXEL_MODE_BIT );
glPixelTransferf( GL_RED_SCALE, foreground_color_[R] - background_color_[R] );
glPixelTransferf( GL_GREEN_SCALE, foreground_color_[G] -background_color_[G] );
glPixelTransferf( GL_BLUE_SCALE, foreground_color_[B] - background_color_[B] );
glPixelTransferf( GL_ALPHA_SCALE, foreground_color_[A] );
glPixelTransferf( GL_RED_BIAS, background_color_[R] );
glPixelTransferf( GL_GREEN_BIAS, background_color_[G] );
glPixelTransferf( GL_BLUE_BIAS, background_color_[B] );
glPixelTransferf( GL_ALPHA_BIAS, background_color_[A] );
// Set the proper raster position for rendering this glyph (why doesn't
// OpenGL have a similar function for pixmaps?)
glBitmap( 0, 0, 0, 0,
(GLfloat)bitmap_glyph->left,
(GLfloat)( bitmap_glyph->top - bitmap_glyph->bitmap.rows ),
0 );
glDrawPixels( bitmap_glyph->bitmap.width, bitmap_glyph->bitmap.rows,
GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE,
inverted_pixmap );
// This is how you advance the raster position when drawing PIXMAPS
// (without querying the state)
glBitmap( 0, 0, 0, 0,
-bitmap_glyph->left + face->glyph->advance.x / 64.f,
bitmap_glyph->bitmap.rows - bitmap_glyph->top +
face->glyph->advance.y / 64.f,
0 );
FT_Done_Glyph( glyph );
glPopAttrib();
delete[] inverted_pixmap;
}
Polygonal::Polygonal ( const char* filename, float point_size, FT_UInt resolution )
: Face( filename, point_size, resolution )
{
if ( !isValid() ) return;
init();
}
Polygonal::Polygonal ( const FT_Byte* data_base, const FT_Long data_size, float point_size, FT_UInt resolution)
: Face( data_base, data_size, point_size, resolution )
{
if ( !isValid() ) return;
init();
}
Polygonal::Polygonal ( FT_Face face, float point_size, FT_UInt resolution )
: Face( face, point_size, resolution )
{
init();
}
void Polygonal::init ( void )
{
character_rotation_.active_ = false;
character_rotation_.x_ = 0;
character_rotation_.y_ = 0;
character_rotation_.z_ = 0;
tessellation_steps_ = DEFAULT_TESSELLATION_STEPS;
delta_ = 1. / (double)tessellation_steps_;
delta2_ = delta_ * delta_;
delta3_ = delta2_ * delta_;
// For vector rendition modes, FreeType is allowed to generate the
// lines and arcs at the original face definition resolution. To
// get to the proper glyph size, the vertices are scaled before
// they're passed to the GLU tessellation routines.
if ( resolution_ != 0 )
vector_scale_ = ( point_size_ * resolution_ ) /
(float)( faces_.front().face_->units_per_EM * 72 );
else // According to the FreeType documentation, resolution == 0 -> 72 DPI
vector_scale_ = ( point_size_ ) /
(float)( faces_.front().face_->units_per_EM );
color_tess_ = 0;
texture_tess_ = 0;
setCharSize();
// Can't call this until a valid character size is set!
setCharacterRotationReference( 'o' );
}
Polygonal::~Polygonal ( void )
{
clearCaches();
}
// Note: Changing the color tessellation object also clears the
// display list cache
void Polygonal::setColorTess ( ColorTess* color_tess )
{
color_tess_ = color_tess;
clearCaches();
}
// Note: Changing the texture coordinate tessellation object also
// clears the display list cache
void Polygonal::setTextureTess ( TextureTess* texture_tess )
{
texture_tess_ = texture_tess;
clearCaches();
}
// Note: Changing the appoximation steps also clears the display list cache
void Polygonal::setTessellationSteps ( unsigned int tessellation_steps )
{
if ( tessellation_steps != tessellation_steps_ ) {
tessellation_steps_ = tessellation_steps;
delta_ = 1. / (double)tessellation_steps_;
delta2_ = delta_ * delta_;
delta3_ = delta2_ * delta_;
clearCaches();
}
}
// Note: Changing the character rotation also clears the display list cache.
void Polygonal::setCharacterRotationX ( GLfloat character_rotation_x )
{
if ( character_rotation_x != character_rotation_.x_ ) {
character_rotation_.x_ = character_rotation_x;
if ( character_rotation_.x_ != 0. || character_rotation_.y_ != 0. ||
character_rotation_.z_ != 0. )
character_rotation_.active_ = true;
else
character_rotation_.active_ = false;
clearCaches();
}
}
void Polygonal::setCharacterRotationY ( GLfloat character_rotation_y )
{
if ( character_rotation_y != character_rotation_.y_ ) {
character_rotation_.y_ = character_rotation_y;
if ( character_rotation_.x_ != 0. || character_rotation_.y_ != 0. ||
character_rotation_.z_ != 0. )
character_rotation_.active_ = true;
else
character_rotation_.active_ = false;
clearCaches();
}
}
void Polygonal::setCharacterRotationZ ( GLfloat character_rotation_z )
{
if ( character_rotation_z != character_rotation_.z_ ) {
character_rotation_.z_ = character_rotation_z;
if ( character_rotation_.x_ != 0. || character_rotation_.y_ != 0. ||
character_rotation_.z_ != 0. )
character_rotation_.active_ = true;
else
character_rotation_.active_ = false;
clearCaches();
}
}
void Polygonal::setCharSize ( void )
{
for ( unsigned int i = 0; i < faces_.size(); i++ ) {
FT_Error error = FT_Set_Char_Size( faces_[i].face_,
0,
faces_[i].face_->units_per_EM * 64,
0,
0 );
if ( error != 0 ) return;
}
if ( rotation_reference_glyph_ != 0 )
setRotationOffset();
}
void Polygonal::setRotationOffset ( void )
{
FT_Error error = FT_Load_Glyph( rotation_reference_face_,
rotation_reference_glyph_,
FT_LOAD_RENDER );
if ( error != 0 )
return;
vector_scale_ = ( point_size_ * resolution_ ) /
( 72.f * rotation_reference_face_->units_per_EM );
rotation_offset_y_ =
( rotation_reference_face_->glyph->metrics.horiBearingY / 2.f ) / 64.f
* vector_scale_;
}
double Polygonal::height ( void ) const
{
if ( faces_[0].face_->height > 0 )
return ( faces_[0].face_->height * point_size_ * resolution_ ) /
( 72. * faces_[0].face_->units_per_EM );
else
return ( faces_[0].face_->size->metrics.y_ppem * point_size_ * resolution_ ) /
( 72. * faces_[0].face_->units_per_EM );
}
BBox Polygonal::measure ( unsigned char c )
{
BBox bbox;
// For starters, just get the unscaled glyph bounding box
unsigned int f;
FT_UInt glyph_index = 0;
for ( f = 0; f < faces_.size(); f++ ) {
glyph_index = FT_Get_Char_Index( faces_[f].face_, c );
if ( glyph_index != 0 ) break;
}
if ( glyph_index == 0 )
return bbox;
FT_Error error = FT_Load_Glyph( faces_[f].face_, glyph_index,
FT_LOAD_DEFAULT );
if ( error != 0 )
return bbox;
FT_Glyph glyph;
error = FT_Get_Glyph( faces_[f].face_->glyph, &glyph );
if ( error != 0 )
return bbox;
FT_BBox ft_bbox;
FT_Glyph_Get_CBox( glyph, ft_glyph_bbox_unscaled, &ft_bbox );
FT_Done_Glyph( glyph );
bbox = ft_bbox;
bbox.advance_ = faces_[f].face_->glyph->advance;
bbox *=
( point_size_ * resolution_ ) / ( 72.f * faces_[f].face_->units_per_EM );
return bbox;
}
#ifndef OGLFT_NO_QT
BBox Polygonal::measure ( const QChar c )
{
BBox bbox;
// For starters, just get the unscaled glyph bounding box
unsigned int f;
FT_UInt glyph_index = 0;
for ( f = 0; f < faces_.size(); f++ ) {
glyph_index = FT_Get_Char_Index( faces_[f].face_, c.unicode() );
if ( glyph_index != 0 ) break;
}
if ( glyph_index == 0 )
return bbox;
FT_Error error = FT_Load_Glyph( faces_[f].face_, glyph_index,
FT_LOAD_DEFAULT );
if ( error != 0 )
return bbox;
FT_Glyph glyph;
error = FT_Get_Glyph( faces_[f].face_->glyph, &glyph );
if ( error != 0 )
return bbox;
FT_BBox ft_bbox;
FT_Glyph_Get_CBox( glyph, ft_glyph_bbox_unscaled, &ft_bbox );
FT_Done_Glyph( glyph );
bbox = ft_bbox;
bbox.advance_ = faces_[f].face_->glyph->advance;
bbox *= ( point_size_ * resolution_ ) / ( 72. * faces_[f].face_->units_per_EM );
return bbox;
}
#endif /* OGLFT_NO_QT */
GLuint Polygonal::compileGlyph ( FT_Face face, FT_UInt glyph_index )
{
GLuint dlist = glGenLists( 1 );
glNewList( dlist, GL_COMPILE );
renderGlyph( face, glyph_index );
glEndList( );
return dlist;
}
void Polygonal::clearCaches ( void )
{
GDLI fgi = glyph_dlists_.begin();
for ( ; fgi != glyph_dlists_.end(); ++fgi ) {
glDeleteLists( fgi->second, 1 );
}
glyph_dlists_.clear();
}
Outline::Outline ( const char* filename, float point_size, FT_UInt resolution )
: Polygonal( filename, point_size, resolution )
{
if ( !isValid() ) return;
init();
}
Outline::Outline ( const FT_Byte* data_base, const FT_Long data_size, float point_size, FT_UInt resolution)
: Polygonal( data_base, data_size, point_size, resolution )
{
if ( !isValid() ) return;
init();
}
Outline::Outline ( FT_Face face, float point_size, FT_UInt resolution )
: Polygonal( face, point_size, resolution )
{
init();
}
void Outline::init ( void )
{
interface_.move_to = (FT_Outline_MoveTo_Func)moveToCallback;
interface_.line_to = (FT_Outline_LineTo_Func)lineToCallback;
interface_.conic_to = (FT_Outline_ConicTo_Func)conicToCallback;
interface_.cubic_to = (FT_Outline_CubicTo_Func)cubicToCallback;
interface_.shift = 0;
interface_.delta = 0;
}
Outline::~Outline ( void )
{}
void Outline::renderGlyph ( FT_Face face, FT_UInt glyph_index )
{
FT_Error error = FT_Load_Glyph( face, glyph_index, FT_LOAD_DEFAULT );
if ( error != 0 )
return;
FT_Glyph g;
error = FT_Get_Glyph( face->glyph, &g );
if ( error != 0 || g->format != FT_GLYPH_FORMAT_OUTLINE )
return;
vector_scale_ = ( point_size_ * resolution_ ) /
( 72.f * face->units_per_EM );
if ( character_rotation_.active_ ) {
glPushMatrix();
glTranslatef( ( face->glyph->metrics.width / 2.f +
face->glyph->metrics.horiBearingX ) / 64.f
* vector_scale_,
rotation_offset_y_,
0.f );
if ( character_rotation_.x_ != 0. )
glRotatef( character_rotation_.x_, 1., 0., 0. );
if ( character_rotation_.y_ != 0. )
glRotatef( character_rotation_.y_, 0., 1., 0. );
if ( character_rotation_.z_ != 0. )
glRotatef( character_rotation_.z_, 0., 0., 1. );
glTranslatef( -( face->glyph->metrics.width / 2.f +
face->glyph->metrics.horiBearingX ) / 64.f
* vector_scale_,
-rotation_offset_y_,
0.f );
}
contour_open_ = false;
// The Big Kahuna: the FreeType glyph decomposition routine traverses
// the outlines of the font by calling the various routines stored in
// outline_interface_. These routines in turn call the GL vertex routines.
error = FT_Outline_Decompose( &((FT_OutlineGlyph)g)->outline,
&interface_, this );
FT_Done_Glyph( (FT_Glyph)g );
// Some glyphs may be empty (the 'blank' for instance!)
if ( contour_open_ )
glEnd( );
if ( character_rotation_.active_ ) {
glPopMatrix();
}
// Drawing a character always advances the MODELVIEW.
glTranslatef( face->glyph->advance.x / 64.f * vector_scale_,
face->glyph->advance.y / 64.f * vector_scale_,
0.f );
for ( VILI vili = vertices_.begin(); vili != vertices_.end(); vili++ )
delete *vili;
vertices_.clear();
}
int Outline::moveToCallback ( FT_Vector* to, Outline* outline )
{
if ( outline->contour_open_ ) {
glEnd();
}
outline->last_vertex_ = VertexInfo( to,
outline->colorTess(),
outline->textureTess() );
glBegin( GL_LINE_LOOP );
outline->contour_open_ = true;
return 0;
}
int Outline::lineToCallback ( FT_Vector* to, Outline* outline )
{
outline->last_vertex_ = VertexInfo( to,
outline->colorTess(),
outline->textureTess() );
GLdouble g[2];
g[X] = outline->last_vertex_.v_[X] * outline->vector_scale_;
g[Y] = outline->last_vertex_.v_[Y] * outline->vector_scale_;
glVertex2dv( g );
return 0;
}
int Outline::conicToCallback ( FT_Vector* control, FT_Vector* to, Outline* outline )
{
// This is crude: Step off conics with a fixed number of increments
VertexInfo to_vertex( to, outline->colorTess(), outline->textureTess() );
VertexInfo control_vertex( control, outline->colorTess(), outline->textureTess() );
double b[2], c[2], d[2], f[2], df[2], d2f[2];
GLdouble g[3];
g[Z] = 0.;
b[X] = outline->last_vertex_.v_[X] - 2 * control_vertex.v_[X] +
to_vertex.v_[X];
b[Y] = outline->last_vertex_.v_[Y] - 2 * control_vertex.v_[Y] +
to_vertex.v_[Y];
c[X] = -2 * outline->last_vertex_.v_[X] + 2 * control_vertex.v_[X];
c[Y] = -2 * outline->last_vertex_.v_[Y] + 2 * control_vertex.v_[Y];
d[X] = outline->last_vertex_.v_[X];
d[Y] = outline->last_vertex_.v_[Y];
f[X] = d[X];
f[Y] = d[Y];
df[X] = c[X] * outline->delta_ + b[X] * outline->delta2_;
df[Y] = c[Y] * outline->delta_ + b[Y] * outline->delta2_;
d2f[X] = 2 * b[X] * outline->delta2_;
d2f[Y] = 2 * b[Y] * outline->delta2_;
for ( unsigned int i = 0; i < outline->tessellation_steps_-1; i++ ) {
f[X] += df[X];
f[Y] += df[Y];
g[X] = f[X] * outline->vector_scale_;
g[Y] = f[Y] * outline->vector_scale_;
if ( outline->colorTess() )
glColor4fv( outline->colorTess()->color( g ) );
glVertex2dv( g );
df[X] += d2f[X];
df[Y] += d2f[Y];
}
g[X] = to_vertex.v_[X] * outline->vector_scale_;
g[Y] = to_vertex.v_[Y] * outline->vector_scale_;
if ( outline->colorTess() )
glColor4fv( outline->colorTess()->color( g ) );
glVertex2dv( g );
outline->last_vertex_ = to_vertex;
return 0;
}
int Outline::cubicToCallback ( FT_Vector* control1, FT_Vector* control2,
FT_Vector* to, Outline* outline )
{
// This is crude: Step off cubics with a fixed number of increments
VertexInfo to_vertex( to, outline->colorTess(), outline->textureTess() );
VertexInfo control1_vertex( control1, outline->colorTess(), outline->textureTess() );
VertexInfo control2_vertex( control2, outline->colorTess(), outline->textureTess() );
double a[2], b[2], c[2], d[2], f[2], df[2], d2f[2], d3f[2];
GLdouble g[3];
g[Z] = 0.;
a[X] = -outline->last_vertex_.v_[X] + 3 * control1_vertex.v_[X]
-3 * control2_vertex.v_[X] + to_vertex.v_[X];
a[Y] = -outline->last_vertex_.v_[Y] + 3 * control1_vertex.v_[Y]
-3 * control2_vertex.v_[Y] + to_vertex.v_[Y];
b[X] = 3 * outline->last_vertex_.v_[X] - 6 * control1_vertex.v_[X] +
3 * control2_vertex.v_[X];
b[Y] = 3 * outline->last_vertex_.v_[Y] - 6 * control1_vertex.v_[Y] +
3 * control2_vertex.v_[Y];
c[X] = -3 * outline->last_vertex_.v_[X] + 3 * control1_vertex.v_[X];
c[Y] = -3 * outline->last_vertex_.v_[Y] + 3 * control1_vertex.v_[Y];
d[X] = outline->last_vertex_.v_[X];
d[Y] = outline->last_vertex_.v_[Y];
f[X] = d[X];
f[Y] = d[Y];
df[X] = c[X] * outline->delta_ + b[X] * outline->delta2_
+ a[X] * outline->delta3_;
df[Y] = c[Y] * outline->delta_ + b[Y] * outline->delta2_
+ a[Y] * outline->delta3_;
d2f[X] = 2 * b[X] * outline->delta2_ + 6 * a[X] * outline->delta3_;
d2f[Y] = 2 * b[Y] * outline->delta2_ + 6 * a[Y] * outline->delta3_;
d3f[X] = 6 * a[X] * outline->delta3_;
d3f[Y] = 6 * a[Y] * outline->delta3_;
for ( unsigned int i = 0; i < outline->tessellation_steps_-1; i++ ) {
f[X] += df[X];
f[Y] += df[Y];
g[X] = f[X] * outline->vector_scale_;
g[Y] = f[Y] * outline->vector_scale_;
if ( outline->colorTess() )
glColor4fv( outline->colorTess()->color( g ) );
glVertex2dv( g );
df[X] += d2f[X];
df[Y] += d2f[Y];
d2f[X] += d3f[X];
d2f[Y] += d3f[Y];
}
g[X] = to_vertex.v_[X] * outline->vector_scale_;
g[Y] = to_vertex.v_[Y] * outline->vector_scale_;
if ( outline->colorTess() )
glColor4fv( outline->colorTess()->color( g ) );
glVertex2dv( g );
outline->last_vertex_ = to_vertex;
return 0;
}
Filled::Filled ( const char* filename, float point_size, FT_UInt resolution )
: Polygonal( filename, point_size, resolution )
{
if ( !isValid() ) return;
init();
}
Filled::Filled ( const FT_Byte* data_base, const FT_Long data_size,
float point_size, FT_UInt resolution )
: Polygonal( data_base, data_size, point_size, resolution )
{
if ( !isValid() ) return;
init();
}
Filled::Filled ( FT_Face face, float point_size, FT_UInt resolution )
: Polygonal( face, point_size, resolution )
{
init();
}
void Filled::init ( void )
{
depth_offset_ = 0;
interface_.move_to = (FT_Outline_MoveTo_Func)moveToCallback;
interface_.line_to = (FT_Outline_LineTo_Func)lineToCallback;
interface_.conic_to = (FT_Outline_ConicTo_Func)conicToCallback;
interface_.cubic_to = (FT_Outline_CubicTo_Func)cubicToCallback;
interface_.shift = 0;
interface_.delta = 0;
tess_obj_ = gluNewTess();
#if defined(WIN32)
typedef void (CALLBACK*(CB))();
#else
typedef GLUTessCallback CB;
#endif
gluTessCallback( tess_obj_, GLU_TESS_VERTEX, CB(vertexCallback) );
gluTessCallback( tess_obj_, GLU_TESS_BEGIN, CB(beginCallback) );
gluTessCallback( tess_obj_, GLU_TESS_END, CB(endCallback) );
gluTessCallback( tess_obj_, GLU_TESS_COMBINE_DATA, CB(combineCallback) );
gluTessCallback( tess_obj_, GLU_TESS_ERROR, CB(errorCallback) );
}
Filled::~Filled ( void )
{
gluDeleteTess( tess_obj_ );
}
void Filled::renderGlyph ( FT_Face face, FT_UInt glyph_index )
{
FT_Error error = FT_Load_Glyph( face, glyph_index, FT_LOAD_DEFAULT );
if ( error != 0 )
return;
FT_Glyph g;
error = FT_Get_Glyph( face->glyph, &g );
if ( error != 0 || g->format != FT_GLYPH_FORMAT_OUTLINE )
return;
vector_scale_ = ( point_size_ * resolution_ ) /
( 72.f * face->units_per_EM );
if ( character_rotation_.active_ ) {
glPushMatrix();
glTranslatef( ( face->glyph->metrics.width / 2.f +
face->glyph->metrics.horiBearingX ) / 64.f
* vector_scale_,
rotation_offset_y_,
0. );
if ( character_rotation_.x_ != 0. )
glRotatef( character_rotation_.x_, 1., 0., 0. );
if ( character_rotation_.y_ != 0. )
glRotatef( character_rotation_.y_, 0., 1., 0. );
if ( character_rotation_.z_ != 0. )
glRotatef( character_rotation_.z_, 0., 0., 1. );
glTranslatef( -( face->glyph->metrics.width / 2.f +
face->glyph->metrics.horiBearingX ) / 64.f
* vector_scale_,
-rotation_offset_y_,
0.f );
}
if ( depth_offset_ != 0. ) {
glPushMatrix();
glTranslatef( 0., 0., depth_offset_ );
glNormal3f( 0., 0., 1. );
}
else {
glNormal3f( 0., 0., -1. );
}
glPolygonMode( GL_FRONT_AND_BACK, GL_FILL );
contour_open_ = false;
gluTessBeginPolygon( tess_obj_, this );
// The Big Kahuna: the FreeType glyph decomposition routine traverses
// the outlines of the font by calling the various routines stored in
// interface_. These routines in turn call the GLU tessellation routines
// to create OGL polygons.
error = FT_Outline_Decompose( &((FT_OutlineGlyph)g)->outline,
&interface_, this );
FT_Done_Glyph( (FT_Glyph)g );
// Some glyphs may be empty (the 'blank' for instance!)
if ( contour_open_ )
gluTessEndContour( tess_obj_ );
gluTessEndPolygon( tess_obj_ );
if ( depth_offset_ != 0. ) {
glPopMatrix();
}
if ( character_rotation_.active_ ) {
glPopMatrix();
}
// Drawing a character always advances the MODELVIEW.
glTranslatef( face->glyph->advance.x / 64 * vector_scale_,
face->glyph->advance.y / 64 * vector_scale_,
0. );
for ( VILI vili = extra_vertices_.begin(); vili != extra_vertices_.end(); vili++ )
delete *vili;
extra_vertices_.clear();
for ( VILI vili = vertices_.begin(); vili != vertices_.end(); vili++ )
delete *vili;
vertices_.clear();
}
int Filled::moveToCallback ( FT_Vector* to, Filled* filled )
{
if ( filled->contour_open_ ) {
gluTessEndContour( filled->tess_obj_ );
}
filled->last_vertex_ = VertexInfo( to, filled->colorTess(), filled->textureTess() );
gluTessBeginContour( filled->tess_obj_ );
filled->contour_open_ = true;
return 0;
}
int Filled::lineToCallback ( FT_Vector* to, Filled* filled )
{
filled->last_vertex_ = VertexInfo( to, filled->colorTess(), filled->textureTess() );
VertexInfo* vertex = new VertexInfo( to, filled->colorTess(), filled->textureTess() );
vertex->v_[X] *= filled->vector_scale_;
vertex->v_[Y] *= filled->vector_scale_;
gluTessVertex( filled->tess_obj_, vertex->v_, vertex );
filled->vertices_.push_back( vertex );
return 0;
}
int Filled::conicToCallback ( FT_Vector* control, FT_Vector* to, Filled* filled )
{
// This is crude: Step off conics with a fixed number of increments
VertexInfo to_vertex( to, filled->colorTess(), filled->textureTess() );
VertexInfo control_vertex( control, filled->colorTess(), filled->textureTess() );
double b[2], c[2], d[2], f[2], df[2], d2f[2];
b[X] = filled->last_vertex_.v_[X] - 2 * control_vertex.v_[X] +
to_vertex.v_[X];
b[Y] = filled->last_vertex_.v_[Y] - 2 * control_vertex.v_[Y] +
to_vertex.v_[Y];
c[X] = -2 * filled->last_vertex_.v_[X] + 2 * control_vertex.v_[X];
c[Y] = -2 * filled->last_vertex_.v_[Y] + 2 * control_vertex.v_[Y];
d[X] = filled->last_vertex_.v_[X];
d[Y] = filled->last_vertex_.v_[Y];
f[X] = d[X];
f[Y] = d[Y];
df[X] = c[X] * filled->delta_ + b[X] * filled->delta2_;
df[Y] = c[Y] * filled->delta_ + b[Y] * filled->delta2_;
d2f[X] = 2 * b[X] * filled->delta2_;
d2f[Y] = 2 * b[Y] * filled->delta2_;
for ( unsigned int i = 0; i < filled->tessellation_steps_-1; i++ ) {
f[X] += df[X];
f[Y] += df[Y];
VertexInfo* vertex = new VertexInfo( f, filled->colorTess(), filled->textureTess() );
vertex->v_[X] *= filled->vector_scale_;
vertex->v_[Y] *= filled->vector_scale_;
filled->vertices_.push_back( vertex );
gluTessVertex( filled->tess_obj_, vertex->v_, vertex );
df[X] += d2f[X];
df[Y] += d2f[Y];
}
VertexInfo* vertex = new VertexInfo( to, filled->colorTess(), filled->textureTess() );
vertex->v_[X] *= filled->vector_scale_;
vertex->v_[Y] *= filled->vector_scale_;
filled->vertices_.push_back( vertex );
gluTessVertex( filled->tess_obj_, vertex->v_, vertex );
filled->last_vertex_ = to_vertex;
return 0;
}
int Filled::cubicToCallback ( FT_Vector* control1, FT_Vector* control2,
FT_Vector* to, Filled* filled )
{
// This is crude: Step off cubics with a fixed number of increments
VertexInfo to_vertex( to, filled->colorTess(), filled->textureTess() );
VertexInfo control1_vertex( control1, filled->colorTess(), filled->textureTess() );
VertexInfo control2_vertex( control2, filled->colorTess(), filled->textureTess() );
double a[2], b[2], c[2], d[2], f[2], df[2], d2f[2], d3f[2];
a[X] = -filled->last_vertex_.v_[X] + 3 * control1_vertex.v_[X]
-3 * control2_vertex.v_[X] + to_vertex.v_[X];
a[Y] = -filled->last_vertex_.v_[Y] + 3 * control1_vertex.v_[Y]
-3 * control2_vertex.v_[Y] + to_vertex.v_[Y];
b[X] = 3 * filled->last_vertex_.v_[X] - 6 * control1_vertex.v_[X] +
3 * control2_vertex.v_[X];
b[Y] = 3 * filled->last_vertex_.v_[Y] - 6 * control1_vertex.v_[Y] +
3 * control2_vertex.v_[Y];
c[X] = -3 * filled->last_vertex_.v_[X] + 3 * control1_vertex.v_[X];
c[Y] = -3 * filled->last_vertex_.v_[Y] + 3 * control1_vertex.v_[Y];
d[X] = filled->last_vertex_.v_[X];
d[Y] = filled->last_vertex_.v_[Y];
f[X] = d[X];
f[Y] = d[Y];
df[X] = c[X] * filled->delta_ + b[X] * filled->delta2_
+ a[X] * filled->delta3_;
df[Y] = c[Y] * filled->delta_ + b[Y] * filled->delta2_
+ a[Y] * filled->delta3_;
d2f[X] = 2 * b[X] * filled->delta2_ + 6 * a[X] * filled->delta3_;
d2f[Y] = 2 * b[Y] * filled->delta2_ + 6 * a[Y] * filled->delta3_;
d3f[X] = 6 * a[X] * filled->delta3_;
d3f[Y] = 6 * a[Y] * filled->delta3_;
for ( unsigned int i = 0; i < filled->tessellation_steps_-1; i++ ) {
f[X] += df[X];
f[Y] += df[Y];
VertexInfo* vertex = new VertexInfo( f, filled->colorTess(), filled->textureTess() );
vertex->v_[X] *= filled->vector_scale_;
vertex->v_[Y] *= filled->vector_scale_;
filled->vertices_.push_back( vertex );
gluTessVertex( filled->tess_obj_, vertex->v_, vertex );
df[X] += d2f[X];
df[Y] += d2f[Y];
d2f[X] += d3f[X];
d2f[Y] += d3f[Y];
}
VertexInfo* vertex = new VertexInfo( to, filled->colorTess(), filled->textureTess() );
vertex->v_[X] *= filled->vector_scale_;
vertex->v_[Y] *= filled->vector_scale_;
filled->vertices_.push_back( vertex );
gluTessVertex( filled->tess_obj_, vertex->v_, vertex );
filled->last_vertex_ = to_vertex;
return 0;
}
void Filled::vertexCallback ( VertexInfo* vertex )
{
if ( vertex->color_tess_ != 0 )
glColor4fv( vertex->color_tess_->color( vertex->v_ ) );
if ( vertex->texture_tess_ != 0 )
glTexCoord2fv( vertex->texture_tess_->texCoord( vertex->v_ ) );
glVertex3dv( vertex->v_ );
}
void Filled::beginCallback ( GLenum which )
{
glBegin( which );
}
void Filled::endCallback ( void )
{
glEnd();
}
void Filled::combineCallback ( GLdouble coords[3], void* vertex_data[4],
GLfloat weight[4], void** out_data,
Filled* filled )
{
(void)vertex_data;
(void)weight;
// std::cerr << "called combine" << std::endl;
VertexInfo* vertex = new VertexInfo( coords );
*out_data = vertex;
filled->extraVertices().push_back( vertex );
}
void Filled::errorCallback ( GLenum error_code )
{
std::cerr << "hmm. error during tessellation?:" << gluErrorString( error_code ) << std::endl;
}
#ifndef OGLFT_NO_SOLID
Solid::Solid ( const char* filename, float point_size, FT_UInt resolution )
: Filled( filename, point_size, resolution )
{
if ( !isValid() ) return;
init();
}
Solid::Solid ( const FT_Byte* data_base, const FT_Long data_size,
float point_size, FT_UInt resolution )
: Filled( data_base, data_size, point_size, resolution )
{
if ( !isValid() ) return;
init();
}
Solid::Solid ( FT_Face face, float point_size, FT_UInt resolution )
: Filled( face, point_size, resolution )
{
init();
}
void Solid::init ( void )
{
interface_.move_to = (FT_Outline_MoveTo_Func)moveToCallback;
interface_.line_to = (FT_Outline_LineTo_Func)lineToCallback;
interface_.conic_to = (FT_Outline_ConicTo_Func)conicToCallback;
interface_.cubic_to = (FT_Outline_CubicTo_Func)cubicToCallback;
interface_.shift = 0;
interface_.delta = 0;
// Set up for extrusion. Default depth is 1 (units of what?)
extrusion_.depth_ = 1.;
extrusion_.up_[X] = 0.;
extrusion_.up_[Y] = 1.;
extrusion_.up_[Z] = 0.;
extrusion_.n_polyline_pts_ = N_POLYLINE_PTS;
assign( extrusion_.point_array_[0], 0., 0., extrusion_.depth_ + 1. );
assign( extrusion_.point_array_[1], 0., 0., extrusion_.depth_ );
assign( extrusion_.point_array_[2], 0., 0., 0. );
assign( extrusion_.point_array_[3], 0., 0., -1. );
// Turn on closed contours and smooth vertices; turn off end capping
gleSetJoinStyle( TUBE_JN_RAW | TUBE_CONTOUR_CLOSED | TUBE_NORM_EDGE );
}
Solid::~Solid ( void )
{}
// Note: as usual, setting this clears the caches
void Solid::setDepth ( double depth )
{
if ( depth > 0. && depth != extrusion_.depth_ ) {
extrusion_.depth_ = depth;
assign( extrusion_.point_array_[0], 0., 0., extrusion_.depth_ + 1. );
assign( extrusion_.point_array_[1], 0., 0., extrusion_.depth_ );
clearCaches();
}
}
void Solid::renderGlyph ( FT_Face face, FT_UInt glyph_index )
{
FT_Error error = FT_Load_Glyph( face, glyph_index, FT_LOAD_DEFAULT );
if ( error != 0 )
return;
FT_OutlineGlyph g;
error = FT_Get_Glyph( face->glyph, (FT_Glyph*)&g );
if ( error != 0 )
return;
vector_scale_ = ( point_size_ * resolution_ ) / ( 72. * face->units_per_EM );
if ( character_rotation_.active_ ) {
glPushMatrix();
glTranslatef( ( face->glyph->metrics.width / 2. +
face->glyph->metrics.horiBearingX ) / 64.
* vector_scale_,
rotation_offset_y_,
0. );
if ( character_rotation_.x_ != 0. )
glRotatef( character_rotation_.x_, 1., 0., 0. );
if ( character_rotation_.y_ != 0. )
glRotatef( character_rotation_.y_, 0., 1., 0. );
if ( character_rotation_.z_ != 0. )
glRotatef( character_rotation_.z_, 0., 0., 1. );
glTranslatef( -( face->glyph->metrics.width / 2. +
face->glyph->metrics.horiBearingX ) / 64.
* vector_scale_,
-rotation_offset_y_,
0. );
}
contour_open_ = false;
// In theory, TrueType contours are defined clockwise and Type1 contours
// are defined counter-clockwise. Trust the flag set by FreeType to
// indicate this since it is critical to getting the orientation of the
// surface normals correct.
if ( g->outline.flags & ft_outline_reverse_fill ) {
extrusion_.normal_sign_.x_ = -1;
extrusion_.normal_sign_.y_ = 1;
}
else {
extrusion_.normal_sign_.x_ = 1;
extrusion_.normal_sign_.y_ = -1;
}
// The Big Kahuna: the FreeType glyph decomposition routine traverses
// the outlines of the font by calling the various routines stored in
// extrude_interface_. These in turn call the gleExtrusion routine.
error = FT_Outline_Decompose( &g->outline, &interface_, this );
FT_Done_Glyph( (FT_Glyph)g );
// Some glyphs may be empty (the 'blank' for instance!)
if ( contour_open_ ) {
extrusion_.contour_normals_.push_back( extrusion_.contour_normals_.front() );
gleExtrusion( extrusion_.contour_.size(),
&extrusion_.contour_.begin()->p_,
&extrusion_.contour_normals_[1].p_,
extrusion_.up_,
extrusion_.n_polyline_pts_,
extrusion_.point_array_,
0 );
extrusion_.contour_.clear();
extrusion_.contour_normals_.clear();
}
if ( character_rotation_.active_ ) {
glPopMatrix();
}
// Apply the front and back faces of the solid character (recall that
// drawing a character advances the MODELVIEW, so defend against that
// with the stack operations)
glPushMatrix();
depth_offset_ = 0.;
Filled::renderGlyph( face, glyph_index );
glPopMatrix();
glPushMatrix();
depth_offset_ = extrusion_.depth_;
Filled::renderGlyph( face, glyph_index );
glPopMatrix();
// Drawing a character always advances the MODELVIEW.
glTranslatef( face->glyph->advance.x / 64. * vector_scale_,
face->glyph->advance.y / 64. * vector_scale_,
0. );
for ( VILI vili = vertices_.begin(); vili != vertices_.end(); vili++ )
delete *vili;
vertices_.clear();
}
int Solid::moveToCallback ( FT_Vector* to, Solid* solid )
{
if ( solid->contour_open_ ) {
// A word of explanation: since you can't predict when the
// contour is going to end (its end is signaled by calling this
// routine, i.e., the contour ends when another is started
// abruptly), only the lineTo and arcTo functions generate contour
// points. The upshot is that the normals, which are computed for the
// current segment, are one behind the segment described in the
// the contour array. To make things match up at the end, the first
// normal is copied to the end of the normal array and the extrusion
// routine is passed the list of normals starting at the second entry.
solid->extrusion_.contour_normals_.
push_back( solid->extrusion_.contour_normals_.front() );
#if 1
gleExtrusion( solid->extrusion_.contour_.size(),
&solid->extrusion_.contour_.begin()->p_,
&solid->extrusion_.contour_normals_[1].p_,
solid->extrusion_.up_,
solid->extrusion_.n_polyline_pts_,
solid->extrusion_.point_array_,
0 );
#endif
solid->extrusion_.contour_.clear();
solid->extrusion_.contour_normals_.clear();
}
solid->last_vertex_ = VertexInfo( to, solid->colorTess(), solid->textureTess() );
solid->contour_open_ = true;
return 0;
}
int Solid::lineToCallback ( FT_Vector* to, Solid* solid )
{
VertexInfo vertex( to, solid->colorTess(), solid->textureTess() );
VertexInfo normal( solid->extrusion_.normal_sign_.y_ *
( vertex.v_[Y] - solid->last_vertex_.v_[Y] ),
solid->extrusion_.normal_sign_.x_ *
( vertex.v_[X] - solid->last_vertex_.v_[X] ) );
solid->last_vertex_ = vertex;
vertex.v_[X] *= solid->vector_scale_;
vertex.v_[Y] *= solid->vector_scale_;
normal.normalize();
solid->extrusion_.contour_.push_back( vertex );
solid->extrusion_.contour_normals_.push_back( normal );
return 0;
}
int Solid::conicToCallback ( FT_Vector* control, FT_Vector* to, Solid* solid )
{
// This is crude: Step off conics with a fixed number of increments
VertexInfo to_vertex( to, solid->colorTess(), solid->textureTess() );
VertexInfo control_vertex( control, solid->colorTess(), solid->textureTess() );
double b[2], c[2], d[2], f[2], df[2], d2f[2];
b[X] = solid->last_vertex_.v_[X] - 2 * control_vertex.v_[X] +
to_vertex.v_[X];
b[Y] = solid->last_vertex_.v_[Y] - 2 * control_vertex.v_[Y] +
to_vertex.v_[Y];
c[X] = -2 * solid->last_vertex_.v_[X] + 2 * control_vertex.v_[X];
c[Y] = -2 * solid->last_vertex_.v_[Y] + 2 * control_vertex.v_[Y];
d[X] = solid->last_vertex_.v_[X];
d[Y] = solid->last_vertex_.v_[Y];
f[X] = d[X];
f[Y] = d[Y];
df[X] = c[X] * solid->delta_ + b[X] * solid->delta2_;
df[Y] = c[Y] * solid->delta_ + b[Y] * solid->delta2_;
d2f[X] = 2 * b[X] * solid->delta2_;
d2f[Y] = 2 * b[Y] * solid->delta2_;
for ( unsigned int i = 0; i < solid->tessellation_steps_-1; i++ ) {
f[X] += df[X];
f[Y] += df[Y];
VertexInfo vertex( f, solid->colorTess(), solid->textureTess() );
VertexInfo normal( solid->extrusion_.normal_sign_.y_ * df[Y],
solid->extrusion_.normal_sign_.x_ * df[X] );
vertex.v_[X] *= solid->vector_scale_;
vertex.v_[Y] *= solid->vector_scale_;
normal.normalize();
solid->extrusion_.contour_.push_back( vertex );
solid->extrusion_.contour_normals_.push_back( normal );
df[X] += d2f[X];
df[Y] += d2f[Y];
}
VertexInfo vertex( to, solid->colorTess(), solid->textureTess() );
VertexInfo normal( solid->extrusion_.normal_sign_.y_ * df[Y],
solid->extrusion_.normal_sign_.x_ * df[X] );
vertex.v_[X] *= solid->vector_scale_;
vertex.v_[Y] *= solid->vector_scale_;
normal.normalize();
solid->extrusion_.contour_.push_back( vertex );
solid->extrusion_.contour_normals_.push_back( normal );
solid->last_vertex_ = to_vertex;
return 0;
}
int Solid::cubicToCallback ( FT_Vector* control1, FT_Vector* control2,
FT_Vector* to, Solid* solid )
{
// This is crude: Step off cubics with a fixed number of increments
VertexInfo to_vertex( to, solid->colorTess(), solid->textureTess() );
VertexInfo control1_vertex( control1, solid->colorTess(), solid->textureTess() );
VertexInfo control2_vertex( control2, solid->colorTess(), solid->textureTess() );
double a[2], b[2], c[2], d[2], f[2], df[2], d2f[2], d3f[2];
a[X] = -solid->last_vertex_.v_[X] + 3 * control1_vertex.v_[X]
-3 * control2_vertex.v_[X] + to_vertex.v_[X];
a[Y] = -solid->last_vertex_.v_[Y] + 3 * control1_vertex.v_[Y]
-3 * control2_vertex.v_[Y] + to_vertex.v_[Y];
b[X] = 3 * solid->last_vertex_.v_[X] - 6 * control1_vertex.v_[X] +
3 * control2_vertex.v_[X];
b[Y] = 3 * solid->last_vertex_.v_[Y] - 6 * control1_vertex.v_[Y] +
3 * control2_vertex.v_[Y];
c[X] = -3 * solid->last_vertex_.v_[X] + 3 * control1_vertex.v_[X];
c[Y] = -3 * solid->last_vertex_.v_[Y] + 3 * control1_vertex.v_[Y];
d[X] = solid->last_vertex_.v_[X];
d[Y] = solid->last_vertex_.v_[Y];
f[X] = d[X];
f[Y] = d[Y];
df[X] = c[X] * solid->delta_ + b[X] * solid->delta2_
+ a[X] * solid->delta3_;
df[Y] = c[Y] * solid->delta_ + b[Y] * solid->delta2_
+ a[Y] * solid->delta3_;
d2f[X] = 2 * b[X] * solid->delta2_ + 6 * a[X] * solid->delta3_;
d2f[Y] = 2 * b[Y] * solid->delta2_ + 6 * a[Y] * solid->delta3_;
d3f[X] = 6 * a[X] * solid->delta3_;
d3f[Y] = 6 * a[Y] * solid->delta3_;
for ( unsigned int i = 0; i < solid->tessellation_steps_-1; i++ ) {
f[X] += df[X];
f[Y] += df[Y];
VertexInfo vertex( f, solid->colorTess(), solid->textureTess() );
VertexInfo normal( solid->extrusion_.normal_sign_.y_ * df[Y],
solid->extrusion_.normal_sign_.x_ * df[X] );
vertex.v_[X] *= solid->vector_scale_;
vertex.v_[Y] *= solid->vector_scale_;
normal.normalize();
solid->extrusion_.contour_.push_back( vertex );
solid->extrusion_.contour_normals_.push_back( normal );
df[X] += d2f[X];
df[Y] += d2f[Y];
d2f[X] += d3f[X];
d2f[Y] += d3f[Y];
}
VertexInfo vertex( to, solid->colorTess(), solid->textureTess() );
VertexInfo normal( solid->extrusion_.normal_sign_.y_ * df[Y],
solid->extrusion_.normal_sign_.x_ * df[X] );
vertex.v_[X] *= solid->vector_scale_;
vertex.v_[Y] *= solid->vector_scale_;
normal.normalize();
solid->extrusion_.contour_.push_back( vertex );
solid->extrusion_.contour_normals_.push_back( normal );
solid->last_vertex_ = to_vertex;
return 0;
}
#endif // OGLFT_NO_SOLID
Texture::Texture ( const char* filename, float point_size, FT_UInt resolution )
: Face( filename, point_size, resolution )
{
if ( !isValid() ) return;
init();
}
Texture::Texture ( const FT_Byte* data_base, const FT_Long data_size,
float point_size, FT_UInt resolution )
: Face( data_base, data_size, point_size, resolution )
{
if ( !isValid() ) return;
init();
}
Texture::Texture ( FT_Face face, float point_size, FT_UInt resolution )
: Face( face, point_size, resolution )
{
init();
}
void Texture::init ( void )
{
character_rotation_.active_ = false;
character_rotation_.x_ = 0;
character_rotation_.y_ = 0;
character_rotation_.z_ = 0;
setCharSize();
setCharacterRotationReference( 'o' );
}
Texture::~Texture ( void )
{
clearCaches();
}
// Note: Changing the character rotation also clears the display list cache.
void Texture::setCharacterRotationX ( GLfloat character_rotation_x )
{
if ( character_rotation_x != character_rotation_.x_ ) {
character_rotation_.x_ = character_rotation_x;
if ( character_rotation_.x_ != 0. || character_rotation_.y_ != 0. ||
character_rotation_.z_ != 0. )
character_rotation_.active_ = true;
else
character_rotation_.active_ = false;
clearCaches();
}
}
void Texture::setCharacterRotationY ( GLfloat character_rotation_y )
{
if ( character_rotation_y != character_rotation_.y_ ) {
character_rotation_.y_ = character_rotation_y;
if ( character_rotation_.x_ != 0. || character_rotation_.y_ != 0. ||
character_rotation_.z_ != 0. )
character_rotation_.active_ = true;
else
character_rotation_.active_ = false;
clearCaches();
}
}
void Texture::setCharacterRotationZ ( GLfloat character_rotation_z )
{
if ( character_rotation_z != character_rotation_.z_ ) {
character_rotation_.z_ = character_rotation_z;
if ( character_rotation_.x_ != 0. || character_rotation_.y_ != 0. ||
character_rotation_.z_ != 0. )
character_rotation_.active_ = true;
else
character_rotation_.active_ = false;
clearCaches();
}
}
void Texture::setCharSize ( void )
{
for ( unsigned int f = 0; f < faces_.size(); f++ ) {
FT_Error error = FT_Set_Char_Size( faces_[f].face_,
(FT_F26Dot6)( point_size_ * 64 ),
(FT_F26Dot6)( point_size_ * 64 ),
resolution_,
resolution_ );
if ( error != 0 )
return;
}
if ( rotation_reference_glyph_ != 0 )
setRotationOffset();
}
void Texture::setRotationOffset ( void )
{
FT_Error error = FT_Load_Glyph( rotation_reference_face_,
rotation_reference_glyph_,
FT_LOAD_RENDER );
if ( error != 0 )
return;
rotation_offset_y_ = rotation_reference_face_->glyph->bitmap.rows / 2.f;
}
BBox Texture::measure ( unsigned char c )
{
BBox bbox;
// For starters, just get the unscaled glyph bounding box
unsigned int f;
FT_UInt glyph_index = 0;
for ( f = 0; f < faces_.size(); f++ ) {
glyph_index = FT_Get_Char_Index( faces_[f].face_, c );
if ( glyph_index != 0 ) break;
}
if ( glyph_index == 0 )
return bbox;
FT_Error error = FT_Load_Glyph( faces_[f].face_, glyph_index,
FT_LOAD_DEFAULT );
if ( error != 0 )
return bbox;
FT_Glyph glyph;
error = FT_Get_Glyph( faces_[f].face_->glyph, &glyph );
if ( error != 0 )
return bbox;
FT_BBox ft_bbox;
FT_Glyph_Get_CBox( glyph, ft_glyph_bbox_unscaled, &ft_bbox );
FT_Done_Glyph( glyph );
bbox = ft_bbox;
bbox.advance_ = faces_[f].face_->glyph->advance;
return bbox;
}
double Texture::height ( void ) const
{
if ( faces_[0].face_->height > 0 )
return faces_[0].face_->height / 64.;
else
return faces_[0].face_->size->metrics.y_ppem;
}
#ifndef OGLFT_NO_QT
BBox Texture::measure ( const QChar c )
{
BBox bbox;
// For starters, just get the unscaled glyph bounding box
unsigned int f;
FT_UInt glyph_index = 0;
for ( f = 0; f < faces_.size(); f++ ) {
glyph_index = FT_Get_Char_Index( faces_[f].face_, c.unicode() );
if ( glyph_index != 0 ) break;
}
if ( glyph_index == 0 )
return bbox;
FT_Error error = FT_Load_Glyph( faces_[f].face_, glyph_index,
FT_LOAD_DEFAULT );
if ( error != 0 )
return bbox;
FT_Glyph glyph;
error = FT_Get_Glyph( faces_[f].face_->glyph, &glyph );
if ( error != 0 )
return bbox;
FT_BBox ft_bbox;
FT_Glyph_Get_CBox( glyph, ft_glyph_bbox_unscaled, &ft_bbox );
FT_Done_Glyph( glyph );
bbox = ft_bbox;
bbox.advance_ = faces_[f].face_->glyph->advance;
return bbox;
}
#endif /* OGLFT_NO_QT */
GLuint Texture::compileGlyph ( FT_Face face, FT_UInt glyph_index )
{
bindTexture( face, glyph_index );
GLuint dlist = glGenLists( 1 );
glNewList( dlist, GL_COMPILE );
renderGlyph( face, glyph_index );
glEndList( );
return dlist;
}
void Texture::renderGlyph ( FT_Face face, FT_UInt glyph_index )
{
FT_Error error = FT_Load_Glyph( face, glyph_index, FT_LOAD_DEFAULT );
if ( error != 0 )
return;
TextureInfo texture_info;
GTOCI texture_object = glyph_texobjs_.find( glyph_index );
if ( texture_object == glyph_texobjs_.end() ) {
bindTexture( face, glyph_index );
texture_object = glyph_texobjs_.find( glyph_index );
if ( texture_object == glyph_texobjs_.end() )
return;
}
texture_info = texture_object->second;
glBindTexture( GL_TEXTURE_2D, texture_info.texture_name_ );
if ( character_rotation_.active_ ) {
glPushMatrix();
glTranslatef( ( texture_info.width_ / 2.f +
texture_info.left_bearing_ ),
rotation_offset_y_, 0.f );
if ( character_rotation_.x_ != 0. )
glRotatef( character_rotation_.x_, 1.f, 0.f, 0.f );
if ( character_rotation_.y_ != 0. )
glRotatef( character_rotation_.y_, 0.f, 1.f, 0.f );
if ( character_rotation_.z_ != 0. )
glRotatef( character_rotation_.z_, 0.f, 0.f, 1.f );
glTranslatef( -( texture_info.width_ / 2.f +
texture_info.left_bearing_ ),
-rotation_offset_y_, 0.f );
}
glBegin( GL_QUADS );
glTexCoord2i( 0, 0 );
glVertex2i( texture_info.left_bearing_, texture_info.bottom_bearing_ );
glTexCoord2f( texture_info.texture_s_, 0.f );
glVertex2i( texture_info.left_bearing_ + texture_info.width_,
texture_info.bottom_bearing_ );
glTexCoord2f( texture_info.texture_s_, texture_info.texture_t_ );
glVertex2i( texture_info.left_bearing_ + texture_info.width_,
texture_info.bottom_bearing_ + texture_info.height_ );
glTexCoord2f( 0.f, texture_info.texture_t_ );
glVertex2i( texture_info.left_bearing_,
texture_info.bottom_bearing_ + texture_info.height_ );
glEnd();
if ( character_rotation_.active_ ) {
glPopMatrix();
}
// Drawing a character always advances the MODELVIEW.
glTranslatef( texture_info.advance_.x / 64.f,
texture_info.advance_.y / 64.f,
0. );
}
void Texture::clearCaches ( void )
{
GDLI fgi = glyph_dlists_.begin();
for ( ; fgi != glyph_dlists_.end(); ++fgi ) {
glDeleteLists( fgi->second, 1 );
}
glyph_dlists_.clear();
GTOI fti = glyph_texobjs_.begin();
for ( ; fti != glyph_texobjs_.end(); ++fti ) {
glDeleteTextures( 1, &fti->second.texture_name_ );
}
glyph_texobjs_.clear();
}
unsigned int Texture::nearestPowerCeil ( unsigned int a )
{
unsigned int b = a;
unsigned int c = 1;
if ( a == 0 ) return 1;
// Take the log-2 of a
for ( ; ; ) {
if ( b == 1 )
break;
else if ( b == 3 ) {
c *= 4;
break;
}
b >>= 1;
c *= 2;
}
// If it's too small, raise it another power
if ( c < a ) c *= 2;
return c;
}
MonochromeTexture::MonochromeTexture ( const char* filename, float point_size,
FT_UInt resolution )
: Texture( filename, point_size, resolution )
{}
MonochromeTexture::MonochromeTexture ( const FT_Byte* data_base, const FT_Long data_size,
float point_size, FT_UInt resolution )
: Texture( data_base, data_size, point_size, resolution )
{}
MonochromeTexture::MonochromeTexture ( FT_Face face, float point_size,
FT_UInt resolution )
: Texture( face, point_size, resolution )
{}
MonochromeTexture::~MonochromeTexture ( void )
{}
// Round up the size of the image to a power of two, but otherwise
// use the bitmap as is (i.e., don't expand it into separate
// luminance and alpha components)
GLubyte* MonochromeTexture::invertBitmap ( const FT_Bitmap& bitmap,
int* width, int* height )
{
*width = nearestPowerCeil( bitmap.width );
*height = nearestPowerCeil( bitmap.rows );
GLubyte* inverse = new GLubyte[ ( *width + 7) / 8 * *height ];
GLubyte* inverse_ptr = inverse;
memset( inverse, 0, sizeof( GLubyte )*( *width + 7 ) / 8 * *height );
for ( int r = 0; r < bitmap.rows; r++ ) {
GLubyte* bitmap_ptr = &bitmap.buffer[bitmap.pitch * ( bitmap.rows - r - 1 )];
for ( int p = 0; p < bitmap.pitch; p++ ) {
*inverse_ptr++ = *bitmap_ptr++;
}
inverse_ptr += ( ( *width + 7 ) / 8 - bitmap.pitch );
}
return inverse;
}
// Hmm. This is the only routine which is different between the different
// styles.
void MonochromeTexture::bindTexture ( FT_Face face, FT_UInt glyph_index )
{
GTOCI texobj = glyph_texobjs_.find( glyph_index );
if ( texobj != glyph_texobjs_.end() )
return;
// Retrieve the glyph's data.
FT_Error error = FT_Load_Glyph( face, glyph_index, FT_LOAD_DEFAULT );
if ( error != 0 )
return;
error = FT_Render_Glyph( face->glyph, ft_render_mode_mono );
if ( error != 0 )
return;
TextureInfo texture_info;
glGenTextures( 1, &texture_info.texture_name_ );
glBindTexture( GL_TEXTURE_2D, texture_info.texture_name_ );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
// Texture maps have be a power of 2 in size (is 1 a power of 2?), so
// pad it out while flipping it over
int width, height;
GLubyte* inverted_pixmap =
invertBitmap( face->glyph->bitmap, &width, &height );
GLfloat red_map[2] = { background_color_[R], foreground_color_[R] };
GLfloat green_map[2] = { background_color_[G], foreground_color_[G] };
GLfloat blue_map[2] = { background_color_[B], foreground_color_[B] };
GLfloat alpha_map[2] = { background_color_[A], foreground_color_[A] };
glPixelMapfv( GL_PIXEL_MAP_I_TO_R, 2, red_map );
glPixelMapfv( GL_PIXEL_MAP_I_TO_G, 2, green_map );
glPixelMapfv( GL_PIXEL_MAP_I_TO_B, 2, blue_map );
glPixelMapfv( GL_PIXEL_MAP_I_TO_A, 2, alpha_map );
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA, width, height,
0, GL_COLOR_INDEX, GL_BITMAP, inverted_pixmap );
// Save a good bit of the data about this glyph
texture_info.left_bearing_ = face->glyph->bitmap_left;
texture_info.bottom_bearing_ = -( face->glyph->bitmap.rows
- face->glyph->bitmap_top );
texture_info.width_ = face->glyph->bitmap.width;
texture_info.height_ = face->glyph->bitmap.rows;
texture_info.texture_s_ = (GLfloat)texture_info.width_ / width;
texture_info.texture_t_ = (GLfloat)texture_info.height_ / height;
texture_info.advance_ = face->glyph->advance;
glyph_texobjs_[ glyph_index ] = texture_info;
delete[] inverted_pixmap;
}
GrayscaleTexture::GrayscaleTexture ( const char* filename, float point_size,
FT_UInt resolution )
: Texture( filename, point_size, resolution )
{}
GrayscaleTexture::GrayscaleTexture ( const FT_Byte* data_base, const FT_Long data_size,
float point_size, FT_UInt resolution )
: Texture( data_base, data_size, point_size, resolution )
{}
GrayscaleTexture::GrayscaleTexture ( FT_Face face, float point_size,
FT_UInt resolution )
: Texture( face, point_size, resolution )
{}
GrayscaleTexture::~GrayscaleTexture ( void )
{}
// For the grayscale style, the luminance is the grayscale FreeType value,
// so this just rounds up to a power of two and inverts the pixmap
GLubyte* GrayscaleTexture::invertPixmap ( const FT_Bitmap& bitmap,
int* width, int* height )
{
*width = nearestPowerCeil( bitmap.width );
*height = nearestPowerCeil( bitmap.rows );
GLubyte* inverse = new GLubyte[ *width * *height ];
GLubyte* inverse_ptr = inverse;
for ( int r = 0; r < bitmap.rows; r++ ) {
GLubyte* bitmap_ptr = &bitmap.buffer[bitmap.pitch * ( bitmap.rows - r - 1 )];
for ( int p = 0; p < bitmap.width; p++ ) {
*inverse_ptr++ = *bitmap_ptr++;
}
inverse_ptr += ( *width - bitmap.pitch );
}
return inverse;
}
// Hmm. This is the only routine which is different between the different
// styles.
void GrayscaleTexture::bindTexture ( FT_Face face, FT_UInt glyph_index )
{
GTOCI texobj = glyph_texobjs_.find( glyph_index );
if ( texobj != glyph_texobjs_.end() )
return;
// Retrieve the glyph's data.
FT_Error error = FT_Load_Glyph( face, glyph_index, FT_LOAD_DEFAULT );
if ( error != 0 )
return;
error = FT_Render_Glyph( face->glyph, ft_render_mode_normal );
if ( error != 0 )
return;
TextureInfo texture_info;
glGenTextures( 1, &texture_info.texture_name_ );
glBindTexture( GL_TEXTURE_2D, texture_info.texture_name_ );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
// Texture maps have be a power of 2 in size (is 1 a power of 2?), so
// pad it out while flipping it over
int width, height;
GLubyte* inverted_pixmap =
invertPixmap( face->glyph->bitmap, &width, &height );
glPushAttrib( GL_PIXEL_MODE_BIT );
glPixelTransferf( GL_RED_SCALE, foreground_color_[R] - background_color_[R] );
glPixelTransferf( GL_GREEN_SCALE, foreground_color_[G]-background_color_[G] );
glPixelTransferf( GL_BLUE_SCALE, foreground_color_[B]-background_color_[B] );
glPixelTransferf( GL_ALPHA_SCALE, foreground_color_[A]-background_color_[A] );
glPixelTransferf( GL_RED_BIAS, background_color_[R] );
glPixelTransferf( GL_GREEN_BIAS, background_color_[G] );
glPixelTransferf( GL_BLUE_BIAS, background_color_[B] );
glPixelTransferf( GL_ALPHA_BIAS, background_color_[A] );
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA, width, height,
0, GL_LUMINANCE, GL_UNSIGNED_BYTE, inverted_pixmap );
glPopAttrib();
// Save a good bit of the data about this glyph
texture_info.left_bearing_ = face->glyph->bitmap_left;
texture_info.bottom_bearing_ = -( face->glyph->bitmap.rows
- face->glyph->bitmap_top );
texture_info.width_ = face->glyph->bitmap.width;
texture_info.height_ = face->glyph->bitmap.rows;
texture_info.texture_s_ = (GLfloat)texture_info.width_ / width;
texture_info.texture_t_ = (GLfloat)texture_info.height_ / height;
texture_info.advance_ = face->glyph->advance;
glyph_texobjs_[ glyph_index ] = texture_info;
delete[] inverted_pixmap;
}
TranslucentTexture::TranslucentTexture ( const char* filename, float point_size,
FT_UInt resolution )
: Texture( filename, point_size, resolution )
{}
TranslucentTexture::TranslucentTexture ( const FT_Byte* data_base, const FT_Long data_size,
float point_size, FT_UInt resolution )
: Texture( data_base, data_size, point_size, resolution )
{}
TranslucentTexture::TranslucentTexture ( FT_Face face, float point_size,
FT_UInt resolution )
: Texture( face, point_size, resolution )
{}
TranslucentTexture::~TranslucentTexture ( void )
{}
// For the translucent style, the luminance is saturated and alpha value
// is the translucent FreeType value
GLubyte* TranslucentTexture::invertPixmap ( const FT_Bitmap& bitmap,
int* width, int* height )
{
*width = nearestPowerCeil( bitmap.width );
*height = nearestPowerCeil( bitmap.rows );
GLubyte* inverse = new GLubyte[ 2 * *width * *height ];
GLubyte* inverse_ptr = inverse;
for ( int r = 0; r < bitmap.rows; r++ ) {
GLubyte* bitmap_ptr = &bitmap.buffer[bitmap.pitch * ( bitmap.rows - r - 1 )];
for ( int p = 0; p < bitmap.width; p++ ) {
*inverse_ptr++ = 0xff;
*inverse_ptr++ = *bitmap_ptr++;
}
inverse_ptr += 2 * ( *width - bitmap.pitch );
}
return inverse;
}
// Hmm. This is the only routine which is different between the different
// styles.
void TranslucentTexture::bindTexture ( FT_Face face, FT_UInt glyph_index )
{
GTOCI texobj = glyph_texobjs_.find( glyph_index );
if ( texobj != glyph_texobjs_.end() )
return;
// Retrieve the glyph's data.
FT_Error error = FT_Load_Glyph( face, glyph_index, FT_LOAD_DEFAULT );
if ( error != 0 )
return;
error = FT_Render_Glyph( face->glyph, ft_render_mode_normal );
if ( error != 0 )
return;
TextureInfo texture_info;
glGenTextures( 1, &texture_info.texture_name_ );
glBindTexture( GL_TEXTURE_2D, texture_info.texture_name_ );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
// Texture maps have be a power of 2 in size (is 1 a power of 2?), so
// pad it out while flipping it over
int width, height;
GLubyte* inverted_pixmap =
invertPixmap( face->glyph->bitmap, &width, &height );
glPushAttrib( GL_PIXEL_MODE_BIT );
glPixelTransferf( GL_RED_SCALE, foreground_color_[R] - background_color_[R] );
glPixelTransferf( GL_GREEN_SCALE, foreground_color_[G]-background_color_[G] );
glPixelTransferf( GL_BLUE_SCALE, foreground_color_[B]-background_color_[B] );
glPixelTransferf( GL_ALPHA_SCALE, foreground_color_[A]-background_color_[A] );
glPixelTransferf( GL_RED_BIAS, background_color_[R] );
glPixelTransferf( GL_GREEN_BIAS, background_color_[G] );
glPixelTransferf( GL_BLUE_BIAS, background_color_[B] );
glPixelTransferf( GL_ALPHA_BIAS, background_color_[A] );
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA, width, height,
0, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, inverted_pixmap );
glPopAttrib();
// Save a good bit of the data about this glyph
texture_info.left_bearing_ = face->glyph->bitmap_left;
texture_info.bottom_bearing_ = -( face->glyph->bitmap.rows
- face->glyph->bitmap_top );
texture_info.width_ = face->glyph->bitmap.width;
texture_info.height_ = face->glyph->bitmap.rows;
texture_info.texture_s_ = (GLfloat)texture_info.width_ / width;
texture_info.texture_t_ = (GLfloat)texture_info.height_ / height;
texture_info.advance_ = face->glyph->advance;
glyph_texobjs_[ glyph_index ] = texture_info;
delete[] inverted_pixmap;
}
} // close OGLFT namespace