blendalot_animgraph/blendalot_animation_node.h

826 lines
27 KiB
C++

#pragma once
#include "core/io/resource.h"
#include "core/profiling/profiling.h"
#include "scene/3d/skeleton_3d.h"
#include "scene/animation/animation_player.h"
#include "scene/resources/animation_library.h"
#include "sync_track.h"
#include <cassert>
/**
* @class AnimationData
* Represents data that is transported via animation connections in the SyncedAnimationGraph.
*
* In general AnimationData objects should be obtained using the AnimationDataAllocator.
*
* The class consists of a buffer containing the data and a hashmap that resolves the
* Animation::TypeHash of an Animation::Track to the corresponding AnimationData::TrackValue
* block within the buffer.
*/
struct AnimationData {
enum TrackType : uint8_t {
TYPE_VALUE, // Set a value in a property, can be interpolated.
TYPE_POSITION_3D, // Position 3D track, can be compressed.
TYPE_ROTATION_3D, // Rotation 3D track, can be compressed.
TYPE_SCALE_3D, // Scale 3D track, can be compressed.
TYPE_BLEND_SHAPE, // Blend Shape track, can be compressed.
TYPE_METHOD, // Call any method on a specific node.
TYPE_BEZIER, // Bezier curve.
TYPE_AUDIO,
TYPE_ANIMATION,
};
struct TrackValue {
TrackType type = TYPE_ANIMATION;
virtual ~TrackValue() = default;
virtual void blend(const TrackValue &to_value, const float lambda) {
print_error(vformat("Blending of TrackValue of type %d with TrackValue of type %d not yet implemented.", type, to_value.type));
}
virtual bool operator==(const TrackValue &other_value) const {
print_error(vformat("Comparing TrackValue of type %d with TrackValue of type %d not yet implemented.", type, other_value.type));
return false;
}
bool operator!=(const TrackValue &other_value) const {
return !(*this == other_value);
}
virtual TrackValue *clone() const {
print_error(vformat("Cannot clone TrackValue of type %d: not yet implemented.", type));
return nullptr;
}
};
struct TransformTrackValue : public TrackValue {
int bone_idx = -1;
bool loc_used = false;
bool rot_used = false;
bool scale_used = false;
Vector3 init_loc = Vector3(0, 0, 0);
Quaternion init_rot = Quaternion(0, 0, 0, 1);
Vector3 init_scale = Vector3(1, 1, 1);
Vector3 loc;
Quaternion rot;
Vector3 scale;
TransformTrackValue() { type = TYPE_POSITION_3D; }
void blend(const TrackValue &to_value, const float lambda) override {
const TransformTrackValue *to_value_casted = &static_cast<const TransformTrackValue &>(to_value);
assert(bone_idx == to_value_casted->bone_idx);
if (loc_used) {
loc = (1. - lambda) * loc + lambda * to_value_casted->loc;
}
if (rot_used) {
rot = rot.slerp(to_value_casted->rot, lambda);
}
if (scale_used) {
scale = (1. - lambda) * scale + lambda * to_value_casted->scale;
}
}
bool operator==(const TrackValue &other_value) const override {
if (type != other_value.type) {
return false;
}
const TransformTrackValue *other_value_casted = &static_cast<const TransformTrackValue &>(other_value);
return bone_idx == other_value_casted->bone_idx && loc == other_value_casted->loc && rot == other_value_casted->rot && scale == other_value_casted->scale;
}
};
AnimationData() = default;
~AnimationData() = default;
AnimationData(const AnimationData &other) {
value_buffer_offset = other.value_buffer_offset;
buffer = other.buffer;
}
AnimationData(AnimationData &&other) noexcept :
value_buffer_offset(std::exchange(other.value_buffer_offset, AHashMap<Animation::TypeHash, size_t, HashHasher>())),
buffer(std::exchange(other.buffer, LocalVector<uint8_t>())) {
}
AnimationData &operator=(const AnimationData &other) {
AnimationData temp(other);
std::swap(value_buffer_offset, temp.value_buffer_offset);
std::swap(buffer, temp.buffer);
return *this;
}
AnimationData &operator=(AnimationData &&other) noexcept {
std::swap(value_buffer_offset, other.value_buffer_offset);
std::swap(buffer, other.buffer);
return *this;
}
void allocate_track_value(const Animation::Track *animation_track, const Skeleton3D *skeleton_3d);
void allocate_track_values(const Ref<Animation> &animation, const Skeleton3D *skeleton_3d);
template <typename TrackValueType>
TrackValueType *get_value(const Animation::TypeHash &thash) {
return reinterpret_cast<TrackValueType *>(&buffer[value_buffer_offset[thash]]);
}
template <typename TrackValueType>
const TrackValueType *get_value(const Animation::TypeHash &thash) const {
return reinterpret_cast<const TrackValueType *>(&buffer[value_buffer_offset[thash]]);
}
bool has_same_tracks(const AnimationData &other) const {
HashSet<Animation::TypeHash> valid_track_hashes;
for (const KeyValue<Animation::TypeHash, size_t> &K : value_buffer_offset) {
valid_track_hashes.insert(K.key);
}
for (const KeyValue<Animation::TypeHash, size_t> &K : other.value_buffer_offset) {
if (HashSet<Animation::TypeHash>::Iterator entry = valid_track_hashes.find(K.key)) {
valid_track_hashes.remove(entry);
} else {
return false;
}
}
return valid_track_hashes.size() == 0;
}
void blend(const AnimationData &to_data, const float lambda) {
GodotProfileZone("AnimationData::blend");
if (!has_same_tracks(to_data)) {
print_error("Cannot blend AnimationData: tracks do not match.");
return;
}
for (const KeyValue<Animation::TypeHash, size_t> &K : value_buffer_offset) {
TrackValue *track_value = get_value<TrackValue>(K.key);
const TrackValue *other_track_value = to_data.get_value<TrackValue>(K.key);
track_value->blend(*other_track_value, lambda);
}
}
void sample_from_animation(const Ref<Animation> &animation, const Skeleton3D *skeleton_3d, double p_time);
AHashMap<Animation::TypeHash, size_t, HashHasher> value_buffer_offset;
LocalVector<uint8_t> buffer;
};
/**
* @class AnimationDataAllocator
*
* Allows reusing of already allocated AnimationData objects. Stores the default values for all
* tracks. An allocated AnimationData object always has a resetted state where all TrackValues
* have the default value.
*
* During SyncedAnimationGraph initialization all nodes that generate values for AnimationData
* must register their tracks in the AnimationDataAllocator to ensure all allocated AnimationData
* have corresponding tracks.
*/
class AnimationDataAllocator {
AnimationData default_data;
List<AnimationData *> allocated_data;
public:
~AnimationDataAllocator() {
while (!allocated_data.is_empty()) {
memfree(allocated_data.front()->get());
allocated_data.pop_front();
}
}
/// @brief Registers all animation track values for the default_data value.
void register_track_values(const Ref<Animation> &animation, const Skeleton3D *skeleton_3d);
AnimationData *allocate() {
GodotProfileZone("AnimationDataAllocator::allocate_template");
if (!allocated_data.is_empty()) {
GodotProfileZone("AnimationDataAllocator::allocate_from_list");
AnimationData *result = allocated_data.front()->get();
allocated_data.pop_front();
// We copy the whole block as the assignment operator copies entries element wise.
memcpy(result->buffer.ptr(), default_data.buffer.ptr(), default_data.buffer.size());
return result;
}
AnimationData *result = memnew(AnimationData);
*result = default_data;
return result;
}
void free(AnimationData *data) {
allocated_data.push_front(data);
}
};
struct GraphEvaluationContext {
AnimationPlayer *animation_player = nullptr;
Skeleton3D *skeleton_3d = nullptr;
AnimationDataAllocator animation_data_allocator;
};
/**
* @class BLTAnimationNode
* Base class for all nodes in an SyncedAnimationGraph including BlendTree nodes and StateMachine states.
*/
class BLTAnimationNode : public Resource {
GDCLASS(BLTAnimationNode, Resource);
friend class BLTAnimationGraph;
protected:
static void _bind_methods();
virtual void get_parameter_list(List<PropertyInfo> *r_list) const;
virtual Variant get_parameter_default_value(const StringName &p_parameter) const;
virtual bool is_parameter_read_only(const StringName &p_parameter) const;
virtual void set_parameter(const StringName &p_name, const Variant &p_value);
virtual Variant get_parameter(const StringName &p_name) const;
virtual void _node_changed();
virtual void _animation_node_renamed(const ObjectID &p_oid, const String &p_old_name, const String &p_new_name);
virtual void _animation_node_removed(const ObjectID &p_oid, const StringName &p_node);
public:
struct NodeTimeInfo {
double delta = 0.0;
double position = 0.0;
double sync_position = 0.0;
bool is_synced = false;
Animation::LoopMode loop_mode = Animation::LOOP_NONE;
SyncTrack sync_track;
};
NodeTimeInfo node_time_info;
bool active = false;
Vector2 graph_offset;
virtual ~BLTAnimationNode() override = default;
virtual bool initialize(GraphEvaluationContext &context) {
node_time_info = {};
return true;
}
virtual void activate_inputs(const Vector<Ref<BLTAnimationNode>> &input_nodes) {
// By default, all inputs nodes are activated.
for (const Ref<BLTAnimationNode> &node : input_nodes) {
if (node.ptr() == nullptr) {
// TODO: add checking whether tree can be evaluated, i.e. whether all inputs are properly connected.
continue;
}
node->active = true;
node->node_time_info.is_synced = node_time_info.is_synced;
}
}
virtual void calculate_sync_track(const Vector<Ref<BLTAnimationNode>> &input_nodes) {
// By default, use the SyncTrack of the first input.
if (input_nodes.size() > 0) {
node_time_info.sync_track = input_nodes[0]->node_time_info.sync_track;
node_time_info.loop_mode = input_nodes[0]->node_time_info.loop_mode;
}
}
virtual void update_time(double p_time) {
if (node_time_info.is_synced) {
node_time_info.sync_position = p_time;
} else {
node_time_info.delta = p_time;
node_time_info.position += p_time;
}
}
virtual void evaluate(GraphEvaluationContext &context, const LocalVector<AnimationData *> &input_datas, AnimationData &output_data) {
// By default, use the AnimationData of the first input.
if (input_datas.size() > 0) {
output_data = *input_datas[0];
}
}
void set_graph_offset(const Vector2 &p_position) {
graph_offset = p_position;
}
Vector2 get_graph_offset() const {
return graph_offset;
}
virtual Vector<StringName> get_input_names() const { return {}; }
TypedArray<StringName> get_input_names_as_typed_array() const {
TypedArray<StringName> typed_arr;
Vector<StringName> vec = get_input_names();
typed_arr.resize(vec.size());
for (uint32_t i = 0; i < vec.size(); i++) {
typed_arr[i] = vec[i];
}
return typed_arr;
}
int get_input_index(const StringName &port_name) const {
Vector<StringName> inputs = get_input_names();
return inputs.find(port_name);
}
int get_input_count() const {
Vector<StringName> inputs = get_input_names();
return inputs.size();
}
// Creates a list of nodes nested within the current node. E.g. all nodes within a BlendTree node.
virtual void get_child_nodes(List<Ref<BLTAnimationNode>> *r_child_nodes) const {}
};
class BLTAnimationNodeSampler : public BLTAnimationNode {
GDCLASS(BLTAnimationNodeSampler, BLTAnimationNode);
public:
StringName animation_name;
AnimationPlayer *animation_player = nullptr;
void set_animation_player(AnimationPlayer *p_player);
bool set_animation(const StringName &p_name);
StringName get_animation() const;
TypedArray<StringName> get_animations_as_typed_array() const;
private:
Ref<Animation> animation;
bool initialize(GraphEvaluationContext &context) override;
void update_time(double p_time) override;
void evaluate(GraphEvaluationContext &context, const LocalVector<AnimationData *> &inputs, AnimationData &output) override;
protected:
static void _bind_methods();
};
class BLTAnimationNodeOutput : public BLTAnimationNode {
GDCLASS(BLTAnimationNodeOutput, BLTAnimationNode);
public:
Vector<StringName> get_input_names() const override {
return { "Output" };
}
};
class BLTAnimationNodeBlend2 : public BLTAnimationNode {
GDCLASS(BLTAnimationNodeBlend2, BLTAnimationNode);
public:
float blend_weight = 0.0f;
bool sync = true;
Vector<StringName> get_input_names() const override {
return { "Input0", "Input1" };
}
bool initialize(GraphEvaluationContext &context) override {
if (!BLTAnimationNode::initialize(context)) {
return false;
}
if (sync) {
// TODO: do we always want looping in this case or do we traverse the graph to check what's reasonable?
node_time_info.loop_mode = Animation::LOOP_LINEAR;
}
if (node_time_info.loop_mode != Animation::LOOP_LINEAR) {
print_line(vformat("Forcing loop mode to linear on nonde %s", get_name()));
node_time_info.loop_mode = Animation::LOOP_LINEAR;
}
return true;
}
void activate_inputs(const Vector<Ref<BLTAnimationNode>> &input_nodes) override {
input_nodes[0]->active = true;
input_nodes[1]->active = true;
// If this Blend2 node is already synced then inputs are also synced. Otherwise, inputs are only set to synced if synced blending is active in this node.
input_nodes[0]->node_time_info.is_synced = node_time_info.is_synced || sync;
input_nodes[1]->node_time_info.is_synced = node_time_info.is_synced || sync;
}
void calculate_sync_track(const Vector<Ref<BLTAnimationNode>> &input_nodes) override {
if (node_time_info.is_synced || sync) {
assert(input_nodes[0]->node_time_info.loop_mode == input_nodes[1]->node_time_info.loop_mode);
node_time_info.sync_track = SyncTrack::blend(blend_weight, input_nodes[0]->node_time_info.sync_track, input_nodes[1]->node_time_info.sync_track);
}
}
void update_time(double p_delta) override {
BLTAnimationNode::update_time(p_delta);
if (sync && !node_time_info.is_synced) {
if (node_time_info.loop_mode != Animation::LOOP_NONE) {
if (node_time_info.loop_mode == Animation::LOOP_LINEAR) {
if (!Math::is_zero_approx(node_time_info.sync_track.duration)) {
node_time_info.position = Math::fposmod(static_cast<float>(node_time_info.position), node_time_info.sync_track.duration);
node_time_info.sync_position = node_time_info.sync_track.calc_sync_from_abs_time(node_time_info.position);
}
} else {
assert(false && !"Loop mode ping-pong not yet supported");
}
}
}
}
void evaluate(GraphEvaluationContext &context, const LocalVector<AnimationData *> &inputs, AnimationData &output) override;
void set_use_sync(bool p_sync);
bool is_using_sync() const;
protected:
static void _bind_methods();
void get_parameter_list(List<PropertyInfo> *p_list) const override;
Variant get_parameter_default_value(const StringName &p_parameter) const override;
void set_parameter(const StringName &p_name, const Variant &p_value) override;
Variant get_parameter(const StringName &p_name) const override;
void _get_property_list(List<PropertyInfo> *p_list) const;
bool _get(const StringName &p_name, Variant &r_value) const;
bool _set(const StringName &p_name, const Variant &p_value);
private:
StringName blend_weight_pname = PNAME("blend_amount");
StringName sync_pname = PNAME("sync");
};
struct BLTBlendTreeConnection {
Ref<BLTAnimationNode> source_node = nullptr;
Ref<BLTAnimationNode> target_node = nullptr;
StringName target_port_name = "";
};
class BLTAnimationNodeBlendTree : public BLTAnimationNode {
GDCLASS(BLTAnimationNodeBlendTree, BLTAnimationNode);
public:
enum ConnectionError {
CONNECTION_OK,
CONNECTION_ERROR_GRAPH_ALREADY_INITIALIZED,
CONNECTION_ERROR_NO_SOURCE_NODE,
CONNECTION_ERROR_NO_TARGET_NODE,
CONNECTION_ERROR_PARENT_EXISTS,
CONNECTION_ERROR_TARGET_PORT_NOT_FOUND,
CONNECTION_ERROR_TARGET_PORT_ALREADY_CONNECTED,
CONNECTION_ERROR_CONNECTION_CREATES_LOOP,
CONNECTION_ERROR_CONNECTION_NOT_FOUND
};
/**
* @class BLTBlendTreeGraph
* Helper class that is used to build runtime blend trees and also to validate connections.
*/
struct BLTBlendTreeGraph {
struct NodeConnectionInfo {
int parent_node_index = -1;
HashSet<int> input_subtree_node_indices; // Contains all nodes down to the tree leaves that influence this node.
LocalVector<int> connected_child_node_index_at_port; // Contains for each input port the index of the node that is connected to it.
NodeConnectionInfo() = default;
explicit NodeConnectionInfo(const BLTAnimationNode *node) {
parent_node_index = -1;
for (int i = 0; i < node->get_input_count(); i++) {
connected_child_node_index_at_port.push_back(-1);
}
}
void apply_node_mapping(const LocalVector<int> &node_index_mapping) {
// Map connected node indices
for (unsigned int j = 0; j < connected_child_node_index_at_port.size(); j++) {
int connected_node_index = connected_child_node_index_at_port[j];
connected_child_node_index_at_port[j] = node_index_mapping.find(connected_node_index);
}
// Map connected subtrees
HashSet<int> old_indices = input_subtree_node_indices;
input_subtree_node_indices.clear();
for (int old_index : old_indices) {
input_subtree_node_indices.insert(node_index_mapping.find(old_index));
}
}
void _print_subtree() const {
String result = vformat("subtree node indices (%d): ", input_subtree_node_indices.size());
bool is_first = true;
for (int index : input_subtree_node_indices) {
if (is_first) {
result += vformat("%d", index);
is_first = false;
} else {
result += vformat(", %d", index);
}
}
print_line(result);
}
};
LocalVector<Ref<BLTAnimationNode>> nodes; // All added nodes
LocalVector<NodeConnectionInfo> node_connection_info;
LocalVector<BLTBlendTreeConnection> connections;
BLTBlendTreeGraph();
Ref<BLTAnimationNode> get_output_node();
int find_node_index(const Ref<BLTAnimationNode> &node) const;
int find_node_index_by_name(const StringName &name) const;
void sort_nodes_and_references();
LocalVector<int> get_sorted_node_indices();
void sort_nodes_recursive(int node_index, LocalVector<int> &result);
void add_index_and_update_subtrees_recursive(int node_index, int node_parent_index);
void remove_subtree_and_update_subtrees_recursive(int node, const HashSet<int> &removed_subtree_indices);
void add_node(const Ref<BLTAnimationNode> &node);
bool remove_node(const Ref<BLTAnimationNode> &node);
ConnectionError is_connection_valid(const Ref<BLTAnimationNode> &source_node, const Ref<BLTAnimationNode> &target_node, StringName target_port_name) const;
ConnectionError add_connection(const Ref<BLTAnimationNode> &source_node, const Ref<BLTAnimationNode> &target_node, const StringName &target_port_name);
int find_connection_index(const Ref<BLTAnimationNode> &source_node, const Ref<BLTAnimationNode> &target_node, const StringName &target_port_name) const;
ConnectionError remove_connection(const Ref<BLTAnimationNode> &source_node, const Ref<BLTAnimationNode> &target_node, const StringName &target_port_name);
};
private:
BLTBlendTreeGraph tree_graph;
bool tree_initialized = false;
GraphEvaluationContext *_graph_evaluation_context = nullptr;
void sort_nodes() {
_node_runtime_data.clear();
tree_graph.sort_nodes_and_references();
}
void setup_runtime_data() {
// Add nodes and allocate runtime data
for (uint32_t i = 0; i < tree_graph.nodes.size(); i++) {
const Ref<BLTAnimationNode> node = tree_graph.nodes[i];
NodeRuntimeData node_runtime_data;
for (int ni = 0; ni < node->get_input_count(); ni++) {
node_runtime_data.input_data.push_back(nullptr);
}
node_runtime_data.output_data = nullptr;
_node_runtime_data.push_back(node_runtime_data);
}
// Populate runtime data (only now is this.nodes populated to retrieve the nodes)
for (uint32_t i = 0; i < tree_graph.nodes.size(); i++) {
Ref<BLTAnimationNode> node = tree_graph.nodes[i];
NodeRuntimeData &node_runtime_data = _node_runtime_data[i];
for (int port_index = 0; port_index < node->get_input_count(); port_index++) {
const int connected_node_index = tree_graph.node_connection_info[i].connected_child_node_index_at_port[port_index];
if (connected_node_index == -1) {
node_runtime_data.input_nodes.push_back(nullptr);
} else {
node_runtime_data.input_nodes.push_back(tree_graph.nodes[connected_node_index]);
}
}
}
}
protected:
static void _bind_methods();
void _get_property_list(List<PropertyInfo> *p_list) const;
bool _get(const StringName &p_name, Variant &r_value) const;
bool _set(const StringName &p_name, const Variant &p_value);
public:
struct NodeRuntimeData {
Vector<Ref<BLTAnimationNode>> input_nodes;
LocalVector<AnimationData *> input_data;
AnimationData *output_data = nullptr;
};
LocalVector<NodeRuntimeData> _node_runtime_data;
int find_node_index(const Ref<BLTAnimationNode> &node) const {
return tree_graph.find_node_index(node);
}
int find_node_index_by_name(const StringName &p_name) const {
return tree_graph.find_node_index_by_name(p_name);
}
void add_node(const Ref<BLTAnimationNode> &node) {
tree_graph.add_node(node);
if (_graph_evaluation_context != nullptr) {
node->initialize(*_graph_evaluation_context);
}
}
void remove_node(const Ref<BLTAnimationNode> &node) {
if (tree_graph.remove_node(node)) {
_node_changed();
}
}
TypedArray<StringName> get_node_names_as_typed_array() const {
Vector<StringName> vec;
for (const Ref<BLTAnimationNode> &node : tree_graph.nodes) {
vec.push_back(node->get_name());
}
TypedArray<StringName> typed_arr;
typed_arr.resize(vec.size());
for (uint32_t i = 0; i < vec.size(); i++) {
typed_arr[i] = vec[i];
}
return typed_arr;
}
Ref<BLTAnimationNode> get_node(const StringName &node_name) const {
int node_index = tree_graph.find_node_index_by_name(node_name);
if (node_index >= 0) {
return tree_graph.nodes[node_index];
}
return nullptr;
}
Ref<BLTAnimationNode> get_node_by_index(int node_index) const {
if (node_index < 0 || node_index > static_cast<int>(tree_graph.nodes.size())) {
return nullptr;
}
return tree_graph.nodes[node_index];
}
Ref<BLTAnimationNode> get_output_node() const {
return tree_graph.nodes[0];
}
ConnectionError is_connection_valid(const Ref<BLTAnimationNode> &source_node, const Ref<BLTAnimationNode> &target_node, const StringName &target_port_name) {
return tree_graph.is_connection_valid(source_node, target_node, target_port_name);
}
ConnectionError add_connection(const Ref<BLTAnimationNode> &source_node, const Ref<BLTAnimationNode> &target_node, const StringName &target_port_name) {
ConnectionError result = tree_graph.add_connection(source_node, target_node, target_port_name);
if (result == CONNECTION_OK) {
_node_changed();
}
return result;
}
ConnectionError remove_connection(const Ref<BLTAnimationNode> &source_node, const Ref<BLTAnimationNode> &target_node, const StringName &target_port_name) {
ConnectionError result = tree_graph.remove_connection(source_node, target_node, target_port_name);
if (result == CONNECTION_OK) {
_node_changed();
}
return result;
}
Array get_connections_as_array() const {
Array result;
for (const BLTBlendTreeConnection &connection : tree_graph.connections) {
result.push_back(connection.source_node);
result.push_back(connection.target_node);
result.push_back(connection.target_port_name);
}
return result;
}
void _tree_node_changed(const StringName &node_name) {
_node_changed();
}
// overrides from BLTAnimationNode
bool initialize(GraphEvaluationContext &context) override {
if (!BLTAnimationNode::initialize(context)) {
return false;
}
_graph_evaluation_context = &context;
sort_nodes();
setup_runtime_data();
for (const Ref<BLTAnimationNode> &node : tree_graph.nodes) {
if (!node->initialize(context)) {
return false;
}
}
tree_initialized = true;
return true;
}
void
activate_inputs(const Vector<Ref<BLTAnimationNode>> &input_nodes) override {
GodotProfileZone("SyncedBlendTree::activate_inputs");
// TODO: add checking whether tree can be evaluated, i.e. whether all inputs are properly connected.
if (tree_graph.nodes.size() == 1) {
return;
}
tree_graph.nodes[0]->active = true;
for (uint32_t i = 0; i < tree_graph.nodes.size(); i++) {
const Ref<BLTAnimationNode> &node = tree_graph.nodes[i];
if (!node->active) {
continue;
}
const NodeRuntimeData &node_runtime_data = _node_runtime_data[i];
node->activate_inputs(node_runtime_data.input_nodes);
}
}
void calculate_sync_track(const Vector<Ref<BLTAnimationNode>> &input_nodes) override {
GodotProfileZone("SyncedBlendTree::calculate_sync_track");
for (uint32_t i = tree_graph.nodes.size() - 1; i > 0; i--) {
const Ref<BLTAnimationNode> &node = tree_graph.nodes[i];
if (!node->active) {
continue;
}
const NodeRuntimeData &node_runtime_data = _node_runtime_data[i];
node->calculate_sync_track(node_runtime_data.input_nodes);
}
}
void update_time(double p_delta) override {
GodotProfileZone("SyncedBlendTree::update_time");
tree_graph.nodes[0]->node_time_info.delta = p_delta;
tree_graph.nodes[0]->node_time_info.position += p_delta;
for (uint32_t i = 1; i < tree_graph.nodes.size(); i++) {
const Ref<BLTAnimationNode> &node = tree_graph.nodes[i];
if (!node->active) {
continue;
}
const Ref<BLTAnimationNode> &node_parent = tree_graph.nodes[tree_graph.node_connection_info[i].parent_node_index];
if (node->node_time_info.is_synced) {
node->update_time(node_parent->node_time_info.sync_position);
} else {
node->update_time(node_parent->node_time_info.delta);
}
}
}
void evaluate(GraphEvaluationContext &context, const LocalVector<AnimationData *> &input_datas, AnimationData &output_data) override {
GodotProfileZone("SyncedBlendTree::evaluate");
for (uint32_t i = tree_graph.nodes.size() - 1; i > 0; i--) {
const Ref<BLTAnimationNode> &node = tree_graph.nodes[i];
if (!node->active) {
continue;
}
NodeRuntimeData &node_runtime_data = _node_runtime_data[i];
// Populate the inputs
for (unsigned int j = 0; j < node_runtime_data.input_data.size(); j++) {
int child_index = tree_graph.node_connection_info[i].connected_child_node_index_at_port[j];
node_runtime_data.input_data[j] = _node_runtime_data[child_index].output_data;
}
// Set output pointer
if (i == 1) {
node_runtime_data.output_data = &output_data;
} else {
node_runtime_data.output_data = context.animation_data_allocator.allocate();
}
node->evaluate(context, node_runtime_data.input_data, *node_runtime_data.output_data);
// All inputs have been consumed and can now be freed.
for (const int child_index : tree_graph.node_connection_info[i].connected_child_node_index_at_port) {
context.animation_data_allocator.free(_node_runtime_data[child_index].output_data);
}
}
}
void get_child_nodes(List<Ref<BLTAnimationNode>> *r_child_nodes) const override {
for (const Ref<BLTAnimationNode> &node : tree_graph.nodes) {
r_child_nodes->push_back(node.ptr());
}
}
};
VARIANT_ENUM_CAST(BLTAnimationNodeBlendTree::ConnectionError)