#include "spec_helper.h" const int epsilon = 1; #ifdef VECTORIAL_HAVE_SIMD2F describe(simd2f, "sanity") { it("VECTORIAL_SIMD_TYPE should be defined to a string") { std::cout << "Simd type: " << VECTORIAL_SIMD_TYPE << std::endl; } } describe(simd2f, "creating") { it("should be possible to create with simd2f_create") { simd2f x = simd2f_create(1, 2); should_be_close_to( simd2f_get_x(x), 1, epsilon); should_be_close_to( simd2f_get_y(x), 2, epsilon); // octave simd2f: [1,2] should_be_equal_simd2f(x, simd2f_create(1.000000000000000f, 2.000000000000000f), epsilon ); } it("should have simd2f_zero for zero vector") { simd2f x = simd2f_zero(); // octave simd2f: [0,0] should_be_equal_simd2f(x, simd2f_create(0.000000000000000f, 0.000000000000000f), epsilon ); } } #ifdef _MSC_VER #include #else #include #endif #define unaligned_mem(n) ((float*)((unsigned char*)alloca(sizeof(float)*n+4)+4)) describe(simd2f, "utilities") { it("should have simd2f_uload2 for loading two float values from float an unaligned array into simd2f") { float *f = unaligned_mem(2); f[0] = 1; f[1] = 2; simd2f x = simd2f_uload2(f); // octave simd2f: [1,2] should_be_equal_simd2f(x, simd2f_create(1.000000000000000f, 2.000000000000000f), epsilon ); } it("should have simd2f_ustore2 for storing two float values from simd2f to an unaligned array") { float *f = unaligned_mem(2); f[0] = -1; f[1] = -1; simd2f a = simd2f_create(1,2); simd2f_ustore2(a, f); should_be_close_to(f[0], 1, epsilon); should_be_close_to(f[1], 2, epsilon); } it("should have simd2f_splat that expands a single scalar to all elements") { simd2f x = simd2f_splat(42); // octave simd2f: [42,42] should_be_equal_simd2f(x, simd2f_create(42.000000000000000f, 42.000000000000000f), epsilon ); } it("should have simd2f_splat_x,y splatting of an element") { simd2f a = simd2f_create(1,2); simd2f x; x = simd2f_splat_x(a); // octave simd2f: [1,1] should_be_equal_simd2f(x, simd2f_create(1.000000000000000f, 1.000000000000000f), epsilon ); x = simd2f_splat_y(a); // octave simd2f: [2,2] should_be_equal_simd2f(x, simd2f_create(2.000000000000000f, 2.000000000000000f), epsilon ); } #if 0 it("should have simd2f_sum that adds elements") { simd2f a = simd2f_create(1,2); simd2f x = simd2f_sum(a); // octave simd2f: [sum([1,2]), sum([1,2,3,4])] should_be_equal_simd2f(x, simd2f_create(3.000000000000000f, 10.000000000000000f), epsilon ); } #endif it("should have simd2f_reciprocal") { simd2f a = simd2f_create(0.00001f, 2.00001f); simd2f x = simd2f_reciprocal(a); // octave simd2f: 1 ./ [0.00001, 2.00001] should_be_equal_simd2f(x, simd2f_create(99999.999999999985448f, 0.499997500012500f), epsilon ); } it("should have simd2f_sqrt") { simd2f a = simd2f_create(0.00001f, 2.00001f); simd2f x = simd2f_sqrt(a); // octave simd2f: sqrt([0.00001, 2.00001]) should_be_equal_simd2f(x, simd2f_create(0.003162277660168f, 1.414217097902582f), epsilon ); x = simd2f_sqrt( simd2f_create(0.0f, 0.0f) ); // octave simd2f: sqrt([0, 0]) should_be_equal_simd2f(x, simd2f_create(0.000000000000000f, 0.000000000000000f), epsilon ); } it("should have simd2f_rsqrt for reciprocal of square-root") { simd2f a = simd2f_create(0.00001f, 2.00001f); simd2f x = simd2f_rsqrt(a); const int epsilon = 4; // Grant larger error // octave simd2f: 1 ./ sqrt([0.00001, 2.00001]) should_be_equal_simd2f(x, simd2f_create(316.227766016837904f, 0.707105013426224f), epsilon ); } } describe(simd2f, "arithmetic with another simd2f") { it("should have simd2f_add for component-wise addition") { simd2f a = simd2f_create(1,2); simd2f b = simd2f_create(10,20); simd2f x = simd2f_add(a,b); // octave simd2f: [1,2] + [10,20] should_be_equal_simd2f(x, simd2f_create(11.000000000000000f, 22.000000000000000f), epsilon ); } it("should have simd2f_sub for component-wise subtraction") { simd2f a = simd2f_create(1,2); simd2f b = simd2f_create(10,20); simd2f x = simd2f_sub(b,a); // octave simd2f: [10,20] - [1,2] should_be_equal_simd2f(x, simd2f_create(9.000000000000000f, 18.000000000000000f), epsilon ); } it("should have simd2f_mul for component-wise multiply") { simd2f a = simd2f_create(1,2); simd2f b = simd2f_create(10,20); simd2f x = simd2f_mul(a,b); // octave simd2f: [1,2] .* [10,20] should_be_equal_simd2f(x, simd2f_create(10.000000000000000f, 40.000000000000000f), epsilon ); } it("should have simd2f_div for component-wise division") { simd2f a = simd2f_create(1,2); simd2f b = simd2f_create(10,20); simd2f x = simd2f_div(b,a); // octave simd2f: [10,20] ./ [1,2] should_be_equal_simd2f(x, simd2f_create(10.000000000000000f, 10.000000000000000f), epsilon ); } it("should have simd2f_madd for multiply-add") { simd2f a = simd2f_create(1,2); simd2f b = simd2f_create(100,100); simd2f c = simd2f_create(6,7); simd2f x = simd2f_madd(a,b,c); // octave simd2f: [1,2] .* [100,100] .+ [6,7] should_be_equal_simd2f(x, simd2f_create(106.000000000000000f, 207.000000000000000f), epsilon ); } } describe(simd2f, "vector math") { it("should have simd2f_dot2 for two component dot product") { simd2f a = simd2f_create(1,2); simd2f b = simd2f_create(10,20); simd2f x = simd2f_dot2(a,b); // octave simd2f: [dot([1, 2], [10, 20]),dot([1, 2], [10, 20])] should_be_equal_simd2f(x, simd2f_create(50.000000000000000f, 50.000000000000000f), epsilon ); } it("should have simd2f_length2 for two component vector length") { simd2f a = simd2f_create(1,2); simd2f x = simd2f_length2(a); // octave simd2f: [norm([1,2]),norm([1,2])] should_be_equal_simd2f(x, simd2f_create(2.236067977499790f, 2.236067977499790f), epsilon ); } it("should have simd2f_length2_squared for two component squared vector length") { simd2f a = simd2f_create(1,2); simd2f x = simd2f_length2_squared(a); // octave simd2f: ([dot([1,2], [1,2]), dot([1,2], [1,2])]) should_be_equal_simd2f(x, simd2f_create(5.000000000000000f, 5.000000000000000f), epsilon ); } it("should have simd2f_normalize2 for normalizing two component vector to unit length") { simd2f a = simd2f_create(1,2); simd2f x = simd2f_normalize2(a); // octave simd2f: [1,2] / norm([1,2]) should_be_equal_simd2f(x, simd2f_create(0.447213595499958f, 0.894427190999916f), epsilon ); } } describe(simd2f, "min-max") { it("should have simd2f_min for choosing minimum elements") { simd2f a = simd2f_create(1.0f, 2.0f); simd2f b = simd2f_create(2.0f, -2.0f); simd2f x = simd2f_min(a,b); should_be_equal_simd2f(x, simd2f_create(1.0f, -2.0f), epsilon); } it("should have simd2f_max for choosing maximum elements") { simd2f a = simd2f_create(1.0f, 2.0f); simd2f b = simd2f_create(2.0f, -2.0f); simd2f x = simd2f_max(a,b); should_be_equal_simd2f(x, simd2f_create(2.0f, 2.0f), epsilon); } } #endif